INVOLUTION NEAR-RINGS

by S. D. SCOTT
(Received 10th April 1978)

Throughout this paper all near-rings considered will be zero-symmetric and left distributive. All groups will be written additively, but this does not imply commutativity. The near-ring of all zero-fixing maps of a group V into itself will be denoted by $M_{0}(V)$. If N is a near-ring with an identity and $\alpha \neq 1$ is an element of N such that $\alpha^{2}=1$, then α will be called an involution of N. Let V be a group. An involution α of $M_{0}(V)$ will be called an involution on V.

If S is a subset of a near-ring N, then $N(S)$ will denote the subnear-ring of N generated by S. If S consists of the single element γ, we write $N(\gamma)$ for $N(\{\gamma\})$. We shall call a near-ring N with identity an involution near-ring, if N contains an involution α such that $N(\alpha)=N$. We are now in a position to state our main theorem.

Theorem 1. If V is a non-trivial finite group, then $M_{0}(V)$ is an involution near-ring if, and only if, V is neither an elementary abelian 2-group nor a cyclic group of order three.

To prove this theorem we will require certain lemmas, propositions and definitions. Also we shall clarify and explain some notation.

If S is a set, then $|S|$ will denote the cardinal of S. We shall, on the whole, be concerned only with finite sets. If K is a subset of S we write $S \backslash K$ for the complement of K in S.

From now on all groups considered will be finite. Let G be a group. As for sets, $|G|$ is the order of G. If S is a subset of G, then $\langle S\rangle$ will denote the subgroup of G generated by S (if S is empty, $\langle S\rangle$ is taken as $\{0\}$ and if S consists of the single element g, we write $\langle g\rangle$ for $\langle\{g\}\rangle$). The order $|\langle g\rangle|$ of an element g of G will be denoted by $|g|$. The set of all g in G such that $|g|=2$ will be denoted by $\eta(G)$. To avoid confusion the elements of $\eta(G)$ will not be referred to as involutions. We denote the set $G \backslash\{0\}$ by G^{*}. A subgroup of G that will play an important role in what follows is $\lambda(G)$, which is defined to be $\left\langle G^{*} \backslash \eta(G)\right\rangle$. Thus $\lambda(G)$ is the subgroup of G generated by all elements g of G such $|g|>2$. We define the centraliser of a subgroup H of G in the normal manner. Thus $C_{G}(H)$ will denote the subgroup of G consisting of all elements b of G such that $-b+h+b=h$ for all h in \boldsymbol{H}.

Proposition 2. If G is a non-trivial group and $\lambda(G)=\{0\}$, then G is an elementary abelian 2-group.

Proposition 3. If G is a group, then $\lambda(G)$ is a normal subgroup of G.
Proof. We shall in fact show that $\lambda(G)$ is characteristic in G. Assume $\lambda(G) \neq\{0\}$. Let g in G be such that $|g|>2$ and let μ be an automorphism of G. Then $|g \mu|=|g|>2$. So μ maps $G^{*} \backslash \eta(G)$ into $G^{*} \backslash \eta(G)$ and $\lambda(G)$ is characteristic in G.

Lemma 4. Let G be a group and suppose $\{0\}<\lambda(G)<G$. The following hold:
(i) $G \backslash \lambda(G) \subseteq \eta(G)$;
(ii) if b is in $G \backslash \lambda(G)$ and g in $\lambda(G)$, then $-b+g+b=-g$;
(iii) $\lambda(G)$ is abelian;
(iv) $C_{G}(\lambda(G))=\lambda(G)$; and
(v) $|G / \lambda(G)|=2$.

Proof. (i) This is obvious.
(ii) Since b is in $G \backslash \lambda(G)$ and g in $\lambda(G), b+g$ is in $G \backslash \lambda(G)$. By (i) $b+g+b+g=0$. By (i) $b=-b$ and (ii) follows.
(iii) Let b be in $G \backslash \lambda(G)$. By (ii) the inner automorphism induced by b maps every element of $\lambda(G)$ to its inverse. This is an automorphism of $\lambda(G)$ only if $\lambda(G)$ is abelian.
(iv) Since $\lambda(G)$ is abelian, $C_{G}(\lambda(G)) \geqslant \lambda(G)$. Suppose $C_{G}(\lambda(G))>\lambda(G)$ and let b be an element of $C_{G}(\lambda(G)) \backslash \lambda(G)$ and g an element of $\lambda(G)$ such that $|g| \neq 2$. But, by (ii), it would then follow that $-b+g+b=-g \neq g$. Hence $C_{G}(\lambda(G))=\lambda(G)$.
(v) If b_{1} and b_{2} are in $G \backslash \lambda(G)$ and g in $\lambda(G)$, then

$$
-b_{1}+g+b_{1}=-g
$$

and

$$
-b_{2}-b_{1}+g+b_{1}+b_{2}=g
$$

by (ii). Hence $b_{1}+b_{2}$ is in $C_{G}(\lambda(G))=\lambda(G)$. Thus $b_{1} \equiv-b_{2} \bmod \lambda(G)$ and (v)follows. The proof of the lemma is now complete.

Definition. Let G be a group and S a collection of subgroups of G. A bijection β of G onto G will be said to confuse S, if for any H in $S, H \beta \not \subset H$.

Lemma 5. Let G be a non-zero group which is neither an elementary abelian 2-group nor a group of order three. There exists an involution α on G which confuses proper subgroups of G and is such that
(i) if $|G|$ is even, then α has a unique fixed element $h \neq 0$.
(ii) if $|G|$ is odd, then α fixes only two non-zero elements b_{1}, b_{2} and $b_{1}+b_{2} \neq 0$.

Proof. Let A_{1}, \ldots, A_{n} be the distinct non-zero cyclic subgroups of G of order greater than two, and let g_{i} generate A_{i} for $1 \leqslant i \leqslant n$. Set $S=\left\{g_{1},-g_{1}, \ldots, g_{n},-g_{n}\right\}$. Clearly $g_{i} \neq-g_{i}$ as $\left|g_{i}\right|>2$. If $|G|$ is even, let $a_{1}, \ldots, a_{2 k+1}$, be the elements of $\eta(G)$ (note that $|\boldsymbol{\eta}(G)|$, the number of subgroups of G of order two, is odd by the Sylow Theorems). By (i) of Lemma 4 we may assume that if $\lambda(G)<G$, then $a_{2 k+1}$ is in $G \backslash \lambda(G)$.

Finally partition the elements of $G \backslash\{S \cup \eta(G)\}=T$ by $\{g,-g\}$. Define α by:
α interchanges g_{i} and $-g_{i+1}$ for $1 \leqslant i \leqslant n-1$ (vacuous if $n=1$), and α interchanges g and $-g$ for g in T.
(a) if $|G|$ is odd an $n>1, \alpha$ fixes $-g_{1}$ and g_{n},
(a)' if $|G|$ is odd and $n=1$, then $|G|$ is a prime p greater than three and thus $G^{*}=\left\{a_{1}, \ldots, a_{p-1}\right\}$, where we may assume that $a_{p-1} \neq-a_{p-2}$. Let α fix a_{p-1} and a_{p-2} and interchange the rest in pairs.
(b) if $|G|$ is even, let α interchange $a_{2 k+1}$ and $-g_{1}, a_{2 i-1}$ and $a_{2 i}$ for $1 \leqslant i \leqslant k$ (vacuous if $k=0$), and fix g_{n}.

Then $\alpha \neq 1, \alpha^{2}=1$ and α is an involution. Let H be a non-zero subgroup of G such that $H \alpha \subseteq H$. If H contains an element of order greater than two, then some g_{i} is in H. Thus $-g_{i}$ is in H and, by the definition of $\alpha, H \supseteq\left\{g_{1}, \ldots, g_{n}\right\}$. If $|G|$ is odd and $n>1$, then $H=G$. If $|G|$ is odd and $n=1$, then $H=G$ anyway. If $|G|$ is even, then $\lambda(G) \leqslant H$ and by the definition of $\alpha, a_{2 k+1}$ is in H. Thus $H=G$ since, if $G>\lambda(G)$, then $\lambda(G)$ is a maximal subgroup of G by Lemma 4.

We may therefore assume that $H \alpha \subseteq H$ and $H^{*} \subseteq \eta(G)$. Clearly $a_{2 k+1}$ is not in H, otherwise g_{1} is in H. By the definition of $\alpha, a_{2 i}$ is in H if, and only if, $a_{2 i-1}$ is in H. Thus $\left|H^{*}\right|$ is even. However, H is an elementary abelian 2-group and $\left|H^{*}\right|=|H|-1$ is odd. This contradiction completes the proof.

The question remains as to whether or not elementary abelian 2-groups are a genuine exception to Lemma 5.

Proposition 6. If A is an elementary abelian 2-group and α an involution on A, then there exists a proper subgroup H of A such that $H \alpha \subseteq H$.

Proof. As a cyclic group of order two has no involutions we may assume that $|A| \geqslant 4$. Let S be the set of all b in A^{*} such that $b \alpha=b$. Since $A^{*} \backslash S$ is partitioned by two element subsets of the form $\{g, g \alpha\}$ where G is in $A^{*} \backslash S$, it follows that $\left|A^{*} \backslash S\right|$ is even. Since $\left|A^{*}\right|$ is odd, $|S|$ is odd. Thus S is non-empty. Let h be in S. We have $h \alpha=h$ and $h \neq 0$. Let $H=\langle h\rangle$. Clearly H is a proper subgroup of A and $H \alpha \subseteq H$. The proposition is now proved.

There remains the case of a cyclic group of order three.
Proposition 7. If G is a group of order three, then there exists a unique involution α on G and α is an automorphism.

Proof. Let h_{1} and h_{2} be the non-zero elements of G. Since an involution α on G is such that $0 \alpha=0$ and distinct from 1, it is clear that $h_{1} \alpha=h_{2}$ and $h_{2} \alpha=h_{1}$. Thus α is the unique involution on G. Also $h_{2}=-h_{1}$ and $h \alpha=-h$ for all h in G. Thus α is an automorphism.

If G is a non-trivial group which is not an elementary abelian 2-group, it follows from Lemma 5 that there exists an involution α on G that confuses proper subgroups, provided $|G| \neq 3$. In the case where $|G|=3$ the involution α of Proposition 7 may be considered to confuse proper subgroups. Proposition 6 tells us that this is an "if, and only if" result. Thus we have:

Theorem 8. A non-zero group G has an involution α on G that confuses proper subgroups if, and only if, G is not an elementary abelian 2-group.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let V be a non-zero group and β an involution of $M_{0}(V)$ that confuses proper subgroups of V. Set $N=M_{0}(V)$. We make three straightforward observations:
(a) V is a unitary $N(\beta)$-group;
(b) $N(\beta)$ is 2-primitive on V (see (2, 4.2, p. 103)); and
(c) if β is distributive in $N(\beta)$, then β is an automorphism of V.

Firstly, we prove these results. Clearly $N(\beta) \leqslant N$ and, since the identity of N is in $N(\beta), V$ is a unitary $N(\beta)$-group. Thus (a) holds. If H is an $N(\beta)$-subgroup of V, then $H N(\beta) \subseteq H$. However β confuses proper subgroups of V and thus $H=\{0\}$ or $H=V$. Hence (b) holds. If v is a non-zero element of V, then $v N(\beta)$ is an $N(\beta)$-subgroup of V. Also $v N(\beta)$ is non-zero by (a) and $v N(\beta)=V$ by (b). Let v_{1} and v_{2} be two elements of V. We have $v_{i}=v \gamma_{i}, i=1,2$, where γ_{i} is in $N(\beta)$. Thus

$$
\begin{aligned}
\left(v_{1}+v_{2}\right) \beta & =v\left(\gamma_{1}+\gamma_{2}\right) \beta \\
& =v \gamma_{1} \beta+v \gamma_{2} \beta \\
& =v_{1} \beta+v_{2} \beta .
\end{aligned}
$$

Since β is a bijection on V, it is an automorphism of V and (c) holds.
We now assume that V is not an elementary abelian 2-group and $|V|$ is even. By Lemma 5 there exists an involution α on V, that conf uses proper subgroups of V and is such that $h \alpha=h$ for some unique non-zero element \boldsymbol{h} of \boldsymbol{V}. By (b) $N(\alpha)$ is 2-primitive on V. If $N(\alpha)$ is a ring, then α is an automorphism of V by (c), and all v in V such that $v \alpha=v$ form a subgroup of V. Thus $\{0, h\}$ is a subgroup of V such that $\{0, h\} \alpha=\{0, h\}$. Hence $\{0, h\}=V$. But, since V is not an elementary abelian 2-group, this cannot happen. Hence $N(\alpha)$ is not a ring. Let μ be an $N(\alpha)$-automorphism of V. By $(2,4.61$, p. 132) we need only show that μ is the identity. If $\mu \neq 1$, it acts fixed point freely on V. Since $h \alpha=h$, it follows that $h \mu \alpha=h \mu$ and, by the uniqueness of $h, h \mu=h$. Thus $\mu=1$ and $N(\alpha)=N$ in this case.

Assume $|V|$ is odd and $|V|>3$. By Lemma 5 there exists an involution α on V, that confuses proper subgroups of V and is such that $b_{1} \alpha=b_{1}$ and $b_{2} \alpha=b_{2}$ for a unique non-zero pair of elements b_{1} and b_{2} of V. Furthermore we may assume that $b_{1} \neq-b_{2}$. Now $N(\alpha)$ is 2-primitive on V by (b). If $N(\alpha)$ is a ring, then by (c) we have the set of all v in V such that $v \alpha=v$ is a subgroup of V. It would then follow that $\left\{0, b_{1}, b_{2}\right\}$ is a subgroup of V fixed by α and this in turn implies that $\left\{0, b_{1}, b_{2}\right\}=V$. Since $|V| \neq 3$, we conclude that $N(\alpha)$ is not a ring. Let μ be an $N(\alpha)$-automorphism of V. Again by (2, 4.61, p. 132) we need only show that μ is the identity. Now $b_{1} \alpha=b_{1}$ and thus $b_{1} \mu \alpha=b_{1} \mu$. If $\mu \neq 1$, then it is fixed point free on V and $b_{1} \mu=b_{2}$. Similarly $b_{2} \mu=b_{1}$. Thus $b_{1} \mu^{2}=b_{1}$ and it follows that $\mu^{2}=1$. By (1, $\left.1.4, \mathrm{p} .336\right) b_{1} \mu=-b_{1} \neq b_{2}$. This contradiction establishes that $N(\alpha)=N$.

Conversely, if V is an elementary abelian 2-group and α an involution of $M_{0}(V)(=N)$, then by Proposition $6 H \alpha \subseteq H$ for some proper subgroup H of V. Thus $H N(\alpha) \subseteq H$ and $N(\alpha)$ is not 2-primitive on V as is N. Hence $N(\alpha) \neq N$. Finally, if V is a cyclic group of order three and α an involution of $M_{0}(V)$, then by Proposition 7, α is an automorphism of V. Since V is abelian, $N(\alpha)$ is a ring. However, $N=M_{0}(V)$ is a non-ring. The proof is complete and Theorem 1 is established.

Corollary. A finite non trivial near-ring N may be embedded in the involution near-ring $M_{0}\left((N,+) \oplus C_{3}\left(=N^{\prime}\right)\right.$ where C_{3} is a cyclic group of order three.

Proof. By $\left(2,1.86\right.$, p. 33) N can be embedded in N^{\prime}. By Theorem $1 N^{\prime}$ is an involution near-ring.

Let V be a group satisf ying the conditions of Theorem 1. It is natural to ask how many involutions α in $M_{0}(V)(=N)$ exist such that $N(\alpha)=N$? It is not difficult to show that if α is such an involution and μ an automorphism of V, then $\beta=\mu^{-1} \alpha \mu$ is an involution of N distinct from α and such that $N(\beta)=N$. From this we conclude that the number of such involutions is at least $|A|$, where A is the automorphism group of V.

Another question is whether or not the above corollary holds for infinite near-rings. In fact it does not hold. Indeed, let N_{1} be the near-ring with identity generated by a single element α and where the only defining relationship is $\alpha^{2}=1$. Let N be any near-ring, such that $|N|>\left|N_{1}\right|$. The near-ring N cannot be embedded in an involution near-ring.

Also, what can be said about a near-ring generated by an involution which is distributive? Such near-rings may have a surprisingly complex structure. There are, for example, an infinite number of such near-rings which are finite, 0 -primitive but not 2-primitive (3). In particular such a finite near-ring N may have a non-nilpotent radical ($J_{2}(N)$).

Yet another question that arises naturally from Theorem 1 is the following:
If n is a fixed integer, then which of the near-rings $M_{0}(V)$ (V a finite group) are generated by a single element α such that $\alpha^{n}=1$? Theorem 1 answers this question for $n=2$. Even for $n=3$, this question seems difficult. If, for example, V is the symmetric group on three letters, then $M_{0}(V)$ is not generated by such an α as, in this case, V has four proper subgroups intersecting in zero and β can permute at most three elements of V.

The author wishes to thank the referee for his comments which helped condense the proof of Theorem 1.

REFERENCES

(1) D. Gorenstein, Finite Groups (Harper \& Row).
(2) G. Pilz, Near-rings (North-Holland).
(3) S. D. ScOTt, A construction of monogenic near-ring groups and some applications, Bull. Australian Math. Soc. 19, (1978), 1-4.

[^0]
[^0]: Department of Mathematics, University of Auckland,
 Auckland,
 New Zealand.

