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Cavity evolution in granular media is crucial in explosion-driven gas–particle flows,
particularly in many engineering applications. In this study, a theoretical model
was first proposed to describe the cavity evolution in granular media by extending
the classical Rayleigh–Plesset model. A closed equation set comprising the radius,
pressure and gas leak-off velocity equations was built by considering the gas expansion
and non-Darcy gas-penetration effects. Both centrally symmetric and non-centrally
symmetric cases of gas injection into granular media were investigated. Especially for
modelling the non-symmetric scenario, the radius and gas leak-off velocity equations
were proposed in each radial direction with angle θ , and then the pressure equation
was built up based on the integral gas leak-off along the cavity outline. Through
non-dimensionalizing the theoretical equations, four key dimensionless numbers Π1, Π4
were obtained to characterize the response time of cavity expansion and the intensity
of non-Darcy effects for both cases. This allowed us to determine a scaling law of
effective cavity radius R∗

eff = √
2Π2/(7π)t∗1/2 and the critical time t∗cr = √

12.5/Π1 for
two-dimensional cavity evolution. Additionally, the necessity of incorporating non-Darcy
effects was ascertained under conditions of Π4 > 400. The findings demonstrate that
the proposed theoretical equations effectively predict the cavity evolution results under
various operational conditions (0.7 < Π1 < 7 × 102, 3 < Π4 < 1.1 × 103), as validated
by refined Euler–Lagrange numerical simulations.
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1. Introduction

Cavity or bubble formation in granular media due to high-energy impacts or explosions is
a common phenomenon in nature and engineering, such as meteorites impacting planets
(Housen & Holsapple 2003) and underground blasting (Jiang et al. 2017; Anas, Alam &
Umair 2022). These processes involve strong interactions between the highly compressible
gases and granular media. The cavity evolution process in granular media is similar
to the bubble dynamics in a continuum fluid (Devaraj 2017). Granular media exhibit
characteristics unique to both continuum and discrete particles. This dual nature leads to
distinctive particle jetting and splashing patterns during the collapse of granular cavities
(Koneru et al. 2020; Li et al. 2022). Such a dynamics plays a crucial role in shaping
prominent topographic features, notably impact craters, which have been extensively
studied by Loranca-Ramos, Carrillo-Estrada & Pacheco-Vázquez (2015), Zhao et al.
(2015) and Gao et al. (2018).

Arguably as relevant as the above cavity evolution in granular media is the bubble in
a liquid (Lohse 2018). Taylor’s findings (Taylor 1950) established a 2/5 power law for
predicting cavity size relative to the explosive energy. The Rayleigh–Plesset equation
(Plesset & Prosperetti 1977; Brennen & Christopher 2005) is fundamental for describing
three-dimensional (3-D) bubble evolution in an infinite fluid domain. Recently, Zhang
et al. (2023) extended this equation to establish a unified theory of oscillating bubbles by
considering key physical quantities such as fluid compressibility, viscosity and surface
tension. Additionally, Wang et al. (2021) applied the Rayleigh–Besant equation to
examine interface instability in 2-D cylindrical water films within a finite fluid domain.
A key distinction between granular media and impenetrable continuum fluids lies in the
permeability of granular media, allowing gas to penetrate the porous structure, leading
to additional mass and energy transfers between the cavity and surrounding environment.
This feature significantly influences the dynamics of the cavity or bubble evolution in
granular media, offering a complex and rich field of study.

Recent efforts have focused on quantitatively describing cavity evolution in granular
media. Lai, Houim & Oran (2017) established an empirical power-law relationship between
the cavity radius and time using a two-fluid model simulation method. Pacheco-Vázquez,
Tacumá & Marston (2017) compared their experimental data with the predictions of the
classical Rayleigh–Plesset equation. Liu et al. (2020) proposed a relationship equating the
cavity expansion velocity to the gas-penetration velocity estimated using Ergun’s equation.
Furthermore, Xue et al. (2023) proposed a ring-pulsation model to recover the velocities
of the interior and exterior interfaces for symmetrical cavity expansion by providing a
fitting curve for the cavity pressure. Despite these advancements, a significant research
gap remains in developing a fully closed theoretical model that explores the relationship
between the cavity radius and pressure evolution, particularly considering gas-penetration
effects. This indicates the need for further research to comprehensively understand these
complex interactions.

This study proposes a comprehensive closed three-equation model to address these
challenges of cavity evolution in granular media. First, the cavity radius equation
was obtained from a 2-D finite Rayleigh–Plesset model with the to-be-determined
cavity pressure. Second, the cavity pressure equation was derived based on the first
thermodynamic law considering gas expansion, energy injection and leak-off. Third, the
equation for determining the gas-penetration velocity was derived from Ergun’s equation,
which is a quadratic model for describing high-velocity non-Darcy flows in porous media.
Finally, the cavity evolutions of the centrally symmetric and non-centrally symmetric
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cases are predicted using our proposed theoretical model, where the comparison data are
from validated Eulerian–Lagrangian simulations based on the compressible multi-phase
particle-in-cell (CMP-PIC) method (Tian et al. 2020).

2. Numerical methods

2.1. The CMP-PIC method
To numerically simulate the 2-D cavity evolution processes in granular media, we adopted
our previously proposed CMP-PIC method (Tian et al. 2020). This method integrates
the Eulerian–Lagrangian approach, where compressible gas is solved in fixed Cartesian
Eulerian grids, while particles are tracked under the Lagrangian framework. The governing
equations for the gas–particle system are as follows:

∂
(
αgρg

)
∂t

+ ∇ · (
αgρgug

) = ρIqI, (2.1)

∂
(
αgρgug

)
∂t

+ ∇ · (
αgρgugug + αgPg

) = Pg∇αg + f d, (2.2)

∂
(
αgρgEg

)
∂t

+ ∇ · (
αgρgEgug + αgPgug

) = Pg∇αg · up + qd + ρIqIhI, (2.3)

Mp,j
dUp,j

dt
= F D,j + F P,j +

N∑
i=1

F C,i→j, (2.4)

where αg is the gas volume fraction; ρg, Pg and Eg are the density, pressure and total energy
of the gas phase, respectively; and ug and up are the phase-averaged velocities of the gas
and granular phases, respectively. The term Pg∇αg denotes the nozzling term, which is
attributed to the interfacial pressure gradient force of the particle phase and f d and qd
denote the momentum and energy source terms, respectively, owing to the gas–particle
drag force. To consider the energy input for the investigated gas–particle system, additional
mass and energy source terms – ρIqI and ρIqIhI – were introduced in (2.1) and (2.3), where
ρI and hI are the density and specific enthalpy of injection gas, respectively, and qI is the
volumetric injection rate per unit volume of Hele-Shaw cell.

The parameters Mp,j and Up,j denote the mass and velocity of parcel j, respectively.
The forces exerted on the parcel include the gas–particle drag force F D,j; the pressure
gradient force F P,j = −Vj∇Pg, where Vj is the parcel volume; and the collision force
F C,i→j from other contacting parcels. The gas field surrounding the particle surfaces in the
CMP-PIC method is not fully resolved. Therefore, the pressure gradient and drag forces
were adopted to consider the gas–particle coupling effect. Specifically, the Di Felice model
combined with Ergun’s equation was used to calculate the gas–particle drag coefficient.
The parcel–parcel interactions were resolved using a spring-dashpot model based on the
coarse-grained discrete element method (CG-DEM) to calculate the collision force.

2.2. Simulation set-up
This study investigates two scenarios: centrally symmetric and non-centrally symmetric
cases, as illustrated in figure 1. The simulation domain size was set to 1.6m × 1.6 m with
a mesh size of 400 × 400 to solve for the gas equations. To prepare the initial 2-D parcel
configuration of the granular media, a pure CG-DEM simulation of gravitational settling
was priorly conducted without solving the gas equations to obtain a parcel template of a
randomly close-packed granular bed (see supplementary materials for details).
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Figure 1. (a) Simulation set-up of centrally symmetric scenario for 2-D cavity evolution in granular media.
Here, r denotes the radial distance from the injection point. (b) Simulation set-up of non-centrally symmetric
scenario for 2-D cavity evolution in granular media.

In the centrally symmetric scenario, a circle-shaped granular disk was clipped from
the parcel template and positioned at the centre of the domain. The initial maximum
outer radius of the 2-D granular disk was R0

m, which was set as the characteristic length,
and the realistic particle diameter of the granular media was set to a constant value
and denoted as dp. All four boundaries of the simulation domain were set as exterior
conditions, and high-pressure gas was injected into the centre cell of the coordinate
(xI, zI) = (0.8 m, 0.8 m), as illustrated in figure 1(a).

For the non-centrally symmetric scenario, the initial configuration of the granular
media was obtained by clipping the parcel template into a new granular bed with a
specified height of H. The gas injection point was then located at the cell with coordinates
(xI, zI) = (0.8 m, 0.3 m), and the buried depth, denoted as Db, was set as the characteristic
length, as illustrated in figure 1(b). In this scenario, the left, right and bottom boundaries
were set as non-penetrating solid wall conditions, and the remaining upper boundary was
set as the exterior condition.

This study investigates the effects of three parameters on cavity evolving processes
in centrally symmetric and non-centrally symmetric scenarios, i.e. the injection energy
rate of gas QE = ρIhIqIAcell, where Acell is the area of the injection cell, the physical
particle diameter dp of granular media and the characteristic length (R0

m or Db). To
describe the process quantitatively, the cavity radius varying with time t is denoted as
R(t). In the asymmetric scenario, the effective cavity radius is introduced and defined as
Reff (t) = √

Ac(t)/π, where Ac(t) is the cavity area that varies with time t. The temperature
of the injected gas is considered as the ambient temperature T0; hence, the gas specific
enthalpy hI = (γ /(γ − 1))RgT0 is a constant where γ is the adiabatic index and Rg is the
gas constant. Once QE is determined, the mass injection rate of ρIqIAcell = QE/hI can be
deduced from QE and T0. Given the total injection gas energy ET , the characteristic time
is denoted by tc = ET/QE.

2.3. Numerical validation
In our previous studies, the CMP-PIC method was validated for the centrally symmetric
cases (Tian et al. 2020) and successfully applied to investigate centrally driven
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t (ms) Reff (mm) t (ms) Reff (mm) t (ms) Reff (mm) t (ms) Reff (mm)

5 1.4447 35 34.580 65 51.416 95 64.702
10 8.3583 40 37.596 70 53.779 100 66.981
15 15.615 45 40.842 75 56.081 105 69.167
20 21.607 50 43.617 80 58.387 110 71.131
25 26.462 55 46.339 85 60.647 115 73.129
30 30.736 60 48.860 90 62.816 120 75.151

Table 1. Values of estimated Reff at 24 time points (time interval is 5 ms) based on experimental data in
previous literature (Gao et al. 2018).

granular-induced instability problems (Xue et al. 2023). In this study, we further validated
our in-house code for the non-centrally symmetric scenario by comparing our numerical
results with those of Gao et al. (2018).

The experimental configuration for studying explosive cavity evolution processes
closely mirrors our simulation setting for the non-centrally symmetric scenario.
Specifically, Db was set to 32 mm and the average dp was measured as 90 μm. The
experimental close-packed fraction of the granular media was approximately 60 %, and
the particle density was ρs = 2500 kg m−3. Therefore, the average particle density
ρ̄s = 1500 kg m−3. The ambient gas density ρ0

g was 1.18 kg m−3 and gas viscosity μg was
1.81 × 10−5 Pa s. Owing to the presence of granular media surrounding the gas injection
valve, inferring the gas energy injection rate is difficult. To resolve this, QE was obtained
through calibration by comparing the effective cavity radius of the numerical results with
the experimental data, which was estimated as QE = 5.6 × 104 J m−1 s−1. We mainly
investigated the behaviour in the time range of t < 100 ms. Therefore, the total injected
gas energy was ET = 5.6 × 103 J m−1. As the effective radius was not directly provided
in their original work, we extracted the cavity outlines at different time points based on
their attached high-resolution videos for the quasi-2-D cavity evolution processes (see
supplementary materials for details). Table 1 lists the extracted data of the effective cavity
radius at 24 time points (time interval is 5 ms) for comparison.

Figure 2 demonstrates the comparisons of Reff between the experimental data
and simulation results. Under such conditions, gravity does not significantly affect
Reff . Consequently, the effect of gravity was disregarded in subsequent analyses and
simulations. A mesh convergence test confirmed that the current mesh size was sufficiently
small to obtain converged results for Reff . The CMP-PIC simulation results align with the
experimental data. Furthermore, as illustrated in figure 2 the R∗

eff = Reff /Db curve in a
log–log plot vs dimensionless time t∗ = tQE/ET shows notable scaling law of

√
t∗ during

the latter stage of cavity expansion, necessitating further investigation into the intrinsic
mechanism. In subsequent sections, ET is considered a constant value, while varying the
injection rate to study the corresponding effect on the cavity evolution.

3. Three-equation model for cavity evolution

In this section, we derived a three-equation model for a centrally symmetric scenario.
Subsequently, the model was extended by considering the radial variation of the
cavity radius to describe the non-centrally symmetric scenario. Finally, we performed a
dimensional analysis to obtain a set of dimensionless numbers for investigating the effects
of the control parameters.
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Figure 2. Comparisons of effective cavity radius Reff among experimental data (Gao et al. 2018) and
simulation results. Here, R∗

eff = Reff /Db is the non-dimensionalized effective cavity radius by the buried depth
Db of the injection point, and t∗ = tQE/ET is the non-dimensionalized time by total injection time ET/QE.

3.1. Centrally symmetric cases
We assumed that the volume-average density of the granular phase, denoted as ρ̄s, is
constant. The viscosity effect of the granular medium and the compressibility of the
granular medium are neglected during the cavity expansion processes, analogous to a 2-D
bubble evolution process within an incompressible liquid film (Devaraj 2017). First, in
the radial r direction, the governing equations of the mass and momentum balance are
expressed as

1
r

∂

∂r
(rur) = 0 ⇐⇒ rur = F(t) = RṘ, (3.1)

∂ur

∂t
+ ur

∂ur

∂r
= − 1

ρ̄s

∂Pg

∂r
, (3.2)

where ur is the radial average velocity of the granular phase and Pg is the gas pressure;
F(t) denotes the mass flux constant along the r direction and R and Ṙ are the cavity radius
and the velocity of the cavity boundary, respectively.

By substituting (3.1) into (3.2) and integrating from r = R(t) to r = Rm(t), we obtain

(
RR̈ + Ṙ2

)
ln

Rm

R
+ 1

2
Ṙ2

[(
R

Rm

)2

− 1

]
= P(t) − P0

ρ̄s
, (3.3)

where P and P0 are the average gas pressure inside the cavity and ambient gas pressure
outside the cavity, respectively.

Assuming the granular medium keeps a close-packing state during cavity expansion,
the area of the granular ring remains constant and is denoted as As. Introducing a
dimensionless factor α =

√
1 + As/πR2 − 1 = (Rm/R) − 1, (3.3) can be rewritten as

(
RR̈ + Ṙ2

)
ln (1 + α) + 1

2
Ṙ2

[(
1

1 + α

)2

− 1

]
= P(t) − P0

ρ̄s
. (3.4)
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Second, the cavity pressure equation is derived based on the first principle of
thermodynamics. For 2-D adiabatic expansion processes, considering the energy balance
equation of the gas phase inside the 2-D cavity, the following equation should be satisfied:

d
(
ρgAceg

)
dt

= −P
dAc

dt
−

∮
Lc

(
ρghgul

)
dl + QE, (3.5)

where Ac = πR2 denotes the cavity area, eg = (1/(γ − 1))(P/ρg) denotes the internal
energy of the gas phase in the cavity and Lc denotes the cavity boundary. The left-hand
side indicates the accumulation rate of the gas internal energy, while the three terms on
the right-hand side indicate the work due to cavity expansion, energy leak-off through
the gas–granular interface and energy injection, respectively. Also, ul is the gas leak-off
velocity along cavity boundary Lc. Since the cavity shape is circular in centrally symmetric
cases, (3.5) can be simplified to

d
(
ρgπR2eg

)
dt

= −P
d

(
πR2)
dt

− 2πR
(
ρghgul

) + QE. (3.6)

Furthermore, by applying the ideal gas equation of state P = (γ − 1)ρgeg and
hg = P/ρg + eg, the following pressure equation can be obtained:

πR2Ṗ + 2πγ PRṘ = −2πγ RPul + (γ − 1) QE. (3.7)

For isothermal expansion, the cavity gas pressure can be expressed as P = ρgRgT0,
where Rg is gas constant. The mass-balance equation for the gas inside cavity is written as

d
(
ρgAc

)
dt

= −2πRρgul + QE

hI
, (3.8)

where hI = (γ /(γ − 1))RgT0. Therefore, the pressure equation can be obtained as

γπR2Ṗ + 2πγ PRṘ = −2πγ RPul + (γ − 1) QE. (3.9)

The forms of (3.7) and (3.9) are similar, differing only in the substitution of the adiabatic
index of γ by one for the pressure derivative term in (3.7).

Third, for modelling the gas leak-off velocity ul through the granular media, the linear
Darcy’s law is utilized for describing the relationship between the pressure drop and
gas-penetration velocity for low particle Reynolds number (Rep = ρg|ul|dp/μg � 1) cases
(Devaraj 2017). For higher Rep � 1, a nonlinear modification is required to consider the
nonlinear inertial migration effect. Ergun’s equation (Ergun 1952) has been widely utilized
to describe the relationship between the pressure gradient and gas-penetration velocity for
high Rep and low αg cases, and is expressed as

−∂Pg

∂r
= 150μg

d2
p

(1 − αg)
2

α3
g

u′
l + 1.75ρg

dp

(1 − αg)

α3
g

u′
l|u′

l|

=
(

1 + 1.75
150

Re∗
)

μg

KKC
u′

l, (3.10)

where u′
l = u′

l(r) indicates local gas leak-off velocity varying with the radial
distance r, Re∗ = ρg|u′

l|dp/μg(1 − αg) is the modified particle Reynolds number and
KKC = α3

gd2
p/150(1 − αg)

2 is the permeability of Kozeny–Carman model.
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Notably, Ergun’s equation aimed to describe the non-Darcy flows, in which the pressure
gradient ∂Pg/∂r follows a quadratic formula independent of the gas leak-off velocity u′

l.
To calculate ul = u′

l(R), an integral equation should be solved. An approximation method
is introduced to solve this equation. To address this, the average permeability, denoted as
K̄ = (150/(150 + 1.75Re∗))KKC, was introduced to obtain a more concise formula for the
gas leak-off. First, Darcy flow was considered for isothermal radial systems

RgT0

Pg
Qsc = −2πrK

μg

∂Pg

∂r
, (3.11)

where Qsc is the molar flow rate of the gas, which is constant during radial flow, and
K is the constant average permeability. By integrating the above equation from r = R to
r = Rm, the molar flow rate can be obtained as

RgT0Qsc

K
ln

Rm

R
= π

μg

(
P2 − (P0)2

)
. (3.12)

By substituting the equation of state 2πRulP = RgT0Qsc into (3.12), we obtain the
following ul equation:

ul = K
μg

(
P2 − (P0)2)

2RP ln (1 + α)
. (3.13)

For non-Darcy flows, the effective average permeability of K̄ was adopted to obtain(
1 + 1.75

150
Re∗(ūl)

)
ul = KKC

μg

(
P2 − (P0)2)

2RP ln (1 + α)
, (3.14)

where ūl is the average leak-off velocity estimated as

ūl = ul + ul(1/(1 + α))

2
= 2 + α

2 + 2α
ul. (3.15)

Then, ul can be readily calculated based on a fixed-point iteration scheme, instead of
solving the integral-differential equation.

3.2. Non-centrally symmetric cases
In the context of an asymmetric scenario, our objective is to derive an angle-dependent
model equation that accurately describes the evolution of the boundary radius within
the cavity under varying angular conditions. The radial potential flow hypothesis is still
applicable to asymmetric situations; thus, (3.1) and (3.2) are still applicable for each radial
direction. Subsequently, (3.4) remains valid for describing the evolution of the cavity
radius at various angles θ . The following equation can be obtained:(

R(θ)R̈(θ) + Ṙ(θ)2
)

ln (1 + α(θ)) + 1
2

Ṙ(θ)2

[(
1

1 + α(θ)

)2

− 1

]
= P − P0

ρ̄s
. (3.16)

For the gas leak-off velocity in each radial direction, it can similarly be modelled based
on the Ergun equation∫ Rm(θ)

R(θ)

(
1 + 1.75

150
Re∗(u′

l(θ, r))
)

μg

KKC
u′

l(θ, r) dr = P − P0. (3.17)

For the pressure evolution equation, the gas expansion effect needs to be described based
on the area and area change rate of the asymmetric cavity, while the total gas leakage
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amount should be integrated over the circumferential leak-off velocity. Subsequently, for
the adiabatic expansion cases, the pressure evolution equation is expressed as

AcṖ + γ PȦc = −γ P
∫ 2π

0
ul(θ)R(θ) dθ + (γ − 1) QE. (3.18)

By substituting the cavity area of Ac = ∫ 2π

0
1
2 R(θ)2 dθ into (3.18), we obtain the pressure

equation as

1
2

Ṗ
∫ 2π

0
R(θ)2 dθ + γ P

∫ 2π

0
Ṙ(θ)R(θ) dθ

= −γ P
∫ 2π

0
ul(θ)R(θ) dθ + (γ − 1) QE. (3.19)

3.3. Dimensionless form and dimensionless numbers
Taking the centrally symmetric scenario with adiabatic expansion as an example through
dimensional analysis, the closed model equations, i.e. (3.4), (3.7) and (3.14) can be
rearranged into dimensionless form as follows:

ln(1 + α)
(
R∗R̈∗ + Ṙ∗2) + 1

2
Ṙ∗2

[
1

(1 + α)2 − 1
]

= Π1 (P∗ − 1)

R∗2Ṗ∗ + 2γ R∗Ṙ∗P∗ = γ − 1
π

Π2 − 2γ P∗R∗u∗

(1 + βΠ4ū∗) ln(1 + α)R∗u∗ = Π3

(
1

P∗ − P∗
)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)

where t∗ = t/tc = tQE/ET , R∗ = R/R0
m, P∗ = P/P0, u∗ = ulET/(QER0

m) and
β = 1.75/150 is a constant coefficient in Ergun’s model. Here, the average leak-off
velocity is estimated as ū∗ = ((2 + α)/(2 + 2α))u∗. The four derived non-dimensional
numbers can be expressed as

Π1 = P0E2
T

ρ̄sQ2
E

(
R0

m
)2 , Π2 = ET

P0
(
R0

m
)2 ,

Π3 = P0KKCET

μgQE(R0
m)2 , Π4 = ρ0

gR0
mdpQE

(1 − αg)μgET
,

(3.21a–d)

where Π1 is the magnitude ratio of the work attributed to the gas pressure to the kinetic
energy of the granular media; Π2 is the dimensionless input energy, Π3 is the magnitude
ratio of gas leak-off velocity to the characteristic velocity R0

mQE/ET and Π4 represents
part of the modified particle Reynolds number, which reflects the magnitude ratio of the
non-Darcy leak-off effect to the linear Darcy effect.

4. Results and discussions

In this section, we investigate the effects of three physical parameters: the injection energy
rate QE, characteristic length R0

m or Db and particle diameter dp, on the cavity evolution
process for centrally symmetric and non-centrally symmetric scenarios. The physical
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Case no. QE (J m−1 s−1) R0
m | Db (mm) dp (μm) Π1 Π2 Π3 Π4

S1/N1 5.6 × 104 32 90 651 54.7 5.18 3.13
S2/N2 2.24 × 105 32 90 40.7 54.7 1.29 12.5
S3/N3 5.6 × 105 32 90 6.51 54.7 0.518 31.3
S4/N4 5.6 × 105 64 90 1.63 13.7 0.129 62.6
S5/N5 5.6 × 105 96 90 0.723 6.08 0.0576 93.9
S6/N6 5.6 × 105 96 400 0.723 6.08 1.14 417
S7/N7 5.6 × 105 96 1000 0.723 6.08 7.11 1043

Table 2. Physical parameters and dimensionless numbers for centrally symmetric cases (S1 ∼ S7) and
non-centrally symmetric cases (N1 ∼ N7).

parameters and corresponding dimensionless numbers are listed in table 2. The total
injection energy in all cases was kept constant, namely, ET = 5.6 × 103 J m−1. Hence,
the investigated range of dimensionless time was 0 � t∗ � 1 for these cases. For cases S1
and N1, the parameters are consistent with those in the Gao et al. experiment (Gao et al.
2018). In case S1, the initial outer radius R0

m was set to 32 mm, similar to the buried depth
Db in case N1.

4.1. Centrally symmetric cases
The centrally symmetric cases are investigated by comparing the numerical solution of
ordinary differential equation (ODE) set (3.20) with the 2-D simulation results. Figure 3
shows the typical cavity evolution history in the symmetric scenario. As observed, as the
cavity continued to grow, the granular media appeared to be centrally symmetrical and
ring shaped, with the thickness of the granular ring decreasing over time. Figure 4(a–c)
demonstrates the predicted cavity radius, cavity absolute over-pressure and gas leak-off
velocity, respectively. As illustrated in figure 4(a), the predicted cavity radius R∗ = R/R0

m
obtained from solving the ODE set (3.20) closely matches the 2-D simulation data for all
seven cases. As shown in figure 4(b), the pressure changes exhibited an initial increase
followed by a decline. The rising phase corresponds to the initial stage, where the gas
energy inside the cavity continues to accumulate, and the declining phase corresponds to
the rapid expansion of the cavity. Note that the first stage with a sharp drop and increase
in case S1 indicates the pressure transition from P∗ > 1 to P∗ < 1 in the log–log plot.
When the pressure drops below ambient atmospheric pressure outside the cavity, the
motion of the particle ring transitions from acceleration to deceleration. By comparing
the predictions of the three-equation model with the reference results from numerical
simulations, the predictions of the former were observed to be higher. This discrepancy
arises because, during the derivation of the theoretical model, we neglected the inertial
effects of the gas expanding outward compared with the numerical model. In the numerical
simulations, owing to the inertial effect (left-hand side terms in (2.2)), more gas passed
through the cavity boundary into the granular medium during the initial stage. At this
point, the granular medium acts as a buffer region for the high-pressure gas. Consequently,
the theoretical model’s predictions of the average pressure were higher than the numerical
simulation results. This explains the noticeable pre-hysteresis for the prediction of the
gas leak-off rate, as shown in figure 4(c). However, this buffer mechanism, rather than a
leakage mechanism, does not significantly affect the evolution of the cavity radius.
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Figure 3. Snapshots of the distribution of granular particles for case S4. Particles are scattered in green points,
and black solid lines indicate the radial distance from the injection point to the inner boundary of the granular
ring. Here, x∗ = (x − xI)/R0

m and z∗ = (z − zI)/R0
m are the dimensionless coordinates.
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Adiabatic & Ergun (S7)
Isothermal & Ergun (S7)
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Figure 4. Comparisons between the prediction results based on (3.20) and extracted 2-D simulation data for
centrally symmetric cases. (a) Solid lines indicate predicted dimensionless cavity radius, R∗ = R/R0

m, and
circles indicate reference simulation data; (b) solid lines indicate dimensionless cavity absolute over-pressure,
|P∗ − 1|, and circles indicate reference simulation data; (c) gas leak-off velocity U∗

l,m (solid lines: prediction
results, pentagrams: reference simulation data) and granular velocity U∗

m (dashed lines: prediction results,
circles: reference simulation data) of outer boundary; and (d) predictions based on different assumptions.

To further validate the assumptions made in deriving the ODE set, three more tests
were carried out with different hypotheses for case S7: test 1, isothermal gas expansion;
test 2, ignoring gas leak-off; test 3, utilizing a linear Darcy model for calculating gas
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leak-off velocity. As depicted in figure 4(d), the isothermal test shows negligible difference
between the results based on the adiabatic expansion assumption, indicating the practical
applicability of either assumption. For the non-leak test, the cavity radius was significantly
overpredicted because the driving force owing to the pressure drop inside and outside
the granular ring was overestimated in the absence of gas leak-off. Conversely, the linear
Darcy test under-predicts the cavity radius because, without considering the non-Darcy
effect, the estimated gas leak-off velocity based on the linear Darcy model is larger,
which over-predicts the total energy leak-off through granular media. This demonstrates
the significance of the non-Darcy effect in (3.14) for high Re∗ cases (Re∗ > 103 in case
S7). To determine the range of validity for Darcy’s law, we conducted additional linear
Darcy tests for cases S5 and S6. The results indicate that, when Π4 > 400, using the Darcy
model instead of the Ergun model to predict the gas leak-off velocity results in significant
deviations.

The effects of the four dimensionless numbers on cavity evolution processes can be
deduced by comparing the results of the seven cases. Firstly, by comparing the results
of cases S1 through S3, it is evident that, with an increase in the energy injection rate
QE, Π1 decreases, and the cavity radius gradually decreases and shifts to the right. Given
that Π1 is the coefficient of the driving force, i.e. the over-pressure P∗ − 1, Π1 reflects
the instantaneous magnitude of the driving force. A larger Π1 corresponds to a faster
response of cavity expansion. Secondly, Π2 represents the relative magnitude of input
energy compared with the work done by ambient pressure, serving as the source term in
the pressure equation. By comparing the results of cases S3 ∼ S5, it is observed that, as
the initial outer radius R0

m increases, Π2 decreases. Consequently, the cavity radius curve
gradually declines due to the lower energy input. Thirdly, Π3 reflects the magnitude of
the gas leak-off effect. Comparing the results of case S5 ∼ S7 reveals that, as particle
size increases, the radius of the cavity gradually decreases. This is because larger particles
enhance the gas leakage effect, leading to greater energy loss through the granular porous
medium. Consequently, the kinetic energy acquired by the particle rings is reduced.
Fourthly, Π4 represents the particle Reynolds number, which indicates the magnitude of
the non-Darcy leak-off effect.

The scaling law of
√

t∗ is prominently observed in case S1, akin to the Gao et al.
experiment data (figure 2). Besides, cases with a larger Π1 develop into the scaling curve of
the power law more rapidly. Furthermore, as indicated by the pressure plots in figure 4(b),
a scaling curve of t∗−2 exists for cavity absolute over-pressure of |P∗ − 1| during the latter
stage in case S1. The peculiarities of this case can be further explained by simplifying the
equation set (3.20).

To derive the scaling laws, the internal and external pressures can be assumed to reach
an equilibrium state P∗ → 1, and gas leak-off is small enough owing to the pressure
equilibrium, i.e. u∗ → 0. Moreover, we assume that, for the pressure equation, the order
of term R∗2Ṗ∗ is much smaller than that of term 2γ R∗Ṙ∗P∗, namely R∗2Ṗ∗ = o(R∗Ṙ∗P∗).
Then, the pressure equation implies that R∗Ṙ∗ = C1, where C1 is a constant related to the
injection energy. This results in the scaling law R∗ = CRt∗1/2, where CR = √

2Π2/(7π).
For the pressure, assuming that in the latter stage the granular ring is sufficiently thin,

thus α � 1, the radius equation can be reduced into the following form based on the Taylor
series expansion

(
α − 1

2α2
)

R∗R̈∗ + α2Ṙ∗2 + o
(
α2

)
= Π1

(
P∗ − 1

)
. (4.1)
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Figure 5. Snapshots of the distribution of granular particles for case N4. Particles are scattered in green
points, and black solid lines indicate the radial distance from the injection point to the inner boundary of
the granular ring. Blue lines indicate the upper and lower boundaries of the cavity. Here, x∗ = (x − xI)/Db and
z∗ = (z − zI)/Db are the dimensionless coordinates.

Substituting α =
√

1 + A/(πR2) ≈ 1/(2R∗2) and R∗ = CRt∗1/2 into the equation above,
we derive

Π1
(
P∗ − 1

) ≈ −1
8

t∗−2 + 3
32C2

R
t∗−3. (4.2)

Notably, in the range 4C2
R/(3t∗) � 1, the absolute over-pressure of |P∗ − 1| approaches

the scaling curve of CPt∗−2, where CP = 1/(8Π1). Furthermore, the critical point for
determining the attainment of a quasi-equilibrium state can be estimated based on the
overpressure scaling law. For example, assuming that, at the critical point, the overpressure
reaches a value near ambient pressure |P∗ − 1| = 10−2, the critical time point can be
estimated as t∗cr = √

12.5/Π1. Particularly, t∗cr was 0.139 for case S1 and 0.554 for case
S2, aligning closely with the curve trends.

4.2. Non-centrally symmetric cases
As shown in figure 5, in the asymmetric scenario, the cavity radius varies with different
directions, and the cavity tends to develop faster towards the upper direction and forms an
asymmetric oval shape.

First, we examined whether (3.16), (3.17) and (3.19) can accurately describe the
evolution behaviour of an asymmetric cavity. We defined the angle corresponding to the
lowest point of the cavity as θ = 0. Before calculating the evolution of the cavity radius
in various angular directions with the non-centrally symmetric model equations, the outer
boundary of the granular medium should be priorly specified. Based on the characteristics
of the asymmetric case, we set the initial outer radius as R0

m(θ) = Db(2 + cos(θ))2, in
which R0

m(θ = π) = Db corresponds to the minimum outer cavity radius, and θ = 0
corresponds to the maximum R0

m(θ = 0).
Figure 6 shows the final prediction results for case N1, N3, N5 and N7. For large Db cases

(cases N5 and N7), the predicted cavity shape is very close to the reference results from
the numerical simulations. For the small Db case, the predicted cavity shape differs from
the simulation results. We further examined the comparison results for the effective cavity
radius, which is defined as Reff =

√
Ac/π. The time-dependent curves of R∗

eff = Reff /Db
for seven cases are shown in figure 6(e). The results indicated that the predicted effective
cavity radius still aligns with the simulation results. Furthermore, similar to symmetric
case S1, the scaling law of R∗

eff = Ct∗1/2 can be recognized in case N1.
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Figure 6. Comparisons between the prediction results based on asymmetric model equations (3.16),
(3.17), (3.19) and extracted 2-D simulation data for non-centrally symmetric cases. (a–d) Cavity outlines
R∗ = R(θ)/Db of case N1, N3, N5 and N7; (e) effective cavity radius R∗

eff = Reff /Db of case N1 ∼ N7, where
solid lines and circles indicate model prediction results and reference simulation data, respectively.
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Closed equation model for cavity evolution in granular media

In case N1, the deviation between the theoretical equation’s predictions and the
numerical simulation results arises from the assumption of radial potential flow used in
deriving the model equations. This assumes that the particle medium only moves radially
with zero tangential velocity along the circumferential direction. This strong assumption is
not strictly satisfied. Particularly, in case N1, a long range exists where P∗ < 1, indicating
that the granular ring experiences a prolonged deceleration process. During this process,
because of the thinner particle layer in the upper half of the asymmetric cavity (π/2 <

θ < 3π/2), the upper half of the asymmetric cavity was easily compressed by the ambient
pressure and deformed towards the central axis, resulting in a higher curvature in the upper
half of the cavity. This mechanism cannot be considered in the radial potential flow model,
leading to deviations in the cavity shape. This deviation has no significant effect on the
prediction of the effective cavity radius.

Alternatively, we can describe the equivalent cavity radius Reff through the equation set
(3.20) for the symmetric scenario by introducing some modifications. It is considered that
the evolution of a symmetric circular cavity with radius Reff is equivalent to the evolution
of the investigated asymmetric case. To achieve such equivalency, one more modified
factor should be introduced to remedy the larger outer radius owing to the thicker granular
layer at the bottom of the cavity. The modified asymmetrical shape factor is defined as

δ =
√

As,app

πD2
b

=
R0

m,eff

Db
, (4.3)

where As,app and R0
m,eff are the apparent driven areas of the granular media and

the effective initial outer radius, respectively, for the asymmetrical scenario. The
dimensionless numbers in the asymmetric cases are calculated using Db instead of R0

m. In
this study, the shape factor δ is set to 2.0. Except for this modification, other parameters,
including the particle density and the initial conditions of gas density and pressure, were
set similar to those in the symmetrical cases.

Figure 7(a) demonstrates the comparison between predicted curves of effective cavity
radius by (3.20) and reference data for seven cases; δ = 2.0 is notably a suitable estimate
for modifying the initial outer radius in most asymmetrical cases. The average error of
the prediction results of the 18 cases compared with the simulation data was less than
5 % (see supplementary materials for details). Figure 7(b) showed the comparison result
among predictions based on alternative assumptions. For non-centrally symmetric cases,
the difference between the predictions based on either adiabatic or isothermal expansion
was negligible. Moreover, the simulation setting for case N1 was based on a physical
experiment (Gao et al. 2018). The predicted results align with the experimental data.
The proposed ODE set was also proven suitable for predicting the effective radius for
asymmetric cases.

5. Conclusions

A closed three-equation model is proposed to quantitatively predict the temporally
varying cavity size in granular media. The prediction results of the centre-symmetric and
asymmetric scenarios were compared with the refined Eulerian–Lagrangian simulation
data, and the following conclusions were drawn:

(i) Three individual equations for cavity radius, cavity pressure and gas-penetration
velocity are dispensable for describing the cavity evolution process in granular
media, and comprise the closed dynamic ODE system. The proposed model is
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Figure 7. Comparisons between the prediction results (solid lines) of R∗
eff based on equivalent symmetric

model equation set (3.20) and extracted 2-D simulation data (circles) for non-centrally symmetric cases.
(a) Effective cavity radius R∗

eff ; (b) predictions based on different assumptions.

compatible with either an adiabatic or isothermal gas expansion assumption, with
the only variation being the coefficient of the pressure derivative term. There is
no significant difference in the prediction results regardless of which assumption is
adopted within the investigated parameter range in this work.

(ii) Four dimensionless numbers are derived from the three-equation model, each
reflecting different aspects of the system: the relaxation time of cavity expansion,
the input energy magnitude, the energy leak-off magnitude and the magnitude
of the non-Darcy effect during gas penetration. Specifically, the critical time
distinguishing the non-equilibrium and power-law scaling stages is estimated by
the first dimensionless number t∗cr = √

12.5/Π1. Numerical tests indicate that the
non-Darcy effect must be considered when Π4 > 400.

(iii) The proposed model is verified for both centre-symmetric and asymmetric scenarios.
Specifically, for asymmetrical cases where the injection inlet is buried beneath the
granular surface, two different modelling strategies were proposed to predict the
radially varying cavity radius and the effective cavity radius. Particularly in
the latter strategy, a modification shape factor of δ = 2.0 is introduced regarding
the equivalency with the evolution of centrally symmetric cavities.

This study mainly focuses on the initial cavity expansion process. The subsequent stage,
that is, cavity collapse, exhibited more complex behaviours such as diverse jetting patterns
near the granular interfaces. In future studies, the proposed ODE model will be leveraged
to deepen our understanding of the various jetting paradigms and mechanisms involved in
these processes.

6. Supplementary materials

6.1. Extraction of cavity outlines from experimental data (Gao et al. 2018)
As illustrated in figure 8, the initial cavity outlines from various frames are manually
marked, and the cavity areas can be estimated by calculating the areas of polygons formed
by the outlines. The effective radius is then estimated using Reff = √

Ac/π, where Ac is
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Figure 8. Snapshots of experimental video (Gao et al. 2018) of explosive cavity evolution from t = 10 to
t = 120 ms (time interval is 10 ms). Red dots indicate manually marked cavity outlines.

the area of the cavity. Only 12 snapshots are shown in figure 8, while we extracted 24 data
points from the video.

6.2. Recovery of 3-D close-packing limit in 2-D simulations
The validation test for numerical simulation in this work is based on 2-D simulations aimed
at replicating 3-D experimental results in previous literature. A crucial part of the initial
condition set-up was the initial particle packing, particularly for recreating the initial dense
packing limit of the 3-D particles. For monodisperse particle periodic packing, the dense
packing limit of 3-D spherical particles in three dimensions is π/3

√
2 ≈ 74.05 %, whereas

in two dimensions, the dense packing limit of 2-D circular particles is
√

3π/18 ≈ 90.69 %,
as illustrated in figure 9. The significant difference between these two values indicates that
the dense disk packing obtained from 2-D simulations cannot be directly used to represent
a 3-D particle packing situation.

To solve this issue, we adopted an effective collision radius strategy for contact and
collision calculations among granular parcels. As shown in figure 9, for the dense packing
of 2-D ‘solid’ disks, the collision radius is consistent with the true physical radius,
resulting in a packing limit of 90.69 %. In this study, the basic concept of parcels
was adopted for describing the granular phase. Each parcel carries a certain volume of
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Solid disk

radius

Effective parcel

radius

Figure 9. Sketch of 2-D solid disk radius and effective parcel radius.

particles, and collisions between parcels are modelled and resolved using the CG-DEM.
However, a critical parameter for the effective collision radius must be specified. In a
2-D parcel, the effective collision radius is defined as

√
V/πd, where V is the parcel

volume and d is the disk width. This ensures that the contact patterns between the parcels
are identical to the packing of solid disks. However, if the effective collision radius is
increased, as shown in figure 9, we can achieve any desired packing limit for the initial
distribution of particles in two dimensions. Assuming that the desired packing limit is
αp,d, the collision radius can be determined as follows:

Rc =
√

α
cp
p

αd
p

√
V
πd

, (6.1)

where α
cp
p is the close-packing limit of 2-D disks for monodisperse systems and

α
cp
p = 90.69 %. For polydisperse systems in which the collision radii of the parcels are

different, α
cp
p should be priorly estimated based on simulation tests.

Then for the initial configuration of granular phase, the following three steps are
conducted:

(i) Setting initial lattice configuration. Parcels with uniformly distributed effective
parcel radii were initially placed in order on an 800 × 800 lattice grid within
the simulation domain without contacting each other. The use of uneven parcels
avoids hexagonal crystallization, which may lead to the preferential development of
granular force-chain structures.

(ii) Gravitational settling. Subsequently, the parcels undergo gravitational settling with a
specified downward acceleration and are randomly packed with each other. Owing to
the damping effects of parcel–parcel interactions, the granular system finally reaches
static equilibrium and forms a granular bed with a packing height denoted by Hi.

(iii) Resetting parcel radius and clipping. Owing to the significant difference between
2-D close-packing limits and 3-D limits, our study numerically simulates a 3-D
experiment based on 2-D simulations. Thus, the effective parcel radius was adjusted

by multiplying it with the conversion factor of
√

α
cp
p /αd

p to recover a realistic

experimental setting. The average particle volume fraction αd
p of the close-packed

granular disks was set to 60 %. Subsequently, for different scenarios, the desired
initial configuration of the parcels was set by clipping the prepared close-packed
granular bed.
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Closed equation model for cavity evolution in granular media

Case no. QE (J m−1 s−1) Db (mm) dp (μm) Π1 Π2 Π3 Π4

N8 2.24 × 106 90.0 50 0.0514 6.91 0.0051 196
N9 2.24 × 106 90.0 400 0.0514 6.91 0.323 1565
N10 2.24 × 106 90.0 1000 0.0514 6.91 2.021 3912
N11 2.24 × 106 60.0 50 0.116 15.6 0.0114 130
N12 2.24 × 106 60.0 400 0.116 15.6 0.728 1043
N13 2.24 × 106 60.0 1000 0.116 15.6 4.55 2608
N14 2.24 × 106 30.0 50 0.463 62.2 0.0455 65.2
N15 2.24 × 106 30.0 400 0.463 62.2 2.91 522
N16 2.24 × 106 30.0 1000 0.463 62.2 18.2 1304
N17 4.48 × 106 90.0 50 0.0129 6.91 0.0025 391
N18 4.48 × 106 90.0 400 0.0129 6.91 0.162 3129
N19 4.48 × 106 90.0 1000 0.0129 6.91 1.01 7823
N20 4.48 × 106 60.0 50 0.0289 15.6 0.0057 261
N21 4.48 × 106 60.0 400 0.0289 15.6 0.364 2086
N22 4.48 × 106 60.0 1000 0.0289 15.6 2.27 5216
N23 1.12 × 106 60.0 50 0.463 15.6 0.0227 65.2
N24 1.12 × 106 60.0 400 0.463 15.6 1.46 522
N25 1.12 × 106 60.0 1000 0.463 15.6 9.09 1304

Table 3. Physical parameters and dimensionless numbers of 18 additional non-centrally symmetric cases.

Case N20
Case N21
Case N22
Case N23
Case N24
Case N25

100

10–1

10–2 10–1 100

R∗
eff

t∗

(c)

Case N8
Case N9
Case N10
Case N11
Case N12
Case N13

100

10–1

10–2 10–1 100

R∗
eff

t∗

Case N14
Case N15
Case N16
Case N17
Case N18
Case N19

100

10–1

10–2 10–1 100

t∗

(a) (b)

Figure 10. Comparisons between the prediction results (solid lines) based on (3.20) and extracted 2-D
simulation data (circles) for 18 non-centrally symmetric cases.
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6.3. Comparison of effective cavity radius prediction with numerical reference data
We carried out 18 more non-centrally symmetric cases, and the simulation parameters are
listed in table 3. In these cases, the characteristic time tc was constant, as used in the
manuscript. However, the investigated time range increases to 0 ≤ t∗ ≤ 4. Comparisons of
the effective cavity radius predicted from the equivalent circle model and the simulation
results are shown in figure 10.
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