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The Ideal Structures of Crossed Products of
Cuntz Algebras by Quasi-Free
Actions of Abelian Groups

Takeshi Katsura

Abstract. 'We completely determine the ideal structures of the crossed products of Cuntz algebras by
quasi-free actions of abelian groups and give another proof of A. Kishimoto’s result on the simplicity
of such crossed products. We also give a necessary and sufficient condition that our algebras become
primitive, and compute the Connes spectra and K-groups of our algebras.

1 Introduction

Recently the classification theory of simple C*-algebras has developed rapidly. One
of the most important questions in the classification theory of C*-algebras is to deter-
mine whether a given C*-algebra is simple or not. It is also important to examine the
ideal structure of a given C*-algebra if it turns out to be non-simple. There have been
many works examining the ideal structures of some classes of C*-algebras. J. Cuntz
examined the ideal structures of Cuntz-Krieger algebras under a certain condition in
[C2]. In [aHR], A. an Huef and I. Raeburn determined the ideal structures of ar-
bitrary Cuntz-Krieger algebras. There have been many extensions of Cuntz-Krieger
algebras, for example, Cuntz-Pimsner algebras [Pi], graph algebras and Exel-Laca al-
gebras [EL], and there have also been many results about the ideal structures of such
algebras (for example, [KPW], [KPRR], [BPRS] and [EL]).

The crossed products of C*-algebras give us plenty of interesting examples and the
structures of them have been examined by several authors. In [Ki], A. Kishimoto gave
a necessary and sufficient condition that the crossed products by abelian groups be-
come simple in terms of the strong Connes spectrum. For the case of the crossed
products of the Cuntz algebras by so-called quasi-free actions of abelian groups,
he gave a condition for simplicity which is easy to check and computed the strong
Connes spectra of some of such actions. It is hard to compute the strong Connes
spectrum by its definition and there have been few examples of actions whose strong
Connes spectra have been computed.

In this paper, we deal with crossed products of Cuntz algebras O, by quasi-free
actions of arbitrary locally compact, second countable, abelian groups G. For similar
results on crossed products of Cuntz algebras O, see [Ka2]. The class of our algebras
has many examples of simple stably projectionless C*-algebras as well as AF-algebras
and purely infinite C*-algebras (see [KK1], [KK2] or [Kal]). Our algebras may be
considered as continuous counterparts of Cuntz-Krieger algebras or graph algebras
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(see [Ka3, Ka4]). The main purpose of this paper is to determine the ideal structures
of our algebras in terms of the spectrum of the action, which is a finite subset of the
dual group I' of G. This paper is organized as follows. After some preliminaries, we
prove that the set of all ideals that are invariant under the gauge action is in a one-
to-one correspondence to the set of closed subsets of the dual group I of G satisfying
certain conditions (Theorem 3.14). Next we give a necessary and sufficient condi-
tion that our algebras become simple (Theorem 4.8), which gives another proof of
A. Kishimoto’s result. We also give a necessary and sufficient condition that our al-
gebras become primitive (Theorem 4.12). In Section 5, we completely determine the
ideal structures of our algebras. If actions satisfy a certain condition which is an ana-
logue of Condition (II) in the case of Cuntz-Krieger algebras [C2] or Condition (K)
in the case of graph algebras [KPRR], then one can show that all ideals are invariant
under the gauge action and so one can describe all ideals in terms of closed sets of
the group I' (Theorem 5.2). It is rather difficult to describe the ideal structures when
actions do not satisfy the condition. We have to determine all primitive ideals and
investigate the topology of the primitive ideal spaces of our algebras. After that, we
show that when actions do not satisfy the condition, the set of all ideals corresponds
bijectively to the set of closed subsets of a certain topological space satisfying a certain
condition (Theorem 5.49). As a consequence of knowing the ideal structures com-
pletely, we can compute the strong Connes spectra of quasi-free actions on Cuntz
algebras. Our algebras can be considered as Cuntz-Pimsner algebras and by using
this fact we compute the K-groups of our algebras. Finally we conclude this paper by
giving some examples and remarks.
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2 Preliminaries

In this section, we review some basic objects and fix the notation.

Forn = 2,3, ..., the Cuntz algebra O, is the universal C*-algebra generated by n
isometries S1, S, . .., Sy, satisfying Y, $iSf = 1 [C1]. Fork e N={0,1,...}, we
define the set W of k-tuples by W = {&} and

Wslk): {(11’1277lk)|11 € {1,27,..77’1}}-

We set W,, = U;:io W;k). For p = (i1,12,...,ix) € W,, we denote its length k
by |u|, and set S, = S;,S;,---S;, € O,. Note that |&| = 0, Sg = 1. For u =
(i1,d2, .- yi), v = (J1,J2, .-+, J1) € Wy, we define their product uv € W, by

wv = (1,02, ks J1y J25- -5 JI)-
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We fix a locally compact abelian group G which satisfies the second axiom of
countability. The dual group of G is denoted by I' which is also a locally compact
abelian group satisfying the second axiom of countability. We always use + for multi-
plicative operations of abelian groups except for T, which is the group of the unit cir-
cle in the complex plane C. The pairing of t € Gandy € ' is denoted by (¢ |~ ) € T.

Let us take w = (wi,ws,...,w,) € I'" and fix it. Since the n isometries
(t w1 )S1, (t|w2)Say ..., (t|wy)S, also satisfy the relation above for any t € G,
there is a *-automorphism o’: 0, — O, such that o¥(S;) = (t|w;)S; fori =
1,2,...,n. One can see that *: G 3 t — o € Aut(0,) is a strongly continuous
group homomorphism.

Definition 2.1 Letw = (w,w,...,w,) € ' be given. We define the action
a’: GO, by

a’,“’(S,»):<t|w,->Si (izl,Z,...,n,tEG).

The action a: G ~ O,, becomes quasi-free (for a definition of quasi-free actions
on the Cuntz algebras, see [E]). Conversely, any quasi-free action of abelian group G
on O, is conjugate to o for some w € I'".

By definition, the (full) crossed product O, -G is the universal C*-algebra gen-
erated by the x-algebra L'(G, O,,) whose multiplication and involution are defined as
the following:

fot) = /G fa (gt —9) ds, f*(1) = a®(f(—1)7),

for f,g € LY(G,0,) (¢f. [Pe]). The crossed product O, x,~G has a C*-subalgepra
C1x -G, which is isomorphic to Cy(T") via the map C1x,.G D LY (G) > f+— f €
Co(I"), where

) = / (t]7) £ db.

Throughout this paper, we always consider Co(I") as a C*-subalgebra of O, %G,
and use f, g, ... for denoting elements of Co(I') C O, X4+ G. The Cuntz algebra O,
is naturally embedded into the multiplier algebra M (O, x4 G) of O, x4 G. For each
= (i1,12,...,ix) in W, we define an elementw, of I'by w,, = Zk':1 wj,. Fory €
I', we define a (reverse) shift automorphism o, : Co(I') — Co(I') by (0, f)(7) =
f(y +0) for f € Co(T).

Once noting that o’(S,) = (t|w,)S, for p € W,, one can easily verify the
following.

Proposition 2.2 Forany f € Co(I') C OyxG and any ;1 € W, we have fS,, =
Suow, f-

For a subset X of a C*-algebra, the linear span of X is denoted by span X, and the
closure of span X is denoted by span X.
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Proposition 2.3 We have O,,x,»G = span {S,, fS} | p,v € W,, f € Co(I') }.
Proof By Proposition 2.2,
span {S,fS;, | p,v € Wy, f € Co(T)} =3span{S,S, f | u,v € W, f € Co(I')}.

Obviously span {S,,S5 f | p, v € W, f € Co(')} contains all elements of L' (G, O,),
which is dense in O, x4+ G. The proof is complete. [ |

We denote by M the C*-algebra of k x k matrices for k = 1,2, ..., and by K the
C*-algebra of compact operators of the infinite dimensional separable Hilbert space.

3 Gauge Invariant Ideals

There is an action 5 of T on O,, called the gauge action which is defined by 3;(S;) = ¢S;
fort € T,i = 1,2,...,n. We can extend this action to O, X .-G which is also
called the gauge action and denoted by 3. Explicitly, 3,(S,fS;) = t‘“"_""SH 1S} for
wveW,, feCy(l')andt € T.

By an ideal we mean a closed two-sided ideal. In this section, we determine all the
ideals which are globally invariant under the gauge action.

Definition 3.1 For an ideal I of the crossed product O, x G, we define the closed
subset X; of I" by
Xi= () {rer|f(y =0}

FEINCH(T)

In other words, X; is determined by Co(I" \ X;) = I N Co(I") where for a closed
subset X of T, Co(T" \ X) means the set of functions in Cy(I") which vanish on X. In
particular, Co(I' \ T') = {0}. One can easily see that I, C I, implies X;, D X}, and
Xflﬁfz = X]l ] X]2 for ideals L s L of On A g G.

Definition 3.2 A subset X of I is called w-invariant if X is a closed set satisfying the
following two conditions:

(i) Foranyy € Xandanyi € {1,2,...,n}, wehave y + w; € X.

(i) Forany~y € X, thereexistsi € {1,2,...,n} such thaty —w; € X.

For an element y of an w-invariant set X, one can easily show that v + w,, € X for
any u € W, and that there exists i € {1,2,...,n} such that v — mw; € X for any
m € N. For a subset X of I" and an element y, of I', we define the subset X+, of I" by
X470 = {7v+7 | v € X}. Similarly, we define X;+X; = {y1+72 | 11 € X1,72 € X3}
for X;,X, C I'. A closed set X is w-invariant if and only if X = Ule (X + wj).

Proposition 3.3 For any ideal I of the crossed product O, .-G, the closed set X; is
w-invariant.
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Proof Takev € X;andi € {1,2,...,n} arbitrarily. Let f be an element of INCy(T").
By Proposition 2.2, S fS; = S/ Sio,, f = 0., f. Hence o, f € I N Cy(I'), so we have
04 f(7) = 0. Thus, f(y+w;) =0forany f € I N Cy(I'). It implies v + w; € X].

Let vy be a point of I" such that vy — w; ¢ Xj foranyi = 1,2,...,n, and we will
show thaty ¢ X;. Since I'\ X; is open, there is a neighborhood U of v, € T" such that
U—w; CT\ X foranyi=1,2,...,n Thereexists f € Co(T") such that f(vy) # 0
and f(y) =0foranyy ¢ U. ThenU — w; C T'\ X; implies 0, f € Co(T'\ X;) C I
fori =1,2,...,n. Since

f = zn:slsz*f = zn:SiawifS;‘kv
i=1 i=1

we have f € I. It implies o ¢ X;. Thus X; is w-invariant. [ |

We will show that for any w-invariant subset X, there exists a gauge invariant ideal
I such that X = X; (Proposition 3.6).

Definition 3.4 Let X be an w-invariant subset of I'. We define Ix C O, %G by
Iy = Span {S, /S, | 1,0 € W,y f € CoT\ X)}.

Proposition 3.5 For an w-invariant subset X of I', the set Ix becomes a gauge invariant
ideal of O, 0 G.

Proof ClearlyIx is a *-invariant closed linear space. Since 3,(S, fS;) = ¢l =l S.fS;
fort € T, Ix is invariant under the gauge action 3. By Proposition 2.3, it suffices to
show that for any p11, vy, iy, v, € Wy and any f € Co(I'\ X), g € Co(I), the product
xyofx =S, S, €Ixand y =S,,gS; € 0,X,Gis an element of Ix.

ItS; S, = 0, thenxy = 0 € Ix. Otherwise, S, S, = S, or S, S, = S}, for some
i € W,,. For thecase S} S,,, = S,

v

Xy = Smfs:l Sﬂzgsltz = S#IfS#gSjjz = Sm#(aw,‘ f)gS,’ﬁz-

Since f € Co(I" \ X) and X is w-invariant, we have o,,, f € Co(I" \ X). This implies
(04, f)g € Co(I" \ X) and so xy € Ix. For the case S}, S,,, = S,

w
xy = SltlfS:I Sltzgsltz = S#lfszgszz = Sﬂlf(a-w/zg)s;tzﬂ'
Since f € Co(T" \ X), we have xy € Ix. It completes the proof. ]

Proposition 3.6 For any w-invariant subset X of I', we have X, = X.

Proof By the definition of Ix, we get X;, C X. Let us assume X, G X. Then there
exists f € Ix N Co(I") such that f(y9) = 1 for some 7y € X. Since f € Ix, there exist
fi € Co(T\ X), g, vk € Wy, (k =1,2,...,K) such that

1
< —.

2

K
| =Y suns:,
k=1
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From this inequality, we will derive a contradiction.

Since X is w-invariant, there exists i € {1,2,...,n} such that v — mw; € X for
anym € N. Take j € {1,2,...,n} with j # i. Set M = max{ |/, || | k =
1,2,...,K}. Then, SiS;M fSMS; = 0(vuyup f and STSEMS,, £S5, SIS is either 0 or
O (mywi+w;) fr for some my < M. Therefore, from

K

* ok M * 1

;S (f_zsmfksyk) wast < 5
k=1

we get
1
H O.(Mw,'+w}’)f - Z U(mkwi+Wj)ﬁc“ < 5
k

By evaluating at ) — Mw; — wj, we find k € N such that fi (70— (M —mp)w;) # 0. It
contradicts the fact that fy € Co(I' \ X) and 79 — mw; € X for any m € N. Therefore
we are done. [ |

By Proposition 3.6, the map I — X; from the set of gauge invariant ideals I of
0, X4 G to the set of w-invariant subsets of I is surjective. Now, we turn to showing
that this map is injective (Proposition 3.13). The method we use here is inspired by
[C1].

Let I be an ideal that is not O, % .+ G. We investigate the quotient (0, % +G)/I of
0, X4+ G by an ideal I. Since I N Co(T") = Co(T" \ X}), a C*-subalgebra CO(F)/(I N
CO(F)) of (0,%4»G)/I is isomorphic to Co(X;). We will consider Co(X;) as a
C*-subalgebra of (9,,%G)/I. No confusion should occur by using the same sym-
bols $1, S, ..., Sy € M((Oyx4G)/I) as the ones in M(O,%4-G) for denoting the
isometries of O, which is naturally embedded into M ((0,%+G)/I).

For an w-invariant set X, we can define a x-homomorphism o, : Co(X) — Co(X)
for 1 € W,,.. This map o, is always surjective, but it is injective only in the case that
X —w,, C X, which is equivalent to X — w,, = X. One can easily verify the following.

Lemma 3.7 Let I be an ideal that is not O, X, G.

(i) For p,v € Wyand f € Co(Xp), SufSh € (0uxa0G)/I is zero if and only if
f=0.

(ii) For € W, and f € Co(X;), we have S, = S,0., f.

(iii) (04X G)/I =5pan{S,fS; | p,v € Wy, f € Co(XD)}.

We define a C*-subalgebra of (O, X4~ G) /I, which corresponds to the AF-core for
Cuntz algebras.

Definition 3.8 Let I be an ideal that is not O, x4~ G. We define C*-subalgebras ff"}k)
(k € N) and F; of (0,,x+G)/I by

97}1() = Span {S,U/fslt | JR S ngk)? f € CO(XI)}?
Fr=span{S,fS; | p,v € Wy, |u| = |v|, f € Co(XD)}.

When I = 0, we write simply F®, F for ?ék), Fo.

https://doi.org/10.4153/CJM-2003-050-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-050-6

1308 Takeshi Katsura

Lemma 3.9 Let I be an ideal that is not O, X, G.

(i) The C*-subalgebra T of (0,%,-G) /I is isomorphic to M« @ Co(X;) for k € N.
(i) P < F&Y and the inductive limit of T is F.

Proof (i) Since the set W® has n* elements, we may use {e,, , } ) for denoting

wVEW
the matrix units of M,x. Forx; = S, iS), x = S, /S, € F® | we have x* =

S,,IESZl and x1x; = 0y, 1, S,, f1 25}, Thus the map
M, ® Co(Xp) 3 €, @ f = S, S5 € FP

defines a *-homomorphism. By the definition of ¥, it is surjective. It is injective
by Lemma 3.7(i). Thus M, ® Co(X;) = F¥.
(ii) Since S, fS: = S7 S,Sio., fSiSE, we have FP = F*D  The latter part is
/ v i=1"f i) 2 Yy 1 I P

trivial by the definitions of ¥\ and 7. ]
Definition 3.10 A linear map E from some C*-algebra A onto a C*-subalgebra B
of A is called a conditional expectation if |E|| < 1 and E(x) = x foranyx € B. A

conditional expectation E is called faithful if E(x) = 0 implies x = 0 for a positive
element x of A.

The following proposition essentially appeared in [C1].
Proposition 3.11 Fori = 1,2, let E; be a conditional expectation from a C*-algebra
A; onto a C*-subalgebra B; of A;. Let p: Ay — A, be a x-homomorphism with oo E; =
E, o @. If the restriction of @ on By is injective and E; is faithful, then ¢ is injective.
Proof Let x be a positive element of kerp C A;. Since ¢ o E; = E, o ¢, we have
np(El (x)) = 0. Since E;(x) € B; and ¢ is injective on By, we have E;(x) = 0. Then
x = 0 since E; is faithful. Thus ker ¢ = {0} which means that ¢ is injective. [ |

For an ideal I which is invariant under the gauge action 3, we can extend the gauge
action on O, X 4+ G to one on (0, x4 G)/I, which is also denoted by S.

Lemma 3.12  Let I be a gauge invariant ideal that is not O, X o« G. Then,
Er: (0y%oG)/I> x— | B(x)dt € (0% G)/I
T

is a faithful conditional expectation onto F;, where dt is the normalized Haar measure
onT.

Proof Forx € (0, %4~G)/I, we have

IE ()| = H/@(x)dtH g/u@(x)lldt: ™
T T
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Thus ||E;|| < 1. One can see that E;(x) = 0 implies x = 0 for a positive element
X € (OnNMG)/I.
For p,v € W, and f € Cy(X)),

E(S,fS)) = / Bi(S, £S5 dt = / (=S, £S5 dt = 81, 11 S f S5
T T

Therefore E;(x) = x forany x € span { S, fS}; | p,v € W, |u| = [v|, f € Co(XD},
thus for any x € J; by the continuity of E;. By the above computation, Ej(x) € F;
for x € span{S,fS; | p,v € W,, f € Co(X;)}, which is dense in (O, %+ G)/I by
Lemma 3.7(iii). Therefore, the image of E; is F; by the continuity of E;. We have
shown that Ej is a faithful conditional expectation onto F. [ |

Proposition 3.13  For any gauge invariant ideal I, we have Iy, = I.

Proof When I = O,x.G, we have X; = @. Thus Iy, = 0,X,G. Let I be a
gauge invariant ideal that is not O, X, G and set ] = Ix,. By the definition, | C I.
Hence there is a surjective *-homomorphism 7: (0,%G)/] — (0,x~G)/I. By
Lemma 3.9, the restriction of m on F (]k) is an isomorphism from F (]k) onto ?}k) and so
the restriction of 7 on J is an isomorphism from JF; onto ;. By Lemma 3.12, there
are faithful conditional expectations E;: (0,X,G)/] — Fyand E;: (0, x42G)/I —
;. Since E1(7T(x)) = W(E](x)) for any x € span {S,.fS; | p,v € W, f € Co(X)},
which is dense in (O, % G)/ ], we have E; o 1 = 7 o E;. By Proposition 3.11, 7 is
injective. Therefore Iy, = I. ]

Theorem 3.14  The maps I — X; and X — Ix induce a one-to-one correspondence
between the set of gauge invariant ideals of O, x4+ G and the set of w-invariant subsets
of .

Proof Combine Proposition 3.6 and Proposition 3.13. ]

4 Simplicity and Primitivity of O, x,.G

In this section, we give necessary and sufficient conditions for w € I'” that the crossed
product O, X .« G becomes simple or primitive.

Proposition 4.1  Let I be an ideal of 0,%«G. Then, I = O,X .G if and only if
X =@.

Proof The “only if” part is trivial. The “if” part follows from Proposition 2.3. ]

For an ideal I of O, x4+ G, we have Ix, C I. In general there exists an ideal I such
that Iy, # I (see Proposition 5.26). However if X satisfies a certain condition, then
I = Ix, (Theorem 4.5).
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Definition 4.2 An w-invariant subset X of I is said to be bad if there exists v € X
such that there is only one element i with y—w; € Xin {1,2,...,n} and this element
i satisfies that mw; = 0 for some positive integer m. An w-invariant subset X of I is
said to be good if X is not bad.

Note that @ is a good w-invariant set.

Lemma 4.3 An w-invariant subset X of I is good if and only if for any v € X, one of
the following two conditions is satisfied:

(i) Thereexistsi € {1,2,...,n} such that v — mw; € X and v — mw; # ~ for any
positive integer m.

(ii) Thereexisti,j € {1,2,...,n} withi # j such that v — mw; — w; € X for any
positive integer m.

Proof When X is bad, there exists 7 € X such that there is only one element i with
v—w; € Xin{l1,2,...,n} and this element i satisfies that mw; = 0 for some positive
integer m. This v € X satisfies neither condition in the statement.

Let us assume that X is good and that v € X does not satisfy the condition (i). We
will prove that v € X satisfies the condition (ii). Since X is w-invariant, there exists
i €{1,2,...,n}suchthaty — mw; € X for any positive integer m. Since y € X does
not satisfy the condition (i), there exists a positive integer K with Kw; = 0. Since X is
good, there exists j € {1,2,...,n} with j # i such that v —w; € X. For any positive
integer m, if we take I € N so that IK — m > 0, we have

v —wj—mw; =7y —w; + (IK-mw; € X.
Thus v € X satisfies the condition (ii). [ |

Proposition 4.4  Let I be an ideal that is not O, X+ G. If X is a good w-invariant set,
then there exists a unique conditional expectation Er from (0, X,+G)/I onto Fy such
that E{(S,fS)) = 01, u|SufS, for i, v € Wy, f € Co(X)).

Proof Let v € W, and fi € Co(X;) be given for I = 1,2,...,L. Then x =
S S fiS;, is an element of

span {S,fS; | u,v € Wy, f € Co(Xp)} C (0% G)/I.

Set k = max{ |, |u| | 1 =1,2,...,L}. We may assume that if || = ||, then
Il = |v| = k. Letxp = Zluz\zlw\ SufiS;,. Since xy € ?}k) ~ M, ® Co(Xp),
there exists 7o € X; such that [[xo|| = | 32,12, Su fi(20)S;, ||. We will prove that
%ol < [Ix]|-

Since X; is a good w-invariant set, 7y € X; satisfies one of the two conditions
in Lemma 4.3. We first consider the case that vy € X; satisfies the condition (i)
in Lemma 4.3, that is, there exists i € {1,2,...,n} such that 79 — mw; € X and
~Yo—mwj 7 ~y for any positive integer m. We can find a neighborhood U of vy —kw; €
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X; such that U N (U + mw;) = @ form = 1,2,...,k. Choose a function f with
0 < f < 1 satisfying f(vo — kw;) = 1 and the support of f is contained in U. Set
U= e SuSE 1285 € (0,3144G) /1. Since

wu= Y S8, s = > S, fs,

nrEW news?

u*u is an element of ?}k) which corresponds to the element 1 ® f under the isomor-
phism F¥ =~ M, ® Co(X;). Thus we have ||ju*ul| = sup. cy, [f(7)| = 1, and so
lull = 1. When || # |vi], for any p1, v € WP, (S;‘kS;ﬁ,)Slt,S;I(SVSf) is either zero, S}
or S with some 0 < m < k. In the case that (S;“kS:)Sl,,,S;fl(S,,Sf) = S, we have

(F/255°8,)8,,8;, (S, £1%) = ST (0 1121112 = 0.
Similarly, we have (f1/257%8%)S,, S5 (S, Sk f1/2) = 0 in the case that
sk ok * k * M
(577885, (8,87) = &

Hence if |11 # |vi|, then u*S,, fiS; u = 0. When || = |v)| = k, we have

14

WS fiSu=> (S, f 21588, £S5 (S,SEF285) = Sy, f(oh, £)S)-
;L,UEWE‘”

Hence u*xu = ZI/MIZIWI S f (0w 1)S;,- Thus we have

[l xu| > H Z S f(v0 — kwi)ow, fityo — kwi)S;,

| =[wl
= || 32 suficwss]| = .
=[]

Therefore when the condition (i) is satisfied, we have ||xo]| < ||u*xu|| < ||x]|

Next we consider the case that there exist i, j € {1,2,...,n} with i # j such that
Y — mw; — w; € X for any positive integer m. Set u = ZueWﬁ“ S,LSi-‘SjS;j €0, C
M(0, %4 G/I). Since

wu= Y (SSISESNSSISS) = Y SuS =1,
oW news?
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u is an isometry. Since S;*kaS;SVSij = 0, for p, v € W, such that |p|, |v| <k
we have u*S,, S} u = 0,1, SuS;,» for I = 1,2, ..., L. Therefore,

L
* _ * *
urxu = E w S, fiS,,u

=1

L
= Z M*S/L,S:Iu(o—kwﬁwjfwylfl)
I=1

= Z S#lsliz(o'k“’i“"ffw”zﬁ)

lrul=m]

== Z Sm(o'kwﬁwjfl)szf

| i|=1m]

Since vy — kw; — w; € X, we have

= [lxoll-

Jwtsull = || D2 Suoraea fio — ke —wpss | = || D Sufics;

[|=[w1] |l =1w|

Therefore also for the case that the condition (ii) is satisfied, we have ||x,]| < ||x]|.
. . e 7 _ L ’
Suppose x is expressed in two ways: x = >, S, fiS;, = Do, Sy f; S;‘I,. Let
_\L L' / _ /
Yy = Zl:l SﬂlﬁS:I _21:1 Sﬂ[’ﬁ Sz:’ and Yo = Z|/41\:|m\ SﬂIﬁS:I _Z“"II‘:‘V” Sﬂ[’ﬁ S:l,'
Since [[yo|| < [ly[| and y = x —x = 0, we get yo = 0. Thus 3, S, fiS; =
Zm/l:‘yl‘ Sy 'S, which means that x, does not depend on expressions of x. Hence
1 1 1
we can define a norm-decreasing linear map E; by

Er:span{S,fS; | p,v € Wy, f € Co(X))} > x
— Xy € span{S#fSl*, ’ w,v €W, lul =1v|, f € CO(XI)}.

Since E; is norm-decreasing and span {S, fS; | u,v € W,, f € Co(X;)} is dense
in (0,%4G)/I, we can extend E; on (O,X,.G)/I with |E;|| < 1 whose image is
contained in F;. Since Ej(x) = x for x € span {S,fS; | p,v € Wy, |u| = |v],
fe CO(XI)} , which is dense in JF}, we get E;(x) = x for any x € J].

Therefore E; is a conditional expectation onto F;. Uniqueness follows from the
condition Ey(S,, fS;) = 6,,|,1y|SufS;, for u,v € Wy and f € Co(X). [ |

When an ideal I such that X; is good is gauge invariant, the conditional expecta-
tion E; defined in Proposition 4.4 coincides with the one in Lemma 3.12 by unique-

ness. Actually any ideal I such that X; is good is gauge invariant.

Theorem 4.5  Let I be an ideal of O, X o0 G such that X; is good. Then we have Iy, = I,
and so I is gauge invariant.
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Proof IfX; = @, then I = O, X, G so Iy, = I. Let I be an ideal that is not O, x4+ G,
and set | = Ix,. By the same way as in the proof of Proposition 3.13, there exists a
surjective *-homomorphism 7: (0, XwG)/] — (0, X G)/I whose restriction on
F; is an isomorphism from F; onto JF;. By Proposition 4.4, there exists a conditional
expectation E;: (0,%,+G)/I — F}. Since E1(7r(x)) = W(E](x)) for all x in a dense
subset

span {S,fS, | p,v € Wy, f € Co(X)} C (0yx02G)/ ],

we have Ef o m = 7 o Ej where Ej: (0,%,G)/] — F; is a faithful conditional
expectation defined in Lemma 3.12. By Proposition 3.11, 7 is injective. Therefore
I =1Iy,. [ |

When an w-invariant set X is bad, there exists an ideal I with X; = X which is
not gauge invariant (Proposition 5.26). As a special case of Theorem 4.5, we get the
following.

Proposition 4.6 Let I be an ideal of the crossed product O, X G. Then I = 0 if and
only if X; =T

Proof The “onlyif” part is trivial. The “if” part follows from Theorem 4.5 since I is
a good w-invariant set. ]

Definition 4.7 Foranon-empty subsetlof {1,2,...,n}, we denote by {2y the closed
semigroup generated by wy,wy, ..., w, and —w; fori € 1.

For a non-empty subset I of {1,2,...,n}, the set ( is w-invariant. In [Ki],
A. Kishimoto found a necessary and sufficient condition for O, X, G to become sim-
ple. Now we can reprove it.

Theorem 4.8 (cf. [Ki, Theorem 4.4])  The following conditions for w € I'" are equiv-
alent:

(i)  The crossed product O, X - G is simple.
(ii) Any w-invariant subset of I' must be & or I
(iii) Qujy =T foranyi=1,2,...,n.

Proof (i) < (ii): Combine Proposition 4.1 and Proposition 4.6.

(ii) = (iii): Since {2y is a non-empty w-invariant subset, we have Q(;; = T for
any i.

(iii) = (ii): Let X be a non-empty w-invariant subset. Let us choose an element
Y € X. There exists i € {1,2,...,n} such that 7o + € X for any v € Qy;;. Since
Q{i} is,weget X =T ]

Now we turn to determining for which w € I'" the crossed product O, %G
becomes primitive. An ideal I of a C*-algebra A is called primitive if I is a kernel of
some irreducible representation. A C*-algebra A is called primitive if 0 is a primitive
ideal. When a C*-algebra A is separable, an ideal I of A is primitive if and only if I is
prime, ie. I} NI, C IimpliesI; C I or I, C I forideals I, I; of A.
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Definition 4.9 An w-invariant set X is called prime if for any w-invariant sets X;, X,
with X C X; U X, either X C X; or X C X, holds.

Proposition 4.10  If an ideal I of O, %+ G is primitive, then X; becomes a prime w-
invariant set.

Proof Let I be a primitive ideal of O, x,+G. Assume that two w-invariant subsets
X1, X, of I satisfy X; C X; UX,. Then Ix, NIx, C Iy, C I. Since I is prime, either
Ix, CIorly, C I Henceeither X; D Xj or X; D Xj. Therefore X; is prime. ]

In general, the converse of Proposition 4.10 is not true (see Corollary 5.3 and
Proposition 5.43).

Proposition 4.11  For a non-empty w-invariant set X, the following are equivalent:

(1) X is prime.

(ii) For any vy, 71 € X and any neighborhoods Uy and Uy of o and v, respectively,
there existy € X and p,v € W, such that v + w, € Uy and v +w, € U,.

(iii) For any vy, v1 € X, there exist sequences [y, [i3, ... and vy, vy, ... in W, such
that o — Wy, 1 —wy, € X forany k and limy_, ( (Yo —wp) — (71— w,,k)) =0.

(iv) X =+ Qy for some~y € T and non-empty I C {1,2,...,n}.

Proof (i) = (ii): Let X be a non-empty prime w-invariant set, Yo, 71 elements of X,
and Uy, U; neighborhoods of 7y, 71 respectively. Set two open sets Yy, Y; by

YOZU ﬂ U(U0+wp_w1/)7 Y1=U ﬂ U(U1+wu—w,,).

k=0 /tEW&k) veEW, k=0 /LEW;’() vEW,

One can easily see that v — w; € Y, foranyy € Ypandanyi = 1,2,...,n, and
thatif v — w; € Yo foranyi = 1,2,...,n, theny € Y,. Thus the closed set T" \ Y,
is w-invariant. Similarly, T \ Y; is w-invariant. Since vy € Yo and ; € Y, neither
'\ Yy nor I \ Y; contains X. Since X is prime, (I' \ Yo) U (I'" \ Y;) does not contain
X. Therefore we get v' € X with v’ € Yo NY;. Thus for j = 0, 1, there exist k; € N
satisfying that for any p; € W, there exists v; € W, withy" € Uj+w,;, —w,,. Let
k € N be an integer with k > ko, k;. Since X is w-invariant, there exists p/ € W®
with 7" —w,s € X. For j = 0,1, there exist p1j, u; € W, with p" = p;u} and
lnj| = kj. Thus we get v; € W, with v' € U; +w,; —w,, for j = 0,1. Set
v =7 —wy € X, n = vp;and, v = vipi. Then, we have v + w, € U, and

v +w, € Uy.
(ii) = (iii): Let 79,7 be elements of an w-invariant set X. Let U;,U,,... be a
fundamental system of neighborhoods of 0. From (ii), for any k = 1,2, ..., there

exist Ay € X and pu, vk € W, such that Ay +w,,, € Ux + v and A\ +w,, € Ux +71.
Replacing {k} by a subsequence if necessary, we may assume that the number of i’s
appearing in fi; and the one appearing in v increase forany i = 1,2, ..., n. For any
positive integer k, we have 7o — w,,, € X because vo — wy, = limj_o (A +wy, — w),)
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and \; + w,, — w,, € X when! > k. Similarly we have v; — w,, € X for any positive
integer k. Since limy_.oc (70 — wy, — Ak) = 0 and limy_oo (A — (71 — wy,)) =0, we
have limy_.o ( (70 — wy,) — (71 — wy,)) = 0.

(iii) = (iv): Take o € X arbitrarily. From (iii), the countable set X’ = {y € X |
v = 7Y — wy + w, for some p, v € W,} is dense in X. Denote all the elements of
X'"by {\1,A2,... }. Let U, Uy, . .. be a fundamental system of neighborhoods of 0.
Let us choose a bijection Z* 3 k +— (my, Iy) € Z* x 7 where 77 is the set of positive
integers. Thus we have {(A,,, U}, = {( A\, UD}2 By (iii), for a positive

m,l=1"
integer k, we can recursively find yu, v, € W, satisfying that v, — El;:l wy,; € Xand
Yo — Zl;zl wy; — (A, —wy,) € Uj,. Since an element 7o — Zl;:l wy,; +w, is in X for
any positive integer k and any v € W,,, we have

k
{’yO—ZwM+wV | keZ*,I/GW,,} C X.
=1

Since the set of the left hand side above contains X’ which is dense in X, the inclusion
above is actually an equality. Let [ be the set of i € {1,2,...,n} such that the number
of i’s appearing in pu; 1, - - - 4k goes to infinity when k goes to infinity. For i ¢ I, let n;
be the limit of the number of i’s appearing in ;44 - - - t1x when k goes to infinity. Set
Y=y — Zigu n;w;. Then, one can see that X = ~ + .

(iv) = (i): Let X be an w-invariant set such that X = v + Q for some v € T’
and non-empty I C {1,2,...,n}. Take w-invariant sets X;, X, with X C X; U X5.
Since v — k(Ziell wj) € X for any positive integer k, either X; or X5, say X;, contains
v — k(3 wi) for infinitely many k. Then, X; contains v + v for any 7' in the
(algebraic) semigroup generated by w;,w,...,w, and —w; for i € . Since X, is
closed, X1 D v+ §; = X. Thus X is prime. [ |

We will use the equivalence (i) < (iv) in Proposition 4.11 most often. The con-
dition (ii) or (iii) in Proposition 4.11 can be considered as an analogue of maximal
tails in [BPRS].

Theorem 4.12  The following conditions for w € I'" are equivalent:

(i)  The crossed product O, X - G is primitive.
(ii) T s a prime w-invariant set.
(iii) The closed group generated by wy,w,, . ..,wy, isequal to I'.

Proof (i) = (ii): This follows from Proposition 4.10.

(ii) = (i): It suffices to show that 0 is prime. Let I}, I, be ideals of O, %, G with
L NL = 0. We have X;, UX;, = Xn, = I. Since I' is prime, either X;, D I' or
X, D TI. IfX; D I hence X;, = T, then I, = 0 by Proposition 4.6. Similarly if
Xp, DI, then I, = 0. Thus 0 is prime and so O, X4+ G is a primitive C*-algebra.

(ii) = (ili): By Proposition 4.11, there exist v € I' and non-empty I C
{1,2,...,n} with T' = ~ + Q. The closed group generated by w;,ws, ..., w, is
equal to I" because it contains yand Q=T — vy =T.
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(iii) = (ii): This follows from Proposition 4.11 since I' = Q7 , 1. [ ]

One can prove the equivalence between (i) and (iii) in the above theorem by char-
acterization of primitivity of crossed products in terms of the Connes spectrum due
to D. Olesen and G. K. Pedersen [OP1] and the computation of the Connes spectrum
of our actions o due to A. Kishimoto [Ki].

5 The Ideal Structures of O, x,.G

In this section, we completely determine the ideal structures of O,x -G (Theo-
rem 5.2, Theorem 5.49). The ideal structures of O, %, G depend on whether w € I'”
satisfies the following condition:

Condition 5.1 For eachi € {1,2,...,n}, one of the following two conditions is
satisfied:

(i) For any positive integer k, kw; # 0.
(ii) There exists j # i such that —w; € Q.

This condition is an analogue of Condition (II) in the case of Cuntz-Krieger alge-
bras [C2] or Condition (K) in the case of graph algebras [KPRR].

5.1 When w Satisfies Condition 5.1

When w satisfies Condition 5.1, all ideals of O, x,» G are gauge invariant.

Theorem 5.2  When w satisfies Condition 5.1, every w-invariant set is good. Hence
any ideal is gauge invariant and there is an inclusion reversing one-to-one correspon-
dence between the set of ideals of O,,x .« G and the set of w-invariant subsets of I.

Proof Let X be an w-invariant set and -y be an element of X. Since X is w-invariant,
there exists i € {1,2,...,n} such that vy + ' € X forany v" € Q. If kw; # 0
for any positive integer k, then v € X satisfies the condition (i) in Lemma 4.3 and if
there exists j # i such that —w; € €1y, then v € X satisfies the condition (ii) in
Lemma 4.3. Hence X is a good w-invariant set.

By Theorem 4.5, any ideal I of O, x,.G satisfies Iy, = I and is gauge invariant.
The last part follows from Theorem 3.14. ]

Corollary 5.3 When w satisfies Condition 5.1, an ideal I of O, X, G is primitive if
and only if the w-invariant set X[ is prime.

Proof It follows from Theorem 5.2. [ |
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5.2 When w Does Not Satisfy Condition 5.1

From here until the end of this section, we assume that w does not satisfy Condi-
tion 5.1, i.e. there exists i € {1, 2, ..., n} such that kw; = 0 for some positive integer
k, and that —w; is not in the closed semigroup generated by w1, ws, . .., w, and —w;
for any j # i. Without loss of generality, we may assume i = 1. Let K be the smallest
positive integer satisfying Kw; = 0. Note that —w; is in the semigroup generated by
w1, wy, . . . ,w, and that the closed set X is w-invariant if and only if X + w; C X for
any i. Define Ay = span {S¥ S’ | f € Co(I'),k,1 € N} which is a *-subalgebra of
0, %G and denote its closure in O, X 4 G by A.

Lemma 5.4 For any x € A, the element (1 — $157)x(1 — S1S7) is of the form
(1 = S187) f for some f € Co(I).

Proof One can easily verify the conclusion for x € A;. We have the conclusion for
an arbitrary x € A, because {(1 — $157)f | f € Co(I")} is closed. [ |

Lemma 5.5 The C*-algebra A is the universal C*-algebra generated by Cy(I') and
S1 € M(A), that is, for any C*-algebra B, any x-homomorphism ¢: Co(I') — B and
u € M(B) such that u*u = lyyp) and o(f)u = up(oy, f) for f € Co(L'), there exists
a unique x-homomorphism ®: A — B such that fI)(S]ffSTl) = ukgo(f)u*lfor k,1eN
and f € Co(T).

Proof Let A be the universal C*-algebra satisfying the condition in the statement of
this lemma. We may consider Cy(I') as a C*-subalgebra of A and denote by u €
M(A) the isometry satisfying fu = uo,, f for f € Co(I') C A. The C*-algebra
A is the closure of the linear span of elements ukfu*l for k,] € Nand f € Co(I).
There is a unique *-homomorphism U: A — A such that U(uf fu*!) = Skfssl,
Since span {S¥fSi' | f € Co(T'),k,1 € N} is dense in A, U is surjective. By the
universality of A, there exists an action 3 of T on A such that 3, (u/* fu*") = *~1u* fu*’
fort € T. Define E(x) = [; B,(x) dt for x € A. Then E becomes a faithful conditional
expectation onto a C*-subalgebra B = span {u* fu** | f € Co(T"),k € N} of A. Since
A is invariant under the gauge action (3, we can define a conditional expectation E on
AbyE(x) = [} B;(x) dt. Obviously Wo E = EoW. Let us define B¥ = span {u fur"|
f € Co(I"),0 <1< k}. Then we have

k—1

BY = (@Dspan {1 — ) ful | f € Co(D)}) @ 5pan {ut fu"" | f € Co(D)}
1=0

k
=P
1=0

and lim B% = B. Clearly ¥ is injective on B%), hence on B. By Proposition 3.11, A
is isomorphic to A via W. Thus A is the universal C*-algebra generated by Cy(I") and
S1 € M(A). u
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Remark 5.6 The C*-algebra A is isomorphic to the Toeplitz algebra of the Hilbert
module coming from the automorphism o, of Co(I') [Pi], but we do not use this
fact.

We will denote the elements of Z/KZ by 0,1,...,K — 1 and sometimes regard
them as integers.

Definition 5.7 Let H be a separable Hilbert space whose complete orthonormal sys-
tem is given by {&xm | k € Z/KZ,m € N}. Let py be a projection onto the subspace
generated by {&xm fmen for k € Z/KZ and define u € B(H) by u(€km) = Exstme1-
Let us denote by Tk the C*-algebra generated by py, p1, ..., px—1 and u.

One can easily see that the elements py, p1, . .., px—1 and u satisfy Zf;ol pr=1,
w*u = 1, and pru = upy_, for k € 7/KZ, and that Tx = span {t'pru*” | k €
7/KZ,1,m € N}. There is an action 3’: T ~ Tk such that /(1) = tuand 8/ (px) =
Pk- For Ao, A1, ..., Axk—1 € Cand § € T, the diagonal matrix and the unitary

N 0 0 00 --- 0 6
0 ) 0 10 --- 00

! 0 1 0 0
o0 Ak-1 0 0 10

are denoted by diag{ Ao, A1,..., Axk—1} € Mg and uy € Mg respectively. The C*-
algebra T satisfies the following.

Proposition 5.8

(i)  For any non-zero x € Tk, there exist [, m € N with
1- uu*)u*lxu'”(l —uu™) #£0.

(ii) There exists a surjection w: Tx — C(T, Mk) with

K—1
(30 Aepe) (0) = diag{Mo, Ar, A}, T@)(0) = .
k=0
(i) Fort € T, we define a x-automorphism /" of C(T, M) by
1(F)(0) = diag{1,1,12, ..., 571} F(t50) diag{1,£, 2, ..., F<1

for f € C(T,Mx). Then we have o 3] = 3/’ o .
(iv) Ifanideal ] of Tx satisfies that 1 € w(]), then | = Tk.

https://doi.org/10.4153/CJM-2003-050-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-050-6

Ideal Structures of Crossed Products 1319

Proof (i) Foranyk € Z/KZand m € N, u™(1—uu*)u*" py is the projection onto the
one dimensional subspace generated by & ,, € H. Hence, for any non-zero x € Tk,
there exist k;, k, € 7Z/KZ and m;, m, € N such that

P ™ (1 — uu®) ™™ xu™ (1 — uu™)u™™ py, # 0.

Thus, we get (1 — uu™ )u* ™ xu™ (1 — uu*) # 0.
(ii) For k € 7Z/KZ, set I = span {u'(1 — uu*)pyu*™ | I, m € N} C Tk. Since

(ul(l — uu*)pku*m) (ul/(l — uu*)pk/u*m/) = 51(71(/5%1/1/1[(1 — uu*)pku*ml,

the set I is isomorphic to K for any k € Z/KZ and I is orthogonal to Iy if k # k'.
One can easily see that I = @Ik(:_ol I becomes an ideal of Tx. Let us denote by 7
the quotient map from Ty onto Tx/I. We will prove that Tx/I is isomorphic to
C(T,Mk). Since 1 — uu* = kK:_Ol(l — uu*)py € I, w(u) is an unitary of Tk /I. One
can verify that e;; = m(p;)m(u)'~/ = m(u)'~Im(p;) satisfies the axiom of matrix
units of M for i, j € Z/KZ. Thus Tx /I = Mg ® 7(po)(Tx/I)w(po). Since

poTxpo = span { pou pru*" po | k € Z/KZ,1,m € N}
= span {pou't*" py | I, m € Nwith I — m € KZ},
7(po)(Tx/D7(po) = m(poTxpo) is generated by one unitary 7(pouXp,). Since

PoTk po and I are globally invariant under the action 3’ of T, we can define an action

B’ of T on 7(po)(Tx /I)7(po). Since ﬁt’(ﬂ'(poquo)) = X7 (pouX py), the spectrum
of (pouX po) is T. Therefore we have

7(po)(Tx /I (po) = C(TN).

Thus, we have Tx /I = C(T, M) and one can easily verify that 7 is a desired surjec-
tion.

(iii) For k € Z/K7Z, we have 7w o 3/(pr) = B/’ o m(px) = m(px). One can easily
see that 7 o 8/ (u)(6) = tuy. On the other hand,

o m(u)(0) = diag{1,t,t%, ... " Ir(u)(t50) diag{1,7,#*, ..., i}
= diag{1,t,1%,..., 5 Nuxy diag{1,£, 7, ..., '}
= tuy.
Therefore we have o 3/ = 3/’ o .
(iv) Since 1 € 7(]J), there exist x; € Iy for each k € Z/KZ with 1 — ZI,:OI x; € J.
For k € Z/KZ, there exists yx € I such that y; # xxyx since Iy is not unital. For

k € Z/KZ, we have (1 — Zf:_ol X)Vk = Yk — Xkyk 7 0 which is in J N I;. Since
I 2K, JN I # {0} implies [y C J. Thus1 € Jandso J = Tk. [ |
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Proposition 5.9  There is a unique x-homomorphism ¢: A — Co(I', Tx) such that
(S S = ul( kK:_Ol(Ukw1 £)px) u™. The map o is injective and its image is

{f €Co(I,Tx) | f(y+wy) = @(f(’y)) forany~ € I‘} C Co(T", Tx),
where © is a x-automorphism of Tx satisfying ®(u) = u and ®(py) = pr—1-

Proof First note that Co(I') > f +— Zl,f:_ol(aml fpr € Co(I', Tx) is an injective
x-homomorphism. Since this map and u € M(CO(I‘, TK)) satisfy the condition in
Lemma 5.5, there exists a unique map ¢: A — Co(I', Tx) such that

K-1
(S fSi™) = ul (Y (0 i) ™"
k=0

As we saw in the proof of Lemma 5.5, there exists a faithful conditional expectation E
from A onto the C*-subalgebra B of A which is an inductive limit of Co(I'). If one de-
fines a conditional expectation E” on Co(I', Tx) by E’(f)(7) = [, 3/ ( f(7)) dt, then
one can easily see that E, E’ and ¢ satisfy the condition in Proposition 3.11. Hence
 is injective. Since the C*-subalgebra {f € Co(I', Tx) | f(y + w1) = <I>(f(’y))
for any v € T'} is the closed linear span of ' Zf;ol(akw] fpxu*™ for I, m € N and
f € Co(I), this subalgebra is the image of ¢. ]

Definition 5.10 For v € I', we denote by ¢, : A — Tg the composition of the map
p: A — Co(T', Tx) in Proposition 5.9 and the evaluation map aty € T'.

For (,0) € I' x T, we define ¢, g: A — M by the composition of p,: A — Tk,
m: Tx — C(T, M) in Proposition 5.8 and the evaluation map at 6 € T.

Explicitly, we have

K—1
0, (S fS:™) = ul(z Fly+ kwl)pk) u*" e Ty,
k=0

U, 0(S FSE™) = uly diag{ f(7), f(y +w1), ..., f(y + (K — Dwy) Jup™ € M.

As we saw in Proposition 5.9, we have .., = ® o ¢, for any v € I' and one can
easily see that for any (7, 0) € I' X T, ¥y4w, 9(x) = uj), 9(x)up for x € A. For any
t € Tand any y € T', we have ., 0 §; = 3/ 0 p,.

Denote by I'’ the quotient of I" by the subgroup generated by w;, which is iso-
morphic to Z/KZ. We denote by [7] and [U] the imagesin T/ of y € Tand U C T
respectively. We use the symbol ([y], #) for denoting elements of ' x T.

Definition 5.11 For an ideal I of O,,x G, we define the closed subset Y; of '/ x T
by
Y ={([7],0) €' X T |t)y9(x) =0forallx € ANT}.

Note that ¢, g(x) = 0 if and only if 14, o(x) = 0.
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Definition 5.12 A subset Y of I/ x T is called w-invariant if Y is a closed set satis-
fying that ([y + w;],0’) € Y foranyi # 1, any 6’ € T and any ([v],0) € Y.

To show that the closed set Y] is w-invariant for an ideal I, we need the following
lemma.

Lemma 5.13 Foranyx € A, (v,0) € I' x T, andi # 1, we have
/E(wﬁ/wi_,,(x)) dt = lim wwﬂy(S?(STMKXSTKS,‘),
T m— 00

where E is the conditional expectation from M to its C*-subalgebra of diagonal matri-
ces.

Proof Take (7,0) € ' x T, and i # 1. First we consider an element x = SkS¥'f € A,
for f € Co(I') and k,I € N. We have

/E("/J'ﬁw,,t(x)) dr = /E(uf_lw'ﬁw,,(}(f)) dt,
T

T

here note that 14, ;(f) does not depend on t € T. When k — [ is not a multiple
of K, we have E(uf_lwﬂlmhg(f)) = 0. When k — I = mK for some integer m, we

have E(uf "¢ 4u,0(f)) = t"s40,0(f). Since [ "1 0(f) dt = Gmotsswr0(f),
we get

/E(wwﬂu,-,t(x)) dt = 5k,lww+w;,6(f)'
T

On the other hand, for any positive integer m satisfying mK > k, I, we have

Uy 0(SESE™ XSTKS) = Gk 1thr 0(f)

because S S;" xS1KS; = 6310, f € A. By the linearity of the equation, for any
x € Ay, there exists a positive integer M such that

/T E(ty10 (%)) dt = 1), 5(S; ST xSTXS;)
for m > M. Approximating x by elements of Ay, we have
A (s (%)) dt = lim_ P 0(SEST ™ xSTKS;)
for an arbitrary x € A. n

Proposition 5.14  For any ideal I of O, X 4G, the closed set Y| is w-invariant.
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Proof Take ([7],0) € Y,i # 1and 8’ € T. By Lemma 5.13, for any positive element
xof ANI,

/ E(¥yr(0) dt = Tim 4, (787" x87KS;) = 0
T m— oo

since S7S;" xSTKS; € A NI Hence E(y1u0/(x)) = 0. Since E is faithful,
Y407 (x) = 0 for any x € A N I It implies that ([ + w;],0’) € Y;. Thus Y; is
w-invariant. |

For an ideal I of O, X+ G, the closed set X;, defined in Definition 3.1, is deter-
mined from Y7 as follows:

Proposition 5.15  For an ideal I of O, % -G, we have
Xi={y el |([v],0) € Y| for some 6 € T}.

Proof When v ¢ X, there exists f € Co(I') NI C ANTwith f(v) # 0. Then for
any 0 € T, ¥, 9(f) # 0. Thus ([y],6) ¢ Y; for any § € T. Conversely assume y € T’
satisfies ([],0) ¢ Y; for any € T. Then the ideal ] = ¢+(A N I) of T satisfies
1 € 7(]) where 7 is the surjection in Proposition 5.8. By Proposition 5.8(iv), we have
@y (ANT) = Tx. Hence there exists x € A N I with ¢, (x) = 1. By Proposition 5.9, ¢
induces the isomorphism from A to

{f €CT, Tx) | f(y+wy) = q)(f(v)) forany y € I‘} C Co(T, Tk).

Therefor we can find y € A such that xy € Co(I') and ¢, (xy) = 1. Since xy €
Co(T) NI, we have y ¢ Xj. [ |

We get the w-invariant set Y; from an ideal I of O, x,-G. Conversely, from an
w-invariant set Y, we can construct the ideal Iy of O,, X G.

Definition 5.16 Let Y be an w-invariant subset of I'' x T. We define the subset Y|p
of I by

Y|r = {v €T | thereexisti # 1and 6 € T such that ([y — w;],0) € Y},
Since T is compact, the set
X; = {y € T'| there exists § € T such that ([y — w;],0) € Y}

is closed for i = 2,3,...,n. Thus Y|p = |Ji_, X; is a closed set of T'. Since Y is
w-invariant, we have ([y],0) € Y foranyy € Y|r and any 6 € T.

Definition 5.17 For an w-invariant subset Y of I'’ x T, we define Jy C A and
Iy C On ><1(WGby

Jr ={x€A|1,9(x) =0for([v],0) €Y, and ¢,(x) = 0fory € Y|r},
Iy =span{S,xS, | p,v € Wy, x € Jy}.
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Clearly by the definition, Jy is an ideal of A. To see that Iy is an ideal of O, %, G,
we need the following lemmas.

Lemma 5.18 Foranyx € A and i # 1, we have the following.

(i) (1—8,8 — 855 )xS; = 0.
(i) limy,_ o SI'SF™xS; = 0.
(iil) xS;i = 350, SKS:(Sr(Si*%)S:) .

Proof (i) and (ii): It suffices to prove them for an element of Ay, and this is done just
by computation.

(iii): By (i), we have S’l‘(l - 858 — SiSj‘)(S’ka)Si = 0 for any k € N. Taking a
summation, we get

m—1
(1 —spsm -y s?sis;‘s;"‘) xS; = 0.
k=0

By (ii), we have x8; = 310, StS;S78;%xS;. |

Lemma 5.19 LetY be an w-invariant subset of I'' x T. Forany x € Jy and i # 1,
we have S;xS; € Jy.

Proof Since S; = (1 — §;57)Si, we have §;xS; = S (1 — §;57)x(1 — $57)S;. By
Lemma 5.4, (1 —81S7)x(1—5,57) = (1—-8:57) f for some f € Cy(I'). Hence S;xS; =
oy, f- Sincexisin Jy,sois (1—S;S7)f. Let ([y],0) € Y be given. Since v +w; € Y|,
we have @, ((1=5,57) f) = 0. Itimplies that (1—uu*) Ef:_ol f(y+witkw)pr = 0,
and so f(y+w; + kw;) =0fork=0,1,...,K — 1. Therefore, we have

1/)%9(Sfxsi) = ww,()(aw;f)
= diag{ f(v+w), f(y +wi+w),..., f(v+wi+(K—1Dw;) } =0.

Similarly, if v € Y|, then v + w; € Y|r, and so

K-1
0y(S7xS) = @ (00, f) = Y f(7 +w; +kwi)p = 0.
k=0
Therefore S¥xS; € Jy. |

Proposition 5.20 For an w-invariant subset Y of I'' x T, Iy is an ideal of O, X, G.

Proof By definition, Iy is a *-invariant closed subspace of O, X4+ G. To prove that Iy
is an ideal of O, x4+ G, it suffices to show that for any i, v € W,,, x € Jy, the products
ofy = §,x8) € Iy and S;, ST (i = 1,2,...,n),0or f € Cy(I') are in Iy. It is clear
that yS7 = S,xS;S7 € Iy and y f = S,x(0y, f)S;, € Iy. Itis also clear that yS; € Iy
when v # @ or i = 1. Hence all we have to do is to prove S,xS; € Iy for p € W,
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x € Jy andi # 1. By Lemma 5.18, we have §,,x5; = Z,fio SMS’fS,-(Sj‘(STkx)Si) . By
Lemma 5.19, we have Sf(S}"kx)Si € Jy for any positive integer k. Therefore §,xS; €
Iy. We are done. [ |

We will show that an ideal Iy satisfies that Y;, = Y for any w-invariant subset Y of
I xT.

Lemma 5.21  For an w-invariant subset Y of T/ x T, we have Iy N A = Jy.

Proof By the definition of Iy, we have Iy NA D Jy. We will prove the other inclusion.
Take x € Iy N A. For an arbitrary ¢ > 0, there exist u;,v; € W, and x; € Jy
for I = 1,2,...,L such that ||x — >, SuxS,,|| < €. Take a positive integer m
such that m > |, || for I = 1,2,..., L. Then, ||S}"xS" — Zlexl’H < & where
x| = Sy"S,xS; S for I = 1,2,..., L. Since x{ € Jy, we have [[1),4(S7"xS")|| < €
for ([v],0) € Y. Since 1, 4(S;) is a unitary, we have |1, (x)|| < e for arbitrary
€ > 0. Hence, we have 1), 9(x) = 0 for any ([v],0) € Y.

Let y be an element of I'. Assume ¢ (x) # 0 and we will prove that v ¢ Y|p. By
Proposition 5.8 (i), there exist k, I € N satisfying (1 — uu*)u*kgz»7 () u' (1 — uu*) # 0.
Set y = (1 — $,81)SH* xS\ (1 — 8,87) € Iy. Then there exists f € Co(I') with y =
(1 =8:87)f. Since ¢, (y) # 0, there exists an integer k with 0 < k < K — 1 such that
f(v + kw;) # 0. Therefore, for any i # 1 and any 6 € T, we have ¢,_, ¢(S{yS;) =
Yy—w;.0(0w f) # 0. By the former part of this proof, we have ([y — w;i],8) ¢ Y for
any i # 1 and any 6 € T because S¥yS; € Iy N A. It implies that v ¢ Y.

Therefore x € Jy. We have proved the inclusion Iy NA C Jy andso Iy NA = Jy.

|

Lemma 5.22 LetY be an w-invariant subset of I'' x T. For any ([0],00) ¢ Y, there
exists xo € Jy such that 1, ,(xo) # 0.

Proof Since ([o],60) ¢ Y, we have vy ¢ Y|r. Since Y| and Y are closed, there exist
aneighborhood U C I of 7y and a neighborhood V' C T of § such that U +w, = U,
YIrNU =@ andY N ([U] X V) = &. Take g € C(T) whose support is contained
in V and satisfying g(fy) = 1. The C*-algebra C*(SX) generated by SK in M(A) is
isomorphic to the Toeplitz algebra. There exists an element x € C*(SX) € M(A) such
that Wy(x) = g(0) where ¥y is the x~-homomorphism from C*(S¥) to € determined
by Wy(SK) = 6 for 6 € T. Take f € Co(I") whose support is contained in U and
satisfying f(y) = 1 and set xp = xf € A. We have xy € Jy since ¢,(xg) = 0
when v ¢ U and v, 9(x9) = 0 when (7,6) ¢ U x V. Thus we get xo € Jy with
w”,oﬂo (x0) 7£ 0. u

Proposition 5.23  For any w-invariant subset Y of T/ x T, we have Yy, =Y.

Proof Combine Lemma 5.21 and Lemma 5.22. [ |

By Proposition 5.23, the map I — Y| from the set of ideals I of O, %, G to the set
of w-invariant subsets of I'/ x T is surjective. We will prove this map is injective in
the next subsection. We conclude this subsection by proving some results on Iy.
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Proposition 5.24  Let Y be an w-invariant subset of T'' x T. Fort € T, set p,(Y) =
{([+],0) e T/ x T | ([v],t0) € Y}. Then p,(Y) becomes w-invariant and 3,;(Iy) =
I, (v) where 3 is the gauge action. In particular, iftX =1 then 3,(Iy) = Iy.

Proof By Proposition 5.8 (iii), d)%g(ﬂt(x)) = 0 if and only if 9., ;x9(x) = 0 for
x € A. Since pix(Y)|r = Y|, we have

BiUy) = {x €Al ye(Bi(x)) =0for([7],0) € Y,p,(5(x)) =0foryeY|r}
= {x € A | Y, xo(x) = 0for ([],0) €7, cpw(ﬂt(x)) =0forvy € ptK(Y)h“}
= ]PfK(Y)'

Hence, 5;(Iy) = Ly - |
A relation between Iy and Ix is the following.

Proposition 5.25

(i) For an w-invariant subset X of ', Y = [X] x T is an w-invariant subset of '’ x T
and IY = Ix.

(ii) For an w-invariant subset Y of T/ x T, X = {y € T' | ([7],0) € Y for some
0 € T} is an w-invariant subset of I' and Ix = [,y B (I ).

Proof (i) It is easy to see that Y = [X] x T becomes an w-invariant set. Noting
that Yz, = Y by Proposition 5.23, we have X;, = X from Proposition 5.15. By
Proposition 5.24, Iy is a gauge invariant ideal of O, X« G. Therefore Iy = Ix.

(ii) Noting that Yy, =Y, we have X;, = X from Proposition 5.15. Hence

(M) N =61 N ColD)) = ColT\ X).

teT teT

Since the ideal [,y B:(Iy) is gauge invariant, we have Iy = [, B;(Iy). u

Proposition 5.26  Let X be an w-invariant subset of " and set X' = U?:z (X + wj)
which becomes an w-invariant set satisfying X' C X. The set X is a bad w-invariant set
if and only if X' g X. When X is bad, the set Y = ([X] x {1}) U ([X'] x T) becomes
an w-invariant subset of I'' x T satisfyingY G [X] x T. Any closed set Y’ satisfying
Y CY' C [X] x Tisw-invariant and satisfies X;,, = X.

Proof If X is good, then for any v € X there exists i # 1 with v — w; € X. Hence
X" = X. Conversely, if X" = X, then for any v € X there exists i # 1 withy—w; € X.
Hence v € X satisfies the condition (ii) in Lemma 4.3. Therefore X is good. When
X" G X, it is easy to see that any closed set Y satisfying Y C Y’ C [X] x Tis
w-invariant. The last statement follows from Proposition 5.15. ]

By Proposition 5.26, we can find many ideals I with X; = X if X is a bad w-

invariant subset of I' (note that a bad w-invariant set exists whenever w does not
satisfy Condition 5.1).
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5.3 Primitive Ideals

Now, we turn to showing that Iy, = I for any ideal I (Theorem 5.49). To see this, we
examine the primitive ideal space of O, X, G. Let P be a primitive ideal of O, %, G.
By Proposition 4.10, the closed set Xp of I' is prime. Hence there exist non-empty
subsetllof {1,2,...,n} and vy € I such that Xp = v + Qy by Proposition 4.11.

Proposition 5.27 I a non-empty subset | is not {1}, then X = ~y + €y is a good
w-invariant set for any ~, € I

Proof Thereisi € I which is not 1. For any v € X, we have v — mw; — w; € X for
any positive integer m. Hence, X is good by Lemma 4.3. ]

If a primitive ideal P satisfies Xp = 7o +  for I # {1}, then P = Ix, by Theo-
rem 4.5. Conversely for any 7o € I"and Il # {1}, the ideal I, ,q, is primitive.

Lemma 5.28 Let~y, € I, 1 # {1}, and X = ~y + Q. If an ideal I satisfies X C X,
then I C Ix.

Proof Let us write P = Ix. We will first show that X;,p = X. Clearly, X;,p C
X. To derive a contradiction, let us assume X;.p # X. Choose v € X with v ¢
Xr+p. Then there exists f € (I + P) N Co(I') with f > 0 and f(vy) = 1. Let us
denote f = x; + y; wherex; € I and y; € P. Takei € [ withi # 1. Form €
N, let us define u,, = Zuewﬁ,"” SHSTKSI-S/’; € M(0,%X.G). We have u*u,, = 1
for any m € N. By checking for elements which are finite sums of S,, S}, one can
prove lim,,, oo XUy = 0y, (E(x)) for any x € O, %4+ G where E is the conditional
expectation onto J and o, is an automorphism of F coming from the shift of F* =
Co(T) @ M. Setx, = awi(E(xl)) and y, = awi(E(yl)). Then we have x, € I,
y2 € Pand 0,,(f) = x, + y,. For sufficiently large integer k which is a multiple of K,
one can find x; € INFW® | y3 € PNTF® with ||x3 —x,|| < 1/2, ||ly3 —y2|| < 1/2. Note
that INF® 22 Co(I'\ X;) @M, and PNFH® 22 Co(I"\ X) @M, . Let ¢ be an evaluation
map at ¥ — w; € I from FO >~ Co(T) ® M,x to M. Since v — w; € X C Xj, we
have ¢(x3) = 0 and ¢(y3) = 0. Since g,,(f) = Z;Lewﬁ,“ sﬂawwy(f)s;; e FW we
have @(aw,(f)) = ZHGWW fly + w#)SuSZ. Since f > 0, we have @(Uwi(f)) >
fOy + kw))SESEF = Skstk. Therefore || (0., (f)) || > 1 which contradicts the fact
that ||oy, (f) — x5 — y3|| < 1. Hence X1 p = X.

Since X is a good w-invariant set, X;,p = X implies I + P = Ix = P. Therefore,
ICP. [ |

Proposition5.29 Let vy € I, I # {1}, and X = ~y + Q. The ideal P = Ix is

primitive.

Proof Since O, %G is separable, it suffices to show that P is prime. Let Iy, I; be
ideals of O, %G with I NI, C P. Then X;, U X;, D X. Since X is prime, either
X, D XorX; D X. By Lemma 5.28, we have either I; C Por I, C P. Thus, P is
prime. [ ]
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Next we will determine all primitive ideals P with Xp = v +€2(;} for somey, € I
Note that 7 + €y is a bad w-invariant set. Let @ = {w, | u € W,} which
is the semigroup generated by w;,ws,...,w,. Using that w € I'" does not satisfy
Condition 5.1, we can show that €2 has no accumulation point.

Proposition 5.30  For any~y € T, there exists a neighborhood U of v with (U \ {y})N
Q=0

Proof To derive a contradiction, assume that there exists v € T" such that (U \ {y})N
Q # @ for any neighborhood U of . One can find p, i1, . - -, tig, - . . € W,, with
limy_,0o wy, = v and w,, # +y for any k € N. Replacing {k} by a subsequence if
necessary, we may assume the number of i’s appearing in u; does not decrease for
any i = 2,3,...,n. There exists ip # 1 such that the number of iy’s appearing in
L goes to infinity since wy, # ~ for any k € N. Replacing {k} by a subsequence if
necessary, we may assume the number of iy’s appearing in p increases strictly. We get
limy—, oo (W =Wy, —wiy) = Y=y —Wwi, = —wj,. Sincew,, —wy,_, —wj, € & C Oy,
we have —w;; € {11}. It contradicts the assumption for w. [ |

Corollary 5.31  We have )¢,y = (2 and ) is a discrete set.

By the corollary above, we can define the following.
Definition 5.32  For ([7],0) € T x T, we set

Y0 = {([71,0)} U (([y + Q1 \ {[7]}) x T)

which is an w-invariant closed subset of I'’ x T. We write P((,] 9 for denoting Iy, .

We will show that P((, g is a primitive ideal for any ([y],6) € T’ x T. To see this,
we need the following proposition. This will be used to determine the topology of
primitive ideal space of O, X4+ G. Let us define a subset W} of W,, by

W;:{(ilviz,'“aik)ewn ‘ lk# I}U{Q}

Proposition 5.33  Let X be a compact subset of I' such that X N (X + v) = @ for any
v e Q\ {0} Ifweset X; = X+Qand X, = X+ (Q\ {0,wy,..., (K= 1w }), then
X1 and X, become w-invariant sets and Ix, /Iy, 2 K @ C(X x T).

Proof Since X is compact and 2 is closed, X; = X + ) becomes closed. The
same reason shows that X, is closed. It is easy to see that both X; and X, sat-
isfy the conditions of w-invariance. Note that X; \ X; is a disjoint union of com-
pact sets X, X + wy,..., X + (K — Lw;. Since fS; = Sijo,,f = 0fori # 1 and
f e C(X, \Xg) C IXZ/IXp we have

$iUfS; =0 (SISt =00 f =0 fY S =0uf.

i=2
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Therefore Ix, /Iy, = Span{S,fS; | p,v € W,,f € C(X)}. For (k,pn),(L,v) €
Z/KZ x ‘W3, let us define e ) 1) = SHS’sz’fZS: € Iy, /Iy, where x is a char-
acteristic function of X. Then {ew ) 1.)} satisfies the relation of matrix units and
Z(kﬁu)ez/mxwx ),y = 1 (strictly). Since e ) 0,2) = X, we have Iy, /Iy, =
K ® B where B = x(Ix, /Ix,) x. We have

B=span{xS.fS;x | p,v € W,, f € C(X)} =span {(S})"f | m € Z, f € C(X)}.

Since B is generated by C(X) and a unitary SKy which commute with each other and
since B is globally invariant under the gauge action, we have B = C(X x T). Therefore
wegetly, /Iy, T K® C(X x T). [ ]

Let us choose 7o € I and fixit. Set X; = 7o+ Qand X, = v + (2 \ {0, wy, ...,
(K—1)w; }) which are w-invariant subsets of I' by Proposition 5.33. Since [X;] xT D
Y100 2 [Xa] x T, we have Iy, C P16, C Ix, for any 6 € T. Taking X = {v}
in Proposition 5.33, we get an isomorphism I, /Iy, = K ® C(T) which sends SKy to
P ® zwhere x € Co(X; \ X) is a characteristic function of 7y, p € K is a minimal
projection corresponding to x, and z is the canonical generator of C(T).

Lemma 5.34  Under the isomorphism Iy, /I, = K®QC(T) above, we have P((,) 6,)/Ix,
> K® Co(T\{bo}) for any 6y € T.

Proof Since P[4, /Ix, is an ideal of Ix, /Ix,, all we have to do is to show

(Pir01.00)/Ix,) NC*(S¥x) = p @ Co(T\ {6o}).

For § € T, the map 1), 9: A — Mk vanishes on ANIx,. Hence we can define the map
e AJ/(ANIx,) — Mg so that ) o 7’ = 1), 9 where 7’ is the canonical surjection
from A to A/(A N Iy,). The image of C*(S¥x) C A/(A N Ix,) under 1, is contained
in C1 C M. One can show that the map 1j: C*(SXx) — (Cl is isomorphic to the
evaluation map at § € T from p ® Co(T) C K ® Co(T) under the isomorphism
C*(Sfx) =~ p ® Co(T). Noting that (P([%],()U)/IXI) N C*(Sfx) = (]y([m]_eo)/lxl) n
C*(S¥x) by Lemma 5.21, we get the desired isomorphism (P((,) 4,)/Ix, )NC* (SX x) =
Co(T\ {60}). [ |

To prove P((,1 4,) is primitive, we need the following observation which is inspired
by [aHR]. Let H = *((Z/KZ) xW,') be a Hilbert space whose complete orthonormal
system is given by {&, | k € Z/KZ,p € W)}, Fori = 1,2,...,n, let us define
T, € B(H) by

Ti(kp) = Exip (otherwise).

{5]&1,@ (lfl = lu,U/ = @)7

For vy € Q, let us denote by Q, € B(H) a projection onto span {& , | kw; +w, = v}
One can easily see the following.
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Lemma 5.35
(i) Fori=1,2,....n,T;T;=1and ) . T,Tf = L
(il) >0,cq Q) =1 (strongly).

TiQ'yfw,- (1f7 —wi € Q)7

iii) Fori=1,2,...,nandy € Q, Q,T; = .
(i) 7 Q {0 (otherwise).

By this lemma, there exists a unique *-homomorphism ¢;: O, %G — B(H)
with ¢1(S;) = T; and ¢ (f) = ZwEQ flvo +7)Q, for f € Co(I).

Lemma 5.36  We have p,(Ix,) = 0 and ¢, (Ix,) = K(H).

Proof Since ¢;(f) = 0 forany f € Co(I" \ X;), we have ¢;(Ix,) = 0. From Iy, =
span {S,fS: | v € W, f € Co(T'\ X2)} and Qu,, = TEQo T}, we get

o1(Ix,) =span {1, Qu, T, | n,v € Wy, k € Z/KZ}
=span{1,QT, | n,v € W, }.

Writing T,, = T,/ T} and T, = T,/ T}" where pi/, v’ € W and I, m € N, we see that
T, QoT; is a one rank operator from &,/ ,+ to & ,,» where m’, 1" € 7/KZ are images
of m, I € N respectively. Therefore ¢, (Ix,) = K(H). [ |

Since 1(0, %, G) D K(H), ¢ is an irreducible representation. Hence ker ¢ is
a primitive ideal. We will prove that ker ¢o; = P, 4,) for some 6 € T. Fort € T, let
us define a unitary U, € B(H) by U, (&) = tlul &k u- One can easily see the following.

Lemma 5.37

(i) UQU =Q, fory e
(i) U ;U =tT;fori =2,3,...,n.
(iii) U,TyU; =tT, + (1 —t)V whereV € B(H) is defined by V (k) = 0,.58k1,5-

For t € T, let us define a x-automorphism 3/ of B(H) by 5/(x) = UxU}
for x € B(H). Since 8/(K(H)) = K(H) for any t € T, we can extend the *-
automorphism 3/ of B(H) to one of B(H)/K(H) which is also denoted by /. Let us
denote by ¢,: O, %4 G — B(H)/K(H) the composition of ¢, and a natural surjec-
tion 7: B(H) — B(H)/K(H).

Lemma 5.38 For anyt € T, we have 8] o p; = ; o B where (3 is the gauge action
on 0, x.G.

Proof The only non-trivial part is 3/ (’R’(Tl)) = tw(T) for t € T which follows
from the fact that V in Lemma 5.37(iii) is a compact operator. ]

Lemma 5.39  We have ker ¢, = Ix,.
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Proof By Lemma 5.38, ker ¢, is a gauge invariant ideal. For v € Q, Q, becomes
a compact operator if and only if v = kw; for some k € Z/KZ. Hence Xyer, =
Yo + (Q \ {0, w;,...,(K— l)wl}) = X,. Therefore we have ker ¢, = Ix,. [ |

Proposition 5.40  For any 0 € T, P, ,6) is a primitive ideal.

Proof By Lemma 5.36 and Lemma 5.39, we have Ix, C ker ¢, C Ix,. Since ker ¢, is
primitive, the ideal ker ¢, /Ix, of Ix, /Ix, is also primitive. Hence we have ker ¢ /Iy, =
K ® Co(T \ {6p}) for some 6, € T. By Lemma 5.34, we have ker 1 = P((4,) 4,). Thus
P((+,).65) 15 @ primitive ideal. For an arbitrary 6 € T, there exists t € T with § = t¥6,.

Hence P((~,1,6) = B+ (P((40],65)) is also primitive. ]

In fact, we can prove ker ¢o; = P([4,].1) although we omit the proof because we do
not need it.

Proposition 5.41  For vy, € T, the set of all primitive ideals P satisfying Xp = o + €2
is {P(iro10) | 0 € T}

Proof By Proposition 5.40, the ideal P = P(j,,,0) is primitive with Xp = 7y + Q
for any § € T. Let P be a primitive ideal of O,x,.G with Xp = 7 + Q for
some 9 € I'. Then, Iy, C Pand Ix, ¢ Pwhere X; = v+ Qand X; = 7 +
(2\{0,wy,...,(K—1)w}). The set of all primitive ideals P satisfying Iy, C Pand
Ix, ¢ P corresponds to the set of primitive ideals of Iy, /Iy, = K ® C(T) bijectively
(see, for example, [D]). Hence there is no primitive ideal P satisfying Xp = o + 2
other than {P((y,) ¢ | & € T}. |

Now we can describe the primitive ideal space of O, X4+ G.

Lemma5.42 Let v,v, € I and Iy, 1, be non-empty sets of {1,2,...,n}. Then
Lo, = Lyq, ifand only if Qy = Oy, and v1 — 72 € 4, N (=).

Proof Obviously Ly, = Lyeq, is equivalent to v, +€y, = Y, +8,. If Qy, = Oy, and
Y1—72 € 4, N(—EY,), then v, +8, = 7, +Y,. Conversely assume v, +€y, = 7, +€y,
and denote it by X. Then we have )y, = (, because Oy, = {yeTl|X+~CX}for
j=1,2. Hence we get v; — 7, € £y, N (—£Y,). The proof is complete. |

For non-empty sets I}, of {1,2,...,n}, we write I} ~ I, if Q, = Qy,. Let us
choose and fix representative elements of each equivalence classes of ~ and denote
by J the set of them. Note that {1} € J because Il ~ {1} if and only if I = {1}. For
each I € J, we define a topological space I'y by I'y = T'/ (€ N (=€) if I # {1} and
Ly = I' x T. For [y] € T'y with Il # {1}, we define a primitive ideal P} by I,.q,.
Note that if [y] = [y'] in I';, then I;0, = I,/1q,. For ([7],0) € T'y;y =T x T, the
ideal P([,) ¢) is defined in Definition 5.32.

Proposition 5.43  The map [ [, 1 > y — P, € Prim(0, % G) is bijective where
Prim(0, x4 G) is the primitive ideal space of O, X o= G.
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Proof The map is injective by Lemma 5.42 and surjective by Proposition 5.41. H

The primitive ideal space Prim (O, x - G) is a topological space whose closed sets
are given by {P € Prim(0,X,-G) | I C P} for ideals I. We will investigate which
subset of H]{eﬂ I’y corresponds to a closed subset of Prim (O, x4« G).

Lemma 5.44  For any o € I, there exists a compact neighborhood X of o such that
XN(X+7) =0 forany~y € Q\ {0}

Proof By Proposition 5.30, there exists a neighborhood U of 0 with v ¢ U for any
v € Q\{0}. Take a compact neighborhood V of 0with V—V C U. Then X = y+V
is a desired compact neighborhood of . ]

Lemma5.45 Wehave X +Q 5 v+ Qy forany v € T, I # {1}, and any compact set
X of T

Proof To derive a contradiction, assume X + Q D v + Q; for some v € T, I # {1},
and some compact set X of I'. Take i € I with i # 1. For any k € N, the element
v — kwj is in 7y + 2. Hence there exists v € X and p € W, with v — kw; = e +wy,
for any k € . Since X is compact, there exists a subsequence {k;};cn of N so that 7,
converges to some point. Thus {wuk’ + kjw; }1en becomes a convergent sequence. By
the same argument as in the proof of Proposition 5.30, we can show that —w; € 2 =
f1;. This contradicts the assumption for w. ]

Lemma 5.46  LetY be a subset of I'' x T. If for any [y] € T, there exists a compact
neighborhood [X,] of [y] such thatY N ([X,] x T) is closed set, then'Y is closed.

Proof Takeanet{([v,],0))}inY convergingto ([y],0) € I'' xT. Eventually [v,] €
[X, ] because [X,] is a neighborhood of [y]. Then ([v],§) € Y since Y N ([X,,] x T)
is closed. Thus Y is closed. [ |

Lemma 5.47  For any w-invariant subset X of I, we have Ix = ﬂyE[X] <T Py-

Proof By Proposition 5.24, the ideal I = (1) ¢}t Py is gauge invariant. Hence I =

Ix because Co(I')NI = ﬁye[x]w(CO(I‘)ﬂPy) = nveX CO(I‘\('y+Q)) = Co(T'\X).
|

Proposition 5.48 LetY be a subset of]_[nej TyandsetYy =Y NI forl € J. The set
Py = {P, | y € Y} is closed in Prim(Q, %+ G) if and only if Yy, is an w-invariant
setof Ty =T x TandYy = {[y] € It | [y + ] x T C Y3} for any I € Jwith
14 {1}

Proof Let ustakeasubsetY = [[;q Y1 0f [ ;g 1. If Y{yy is an w-invariant subset of

Iy = I'’ x T, then we can define the ideal Iy, - One can easily see that {([v],0) €
Loy | Ivgy C Py} = Yqy and that for I # {1}, Iy, C I,1q if and only if
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[v+ ] x T C Yyyy. Thereforeif Y satisfies the condition in the statement, then Py
is closed in Prim(Q,, X o« G).

Conversely, assume Py is closed, i.e. there exists an ideal I of O, % ,+G so that
Y ={y € [I,egT1 | I C P,}. We first show that Yy is w-invariant. Take o € T
arbitrarily. By Lemma 5.44, there exists a compact neighborhood X of 7, such that
XN(X+7) =@ foranyy € Q\ {0}. Ifweset X; = X+ Qand X, = X + (2
{0,wy,..., (K—l)wl}) ,then Iy, /Iy, = K®C(X xT) by Proposition 5.33. The subset
{P € Prim(0,xG) | Ix, C P,Ix, ¢ P} of Prim(0,%,~G) is homeomorphic to
Prim(Ix,/Ix,) = X x T. By Lemma 5.45, X; 2 v+ { for any v € I and for any
I # {1}. Hence

{x e[Im ’ I, C Puly, ¢ Px} = [X] x T C Ty
Ied

Therefore [X] X T 3 x +— P, € Prim(0O, X ,~G) is a homeomorphism from [X] x T
whose topology is the relative topology of ' x T to

{P € Prim(0,%,+G) | Ix, C P Ix, ¢ P} C Prim(0,xG)

(note that X is homeomorphic to [X]). The set Y N ([X] x T) C I'yy is closed in
[X] x T because Py is closed. By Lemma 5.46, the subset Y}y is closed in I'yyy. If
([7],0) € Ypy, then ([y + w;i],0') € Yy forany i € {2,3,...,n}and 0" € T
because P((,)9) C P(y+u;1,67)- Therefore Yy is an w-invariant subset of I'y;,. Take
I e Jwith I # {1} and [y] € I'\. Since I+, = ﬂye[%m” P, by Lemma 5.47,
the element [v] is in Yy if and only if [y + €] X T C Y}. Therefore Y satisfies the
condition in the statement. u

By the proposition above, we get the following.

Theorem 5.49  When w does not satisfy Condition 5.1, there is an inclusion revers-
ing one-to-one correspondence between the set of ideals of O, %G and the set of w-
invariant subsets of '’ x T. Hence for any ideal I of O,,X 4« G, we have I = Iy,.

Proof There is a one-to-one correspondence between the set of ideals of O, %G
and the closed subset of Prim(0,, x4 G). By Proposition 5.48, the closed subset of
Prim (0, X 4+ G) corresponds bijectively to the set of w-invariant subsets of I'' x T.

|

6 The Strong Connes Spectrum and the K-Groups of O,,x,.G

As a consequence of knowing all ideals of O, %G, we can compute the strong
Connes spectrum of the action a’: G ~ O,,. We recall the definition of the strong
Connes spectrum.

Definition 6.1 Leta: G ~ Abean action of an abelian group G, whose dual group
is I', on a C*-algebra A. The strong Connes spectrum I'(«) of a is defined by

[(a)={yel

&, (I) C I, for any ideal I of A %, G},
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where &: I' ~ A X, G is the dual action of a.

For each action o, the strong Connes spectrum I'(«) is a closed subsemigroup
of I'. We remark that in the original paper [Ki], A. Kishimoto defined the strong
Connes spectrum in a different way and proved that his definition is equivalent to
the definition above (see, [Ki, Lemma 3.4]).

In our setting, the dual actions a*: I' ~ O, %, G are characterized by

¥ (S, fSh) = S0, fS; for p,v € W, f € Co(T') and y € T.

Proposition 6.2  Let w be an element of I'". The strong Connes spectrum I'(a) of the
action o is (", Qqi}.

Proof First we consider the case that w satisfies Condition 5.1. Since the correspon-
dence between ideals of O, X, G and w-invariant subsets of I is one-to-one by The-
orem 5.2, a¥.(I) C I if and only if X; — v D X; for an ideal I and v € I. For any
i € {1,2,...,n}, the set Q;y is an w-invariant set satisfying {y € T' | Qi3 +v C
Qi } = Qqip. Therefore I'(a®) C (., Q. We have X D X + (N, Qy;y for any
w-invariant set X because for any x € X there exists i with x + Q3 C X. We have
[L(a®) D N, Q. Thus D(a®) = (2, Qy;y in the case that w satisfies Condi-
tion 5.1.

Next we consider the case that w does not satisfy Condition 5.1. In this case, the
set ()i, Qy;y coincides with Q = {w,, | © € W, }. Since  is an w-invariant subset
ofTand {y € T' | a®,(Ip) C In} = {y € T'| Q+7 C Q} = Q, wehave ['(a®) C Q.
For any w-invariant subset Y of I'’ x T, we have ([y + w,],0) € Y forany p € W,
and any ([v],0) € Y. Since the correspondence between ideals of O, X, G and w-
invariant subsets of I'’ X T is one-to-one by Theorem 5.49, we have abv([ ) C I for
any ideal I of O, %, G and for any v € €. Hence ['(a*) D (2. Therefore also in the
case that w does not satisfy Condition 5.1, we have I'(a”) = ", Q. ]

Remark 6.3 Theinclusion I'(a) C (', 2y} had been already proved by A. Kishi-
moto [Ki].

The crossed product O, %+ G is a Cuntz-Pimsner algebra. Let E = C((I")" be a
right Co(I') module. The left Co(I') module structure of E is given by

f-(ffores ) = (0 (DA 00 (Do 0u, () fa) €E
for f € Co(I') and (f1, f2,.-., fu) € E.

Proposition 6.4  The crossed product O, X o+ G is isomorphic to the Cuntz-Pimsner
algebra Op.

Proof The inclusion Co(I') — O,xoGand E > (fi, fo,..., fu) — Z?:l Sifi €

0,4« G satisfies the conditions in [Pi, Theorem 3.12] (for example, the condition
(4) is equivalent to saying that Y . | S;o,,(f)S; = f forany f € Co(T')). Hence
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there exists a *-homomorphism ¢: O — O, x4+ G which is surjective since O, X 4 G
is generated by {1, Sifi | fi € Co(I")}. One can show that ¢ is injective by using
Proposition 3.11. Thus O, x4« G is isomorphic to Op. |

The ideal structures of Cuntz-Pimsner algebras were investigated in [KPW] when
Hilbert bimodules are finitely generated. Our Hilbert bimodule E is finitely generated
if and only if the group G is discrete. When G is discrete, we can know the detailed
structure of O, X 4~ G without using the result in [KPW] (see subsection 7.2). Thanks
to considering our algebra O, X~ G as a Cuntz-Pimsner algebra, we can compute the
K-groups of it by [Pi, Theorem 4.9].

Proposition 6.5 Let w be an element of I'". The following sequence is exact:

id =377 (0w« L
Ko(Co(I)) —=——= Ko(Co(I)) ——  Ko(0x0G)

I l

. id = Y0 (00
Ki(04%0:G)  ——— K (CI)) —=——— Ki(GCo(I)),
where v is the embedding 1: Co(I') — O, X4 G.

Proof Let us denote by T, the Cuntz-Toeplitz algebra, which is generated by n isome-
tries Ty, Ty, . . ., T, satisfying Z?Zl T;TF < 1. Thereis asurjection 7: T, — O, with
w(T;) = Sifori = 1,2,...,n. The kernel of 7 is isomorphic to K. If we define an
action @“: G ~ T, by a¥(T;) = (t|w;)Tifort € Gandi = 1,2,...,n, then the
kernel of 7 is invariant under this action and 7 0 & = o’ o 7 for any t € G. Hence
there exists a short exact sequence

0> KXge G— T, Xge G— O, X G — 0.

One can see that T}, X 4« G is isomorphic to T in a similar way to Proposition 6.4. The
C*-algebra K x4 G is isomorphic to K®QCy(I"). The subalgebra C1 x50 G of T, X450 G
is isomorphic to Co(I"). The inclusion Cy(I") — T, X5 G induces a KK-equivalence
between Cy(I") and T, x4+ G whose inverse is given by a Kasparov bimodule

(8+ S 8+7 mo D Ty T) € KK(Tn AN g G7 CO(F))

where £, = @120 E®*isa right Co(I")-module, my: T, Xqe G — L(E4) is the nat-
ural representation, 7;: T, Xgo G — L(G},fil E®K) C L(&,) is the representation
obtained from the universal property of T, xa Gand T € L(E; & &) is the odd
operator defined by T(¢§ @ ¢) = ¢ @ & (for the detail, see Section 4 in [Pi]). To show
that the 6-term exact sequence obtained from the short exact sequence above is the
desired one, it suffices to see that the element (8+ D Ey, (myop)® (m o), T) S
KK(CO(F)7 CO(F)) coincides with id — Z?:1(Uwi)* where p: Co(I') — T, Xav G
is given by o(f) = (1 — >0 T;T7) f (note that 1 — > | T;T7 is a minimal pro-
jection of the kernel of 7 which is isomorphic to K). A routine computation shows
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that 7y o ¢ vanishes on @, E®* and 7 o ¢ vanishes on @,°, E** and on E®°
(= Co(I")). Thus

(€+ @ E4, (myop) ® (m Otp),T) = (8+ @ &y, (Mmoo ) @ (m 090)70)
= (&m0 9,0) — (E4.m1 00,0)
= (CO(I‘)77TO 08070) - (E7 1 08070)

n

(Co(T),id,0) = (Co(T), 0, 0)

i=1

—id— zn:(aw,.)*. m
i=1

7 Examples and Remarks
7.1 When G is Compact

When G is compact, its dual group I" becomes discrete. In this case, for any w € I'”
the crossed product O, x,-G becomes a graph algebra of some skew product graph
which is row-finite (see [KP]) and a part of our results here has been already proved
in [BPRS]. There are many graph algebras which are not isomorphic to O, %G,
and it should be interesting to determine the ideal structures of such algebras. Our
technique here may help. We may consider our C*-algebras O, x,+ G as a continuous
counterpart of graph algebras. It seems to be interesting to define and examine graph
algebras of continuous graphs (see [Ka3, Ka4, Ka5]).

7.2 When G is Discrete

When G is discrete, its dual group I" becomes compact. Let us choose w € I'" and fix
it. Let us denote by (2 a closed semigroup generated by wy, wy, . .., w,.

Proposition 7.1 When G is discrete, we have —w; € Q fori =1,2,...,n.

Proof Let us take i € {1,2,...,n}. Since I' is compact, a sequence {kw;}°, has
a subsequence {kw; }°, which converges to some element in I'. For any /, we have
(kiy1 — ki — Dw; € Q because ki1 > k;. Hence —w; = limy_, o (ki1 — kj — Dw; € €.

|

The following are easy consequences of above proposition.

Corollary 7.2  Any w € I'" satisfies Condition 5.1.
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Corollary 7.3  The set Q) becomes a closed subgroup of T' and the set of all w-invariant
subsets of I is one-to-one correspondent to the set of all closed subset of T" /2.

By two corollaries above, the set of all ideals of O, % ,» G is one-to-one correspon-
dence to the set of all closed subset of I/ Q. In fact, we can examine the ideal struc-
tures of O, X ,-G directly and more structures of the crossed product. Let G’ be a
quotient of G by the closed subgroup

{teG|lay=id}={reG|(t|w)=1fori=1,2,...,n}
={teG|(t|y)=1foranyy € Q}.

Then the dual group of G is naturally isomorphic to (2. Since w € 0", we can define
an action &*: G’ ~ O,,. The crossed product O, x .-G’ is simple by Theorem 4.8
and purely infinite (see [KK2] or [Kal]). The crossed product O, .G becomes
a continuous field over the space I'/Q2 whose fiber of any point is isomorphic to
O, %G’ (see [OP2]).

7.3 WhenG=R

When G is the real group R, its dual group I is also R. We define three types for
elements of R".

Definition 7.4 Letw = (wy,wy,...,w,) € R". The element w is said to be of type
(+)ifw; > 0foralli or w; < 0 for all i, and to be of type (—) if there exist 7, j such
that w; < 0 < w;. Otherwise, the element w is said to be of type (0).

Namely w is of type (0) if and only if there exists i € {1,2,...,n} such thatw; = 0
and all the other w;’s have the same sign. When w is of type (+) or (=), the set Q;,
coincides with the closed group generated by wy,ws,...,w, foranyi = 1,2,...,n.
An elementw € R" is called aperiodic if the closed group generated by wy, wy, ..., w,
is R. By Theorem 4.8, we have the following.

Proposition 7.5 Forw € R", the crossed product O, xR is simple if and only if w is
aperiodic and of type (+) or (—).

When w is of type (+) or (—) and not aperiodic, the crossed product O, xR is
isomorphic to a mapping torus whose fiber is the simple C*-algebra O, x .- T where
w' = (w/K,wy/K, ... ,w,/K) € 7" and K is the (positive) generator of the closed
group generated by wy,w, ..., w, which is isomorphic to Z. Hence in this case,
Prim (0, x4 R) 2 T and the set of ideals of O, xR corresponds to the set of closed
sets of T. The case that w is of type (0) is more complicated. When w is of type (0),
the set Q@ = {w, | © € W,} is closed and a closed set X C R is w-invariant if and
onlyif X + €2 C X. We can prove the proposition below in a similar way to the proof
of Proposition 5.33.
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Proposition 7.6 Let w € R" be of type (0) with w # (0,0,...,0) and X be an w-
invariant set. Set X' = Uwi#O(X + w;). Any closed set X; with X’ C X; C X is
w-invariant, and Iy, [Ix = K® Co(X \ X1) ® Ok where k is the number of i withw; = 0
and O; = C(T).

One can easily see that an element w € R" does not satisty Condition 5.1 if and
only if w is of type (0) and the number of i with w; = 01is 1.

Remark 7.7 When w is of type (+), the crossed product O, xR becomes sta-
ble and projectionless [KK1]. In the forthcoming paper [Kal], we will show that
0,4 R is AF-embeddable in this case. More generally, we will give one sufficient
condition for crossed product O, X .« G becomes AF-embeddable in [Kal]. As a con-
sequence of it, we will show that O, x,+G is either AF-embeddable or purely infinite
when it is simple.
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