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Abstract

Let K be a number field with a ring of integers O. We follow Ferraguti and Micheli [‘On the Mertens–
Cèsaro theorem for number fields’, Bull. Aust. Math. Soc. 93(2) (2016), 199–210] to define a density
for subsets of O and use it to find the density of the set of j-wise relatively r-prime m-tuples of algebraic
integers. This provides a generalisation and analogue for several results on natural densities of integers
and ideals of algebraic integers.
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1. Introduction

A recurring theme in analytic number theory concerns the distribution of integers with
certain special properties. Classical results in this field include Dirichlet’s theorem
for primes in an arithmetic progression and the prime number theorem. However, the
following fascinating facts about the probabilities (or more precisely, natural densities)
of integers are not as well-known.

• The probability that m integers are relatively prime is 1/ζ(m).
• The probability that an integer is rth power-free (where r ≥ 2) is 1/ζ(r).

Mertens [7] proved the first fact when m = 2 in 1874 and Lehmer [6] subsequently
proved it in full generality in 1900. Gegenbauer [4] proved the second result in 1885.
It was not until 1976 that Benkoski [1] generalised the work of both Gegenbauer
and Lehmer, showing that if rm > 1, then the probability that m positive integers are
relatively r-prime (that is, these integers have no common rth power prime factor) is
1/ζ(rm).

Another way to generalise these results is to consider refinements to the notion of
relative primality of integers. In 2002, Tóth [9] established that the probability that m
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positive integers are pairwise relatively prime equals∏
p prime

(
1 −

1
p

)m−1(
1 +

m − 1
p

)
.

In 2012, Hu [5] extended Tóth’s result further by showing that the probability of m
positive integers being j-wise relatively prime equals

∏
p prime

[ j−1∑
k=0

(
m
k

)(
1 −

1
p

)m−k( 1
p

)k]
.

We can extend the scope of these statements by considering a fixed ring of algebraic
integers O. Benkoski’s statement has been extended to ideals in an algebraic integer
ring in 2010 by Sittinger [8]. More precisely, if rm > 1, then the probability that
m ideals in O are relatively r-prime is 1/ζO(rm). In 2016, DeMoss [2] adapted Hu’s
work, showing that the probability that m ideals in O are j-wise relatively prime equals

∏
p

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(p)

)m−k( 1
N(p)

)k]
,

where it is understood that the product is taken over all prime ideals of O. These
results in O were derived by taking the existing arguments for their analogues in Z and
modifying them with ideals, taking full advantage of the uniqueness of factoring ideals
in O into prime ideals.

In a departure from this line of inquiry, Ferraguti and Micheli [3] proposed an
extension of natural densities to ordered tuples of algebraic integers (to be defined in
the next section), and used this approach to show that the probability that m elements in
O are relatively prime is 1/ζO(m). It should be remarked that this probability matches
that from Sittinger [8] with ideals in the case r = 1.

In this article, we not only remove the restriction on r from Ferraguti and Micheli’s
work, but also use their techniques to provide generalisations of the results of Tóth and
Hu (which were in Z) to elements in O. In fact, we prove a result that has all of these
results as special cases. We accomplish this with the following notion.

Definition 1.1. Fix r, j,m ∈ N where j ≤ m. Given an algebraic number ring O, we
say that β1, . . . , βm ∈ O are j-wise relatively r-prime if pr - 〈 βi1 , . . . , βi j〉 for any prime
ideal p ⊆ O and for any integers 1 ≤ i1 < · · · < i j ≤ m.

When m = 1, this definition reduces to an algebraic integer being rth power-free.
When r = 1, the definition reduces to that of j-wise relative primality. In addition,
if j = m or j = 2, then we retrieve the definitions for relative primality and pairwise
relative primality, respectively. We now state the main result of this article.
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Theorem 1.2. Fix r, j,m ∈ N such that j ≤ m and rm ≥ 2, and let K be an algebraic
number field over Q with a ring of integers O. Then, the density of the set E of j-wise
relatively r-prime ordered m-tuples of elements of O equals

∏
p

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(pr)

)m−k( 1
N(pr)

)k]
.

After setting up the pertinent notation in Section 2, we prove Theorem 1.2 in
Section 3.

2. Notation

Let K be an algebraic number field of degree n over Q with O as its ring of integers
having integral basis B = {α1, . . . , αn}. As a way to generalise the notion of all positive
integers less than or equal to some positive constant M, we define

O[M,B] =

{ n∑
i=1

ciαi : ci ∈ [−M,M) ∩ Z
}
.

Wherever the basis is understood, we abbreviate this as O[M].
Following [3], we define a notion of density for a subset T of Om as follows.

Definition 2.1. Let T ⊆ Om and fix an integral basis B of O.

(1) Upper density of T with respect to B:

DB(T ) = lim sup
M→∞

|O[M,B]m ∩ T |
(2M)mn .

(2) Lower density of T with respect to B:

D
B

(T ) = lim inf
M→∞

|O[M,B]m ∩ T |
(2M)mn .

(3) If DB(T ) = D
B

(T ), the common value is called the density of T with respect to
B and denoted by DB(T ). Whenever this density is independent of the chosen
integral basis B, we denote it simply as D(T ).

Observe that this definition reduces to the classic notion of density (or probability)
over Z. Although the manner in which we cover O could potentially depend on
the choice of the given integral basis B, a corollary of the main result of this paper
shows that the density of the set of j-wise relatively r-prime elements in O is actually
independent of the integral basis used.

Finally, for any fixed rational prime p, suppose that p is a prime ideal in O that lies
above p; that is, p | 〈p〉. Then, we write Dp =

∑
p|〈p〉 fp, where fp denotes the inertial

degree of p.
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3. Density of j-wise relatively r-prime elements in O
Let S be a finite set of rational primes, and fix positive integers r, j,m such that

j ≤ m. Define ES to be the set of m-tuples z = (z1, . . . , zm) in Om such that any ideal
generated by j entries of z is relatively r-prime with each p ∈ S . That is, ES consists
of the m-tuples of algebraic integers from O which are j-wise relatively r-prime with
respect to S .

For the following lemma and proposition, let

π : Om →

(∏
p|〈p〉
p∈S

O/pr
)m

be the surjective homomorphism induced by the family of natural projections
πpr : O→ O/pr for all p | 〈p〉 where p ∈ S .

The following lemma follows immediately from the definition of j-wise relative r-
primality of algebraic integers.

Lemma 3.1. For a given p | 〈p〉 where p ∈ S and k ∈ {1, 2, . . . ,m}, let A(p)
k denote the

set of elements in (O/pr)m that have 0 in exactly k of their m components. Then,

ES = π−1
(∏
p|〈p〉
p∈S

j−1⋃
k=0

A(p)
k

)
.

For the remainder of this section, set N =
∏

p∈S pr, and let O[M]m denote the set of
m-tuples of elements of O[M].

Proposition 3.2. Fix q ∈ N. Then,

|ES ∩ O[qN]m| = (2q)mn
∏
p|〈p〉
p∈S

[
prm(n−Dp)

j−1∑
k=0

(
m
k

)
(N(pr) − 1)m−k

N(pr)k
]
.

Proof. We first examine the map π. Let πN denote the reduction modulo N
homomorphism, and let ψ = (ψp)p∈S , where ψp : (O/〈p〉r)m → (

∏
p|〈p〉 O/p

r)m is the
homomorphism induced by the projection maps O/〈p〉r →

∏
p|〈p〉 O/p

r. Finally, let ψ
be the extension of ψ to (O/〈N〉)m (by applying the Chinese remainder theorem to the
primes in S ). Let

Rp =
∏
p|〈p〉

O/pr.

Then, we have the following diagram.

Om (O/〈N〉)m (
∏

p∈S Rp)m

(
∏

p∈S O/〈pr〉)m (
∏

p∈S Rp)m

πN ψ

� =

ψ

With these maps, it follows that π = ψ ◦ πN .
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To prove the proposition, we need to compute cardinalities of a few preimages.
First, we consider ψ−1. Since ψp : (O/〈pr〉)m → Rm

p is a surjective-free Zpr -module
homomorphism, for all yp ∈ Rm

p ,

|ψ−1
p (yp)| = |ker(ψp)| =

(pr)mn

(pr)mDp
= prm(n−Dp).

Hence, for all y ∈ (O/〈N〉)m, we conclude that

|ψ
−1

(y)| =
∏
p∈S

|ψ−1
p (yp)| =

∏
p∈S

prm(n−Dp).

Next, we compute |π−1
N (z) ∩ O[qN]m|. To this end, let z = (z1, . . . , zm) ∈ (O/〈N〉)m.

Since O/〈N〉 is a free ZN-module with basis {π(α1), . . . , π(αn)}, for each j ∈
{1, 2, . . . ,m},

z j =

n∑
t=1

c j
tπ(αt),

for some unique c j
t ∈ [0,N) ∩ Z. Then for z = (z1, . . . , zm) ∈ Om, it follows that πN(z) = z

if and only if

z j =

n∑
t=1

(c j
t + l j

t N)αt

for some l j
t ∈ Z. Therefore,

|π−1
N (z) ∩ O[qN]m| = (2q)mn,

since we need l j
t ∈ [−q, q) ∩ Z for each pair of indices j and t.

We are ready to compute |ES ∩ O[qN]m|. For notational convenience, let

H = ψ−1
(∏
p|〈p〉
p∈S

j−1⋃
k=0

A(p)
k

)
,

so that ES = π−1(H) by Lemma 3.1. Since π = ψ ◦ πN ,

ES ∩ O[qN]m = π−1
N (H) ∩ O[qN]m.

For any fixed k and p,

|A(p)
k | =

(
m
k

)
(N(pr) − 1)m−k

N(pr)k,

and so our calculations with ψ−1 yield

|H| =
∏
p|〈p〉
p∈S

[
prm(n−Dp)

j−1∑
k=0

(
m
k

)
(N(pr) − 1)m−k

N(pr)k
]
.
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Therefore, we conclude that

|ES ∩ O[qN]mb| = (2q)mn|H|

= (2q)mn
∏
p|〈p〉
p∈S

[
prm(n−Dp)

j−1∑
k=0

(
m
k

)
(N(pr) − 1)m−k

N(pr)k
]
. �

We now compute the density of ES .

Lemma 3.3. With the previous notation, for any integral basis B of O,

D(ES ) = DB(ES ) =
∏
p|〈p〉
p∈S

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(pr)

)m−k( 1
N(pr)

)k]
.

Proof. Let a j = |ES ∩ O[ j]m|/(2 j)mn and let D denote the density in question.
First, we consider the subsequence {aqN}q∈N, where N =

∏
p∈S pr. We claim that

this subsequence is constant. By the previous proposition along with the definitions
for N and Dp,

aqN =
1

(2qN)mn

[
(2q)mn ·

∏
p|〈p〉
p∈S

prm(n−Dp)
j−1∑
k=0

(
m
k

)
(N(pr) − 1)m−k

N(pr)k
]

=
∏
p|〈p〉
p∈S

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(pr)

)m−k( 1
N(pr)

)k]
.

Hence, {aqN} is a constant subsequence and converges to D.
Next, we show that {ac+qN} also converges to D for any c ∈ {1, 2, . . . , N − 1}. We

first find bounds for ac+qN . To this end, note that

ac+qN

aqN
=

( 2qN
2c + 2qN

)mn
·
|O[c + qN]m ∩ ES |

|O[qN]m ∩ ES |
≥

( 2qN
2c + 2qN

)mn
.

Similarly,

ac+qN

a(q+1)N
=

(2(q + 1)N
2c + 2qN

)mn
·
|O[c + qN]m ∩ ES |

|O[N + qN]m ∩ ES |
≤

(2(q + 1)N
2c + 2qN

)mn
.

Therefore, it follows that

aqN

( 2qN
2c + 2qN

)mn
≤ ac+qN ≤ a(q+1)N

(2(q + 1)N
2c + 2qN

)mn
.

By letting q → ∞ and applying the squeeze theorem, we conclude that {ac+qN}

converges to D for any c ∈ {1, 2, . . . , N − 1}. Finally, since {ac+qN} converges to D
for any c ∈ {0, 1, 2, . . . ,N − 1}, we conclude that {a j} converges to D. �

https://doi.org/10.1017/S0004972718000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000382


[7] Density of algebraic integers 227

Note that the density in Lemma 3.3 is independent of the basis used. Moreover, if
we let S be the set of the first t rational primes, taking the limit as |S | → ∞ yields

lim
|S |→∞

D(ES ) =
∏
p

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(pr)

)m−k( 1
N(pr)

)k]
.

This motivates the main theorem of this section. For convenience, we restate it here
before proving it.

Theorem 3.4. Fix r, j,m ∈ N such that j ≤ m and rm ≥ 2, and let K be an algebraic
number field over Q with a ring of integers O. Then, the density of the set E of j-wise
relatively r-prime ordered m-tuples of elements of O equals∏

p

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(pr)

)m−k( 1
N(pr)

)k]
.

Proof. Fix t ∈ N and let S t denote the set of the first t rational primes. For brevity, we
write Et = ES t . Since Et ⊇ E,

DB(E) ≤ DB(Et) = D(E).

Observe that the last equality is due to the existence of D(E). Letting t→∞,

DB(E) ≤
∏
p

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(pr)

)m−k( 1
N(pr)

)k]
.

To show the opposite inequality, we first observe that D(Et) − D(Et\E) ≤ D(E).
Hence, it suffices to show that limt→∞D(Et\E) = 0.

To this end, we introduce the following notation (following [3]). Let p be a prime
ideal in O, pt be the tth rational prime and M be a positive integer.

(1) We say that p � M if and only if p lies over a rational prime greater than M.
(2) We say that M � p if and only if the rational prime lying under p is less than M.

Using this notation, we can write

Et\E ⊆
⋃
p�pt

( m∏
j=1

p
r
)
⊆ Om,

where it is understood that
∏m

j=1 p
r is the subset of Om such that each entry of the

m-tuple is an element of pr. Then, we see that

(Et\E) ∩ O[M]m ⊆
⋃

CMn�p�pt

m∏
j=1

(pr ∩ O[M])

for some constant C > 0 independent of M. It should be remarked that the upper
bound CMn � p comes from noting that for a fixed integral basis for O, the norm
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function is a polynomial of degree n in the coefficients (with respect to this basis) of the
elements in O. Thus, the norm of any element in O[M] is contained in [−CMn,CMn]
for some constant C > 0 depending only on the chosen basis. On the other hand, if an
element in O[M] is in p, then its norm is divisible by the rational prime p lying under
p. Hence, there do not exist prime ideals p � CMn containing a nonzero element of
O[M]. Therefore,

DB(Et\E) ≤ lim sup
M→∞

∑
CMn�p�pt

|(pr ∩ O[M])m| · (2M)−mn.

By [3, Proposition 13], there exist constants c, d > 0 independent of M and p such that

|(pr ∩ O[M])m| ≤
(2M)mn

N(pr)m + c
( 2M
dN(pr)1/n + 1

)mn−1
.

Using this proposition along with the facts that N(p) ≥ p for every p lying above a
fixed rational prime p and that at most n prime ideals lie above a fixed rational prime,

DB(Et\E) ≤ lim sup
M→∞

∑
CMn�p�pt

[ 1
N(pr)m + c

( 2M
dN(pr)1/n + 1

)mn−1
(2M)−mn

]
≤ lim sup

M→∞

∑
CMn>p>pt

[ n
prm + cn

( 2M
dpr/n + 1

)mn−1
(2M)−mn

]
.

It remains to show that the right side goes to 0 as t →∞. To this end, we first
observe that for all sufficiently large M, we have 2M/dpr/n > 1 and thus( 2M

dpr/n + 1
)mn−1

(2M)−mn <
(2
d

)mn
·

1
prm .

Therefore, writing A = n + cn(2/d)mn (which is a constant independent of M and p),
for all sufficiently large M,

DB(Et\E) ≤ lim sup
M→∞

∑
CMn>p>pt

A
prm .

Finally, since
∑∞

k=1 1/krm is convergent, we conclude that DB(Et\E) = 0 because

lim sup
M→∞

∑
CMn>p>pt

A
prm ≤

∞∑
k=pt

A
krm → 0 as t→∞. �

We now list two corollaries that show how our main result provides generalisations
of many previous results. The first gives a generalisation of the work from [9] and [5].

Corollary 3.5. Fix j,m ∈ N such that j ≤ m, and let K be an algebraic number field
over Q with a ring of integers O. Then, the density of the set of j-wise relatively prime
ordered m-tuples of elements of O equals∏

p

[ j−1∑
k=0

(
m
k

)(
1 −

1
N(p)

)m−k( 1
N(p)

)k]
.
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Proof. Let r = 1 in Theorem 1.2. �

The next corollary gives an analogue of the results from [8] and [1].

Corollary 3.6. Fix r, j,m ∈ N such that rm ≥ 2, and let K be an algebraic number
field over Q with a ring of integers O. Then, the density of the set of relatively r-prime
ordered m-tuples of elements of O equals∏

p

(
1 −

1
N(p)rm

)
=

1
ζO(rm)

.

Proof. Let j = m in Theorem 1.2, and apply the binomial theorem. �

Note that letting r = 1 in Corollary 3.6 gives the main result of [3], and letting m = 1
gives the probability for an algebraic integer being rth power-free, generalising [4].
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