
J. Aust. Math. Soc. 73 (2002), 433^445

DENSE SUBSEMIGROUPS OF GENERALISED
TRANSFORMATION SEMIGROUPS

AMORN WASANAWICHIT and YUPAPORN KEMPRASIT

(Received 16 November 2000; revised 11 October 2001)

Communicated by D. Easdown

Abstract

In 1986, Higgins proved that T(X), the semigroup (under composition) of all total transformations of a
set X, has a proper dense subsemigroup if and only if X is infinite, and he obtained similar results for
partial and partial one-to-one transformations. We consider the generalised transformation semigroup
7"(X, Y) consisting of all total transformations from X into Y under the operation a * f$ = ot9f), where
9 is any fixed element of T( Y, X). We show that this semigroup has a proper dense subsemigroup if and
only if X and Y are infinite and \Y6\ — min{|X|, |K|), and we obtain similar results for partial and partial
one-to-one transformations. The results of Higgins then become special cases.

2000 Mathematics subject classification: primary 20M20.

1. Introduction and preliminaries

If U is a subsemigroup of a semigroup S, we say d e S is dominated by U (or
U dominates d) if for any semigroup T and for any homomorphisms cp, i/r : 5 —»•
T, tp\U = rj/\U implies dip =\ drjr. The set of all elements of 5 dominated by
U is called the dominion of U in 5 and is denoted by Dom((/, 5). Clearly, U C
Dom(U, S) C S, and we say U is dense in 5 if Dom({/, S) = S, in which case
the inclusion map idy : U -> S is 'epi' in the sense that if a, /J : 5 —> T are
homomorphisms and a\ U = /3\ U then a = p.

Quite surprisingly, there is a useful characterisation—namely, Isbell's Zigzag The-
orem (see below)—of the elements of Dom(£/, 5) which has applications concerning
epimorphisms and amalgams of semigroups, an exposition of which can be found in
[4, Chapter 4].
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Little seems to be known about the existence of dense subsemigroups. In [7] Isbell
constructed a finite semigroup having a proper dense subsemigroup, and in [2] Hall
produced an example of a finite dense subsemigroup of an infinite semigroup. On the
other hand, it is easy to show that no left [right] zero semigroup can have a proper
dense subsemigroup, and the same can be proved for finite groups (see Theorem 1
below). If X is a set, Higgins [3] showed that T(X) has a proper dense subsemigroup
if and only if X is infinite, and that the same is true for the semigroup P(X) of all
partial transformations of X and also for the symmetric inverse semigroup I(X). In
Section 2, we generalise Higgins' result by employing more direct and elementary
arguments than in [3].

In [8,9] Magill generalised the notion of a transformation semigroup as follows. Let
X and Y be non-empty sets and let T(X, Y) denote the set of all total transformations
from X into Y. Fix 9 e T( Y, X) and define an operation * on T(X, Y) by

a*/3=ao0of}

for all a, f) € T(X, Y). Under this operation, T(X, Y) is a semigroup which we
denote by (T(X, Y), 9). Some of its properties were studied in [10, 12].

In [11] Sullivan took this one step further by considering the set P(X, Y) of all
partial transformations from X into Y (that is, all a : A -*• B where A c.X,B QY).
Then (P(X, Y), 9) is a semigroup under the above operation for any 9 € P(Y, X). In
the same way, we can obtain a semigroup (/ (X, Y), 9) where / (X, Y) is the set of all
one-to-one partial transformations from X into Y and 9 e I(Y, X).

Throughout this paper, (S(X, Y), 9), or more briefly (S, 9), will denote one of the
three transformation semigroups on X, Y just introduced. Also, for any a € P(X, Y),
we will let r(a) = |Xa| and call this the rank of a (other notation and terminology
will come from [1]). Our aim in Section 2 is to prove the following result.

THEOREM. For any sets X and Y, ifS(X, Y) denotes T(X, Y), P{X, Y) orI(X, Y)
and 9 € S(Y, X) then the semigroup (S(X, Y), 9) has a proper dense subsemigroup
if and only if X and Y are both infinite and r(9) = min{|.Y|, \Y\}.

Moreover, in proving this result, we show that under the given conditions
(S(X, Y), 9) contains infinitely many proper dense subsemigroups.

We let G(X) denote the symmetric group on a set X and, if A c X, we let idA

denote the identity mapping on A. Then, in particular, P(X) = (P(X, X),idx),
HX) = (I(X, X), id*) and T(X) = (T(X, X), idx).

From the above theorem, we immediately deduce the following result.

COROLLARY (Higgins' Theorem [3]). If X is a set and S denotes any one of T(X),
P(X) or I (X) then S has a proper dense subsemigroup if and only ifX is infinite.
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When U is a subsemigroup of a semigroup 5, a useful criterion for membership of
Dom(U, S) is provided by Isbell's Zigzag Theorem [6]. A zigzag in S over U with
value d e S is a system of equalities

uo=xiul,

U2i-iy, = u2iyi+i, XjU2l:=xi+iu2i+i (i = 1, ...,m - 1 ) ,

U2m-iym = u2m, xmu2m = d,

where UQ,U\, ..., u2m e U and x\, ...,xm,y\,... ,ym € 5. Note that, if d £ U then,
by choosing m to be minimal, we may assume the zigzag is such that X\,... ,xm £ U
andylt...,ymi U.

THEOREM (Isbell's Zigzag Theorem). Let U be a subsemigroup of a semigroup S.
Then d e Dom( U, S) if and only if d € U or there is a zigzag in S over U with
value d.

As a corollary to the Zigzag Theorem, Howie and Isbell [5] proved the following.

THEOREM 1. If U is a subgroup of a semigroup S then Dom(£/, 5) = U. Hence, if
U is a subsemigroup of a finite group G then Dom(f/, G) = U.

We remark that in the proof of his result, Higgins treats each of the three semigroups
separately, and his arguments depend on Isbell's Zigzag Theorem and Theorem 1, as
well as a result of Vorobev [13] (also see [1, page 7]): namely, if X is a finite set
then T(X) is generated by G(X) U (a) where a is any element of T(X) with rank
\X\ — 1, and also a result of Hall [2]: namely, if U is a proper regular subsemigroup of
a finite semigroup 5 then Dom( U, S) ^ S. In our arguments below, we also employ
the Zigzag Theorem and Theorem 1, but we avoid the results of Vorobev and Hall.

2. A generalisation of Higgins' Theorem
v

In this section, we use elementary concepts of mappings and cardinals to prove
some lemmas concerning generalised transformation semigroups: they will culminate
in a proof of our main theorem.

LEMMA 2. Let 9 e S(Y, X) be such that r(6) < min{\X\,\Y\).

(i) ifXorY is finite then, for every a € S(X, Y), ran 6a = ran a implies that
there exists fi e S(X, Y) such that r(fi) > r(a) andOfi = 6a.

(ii) IfX and Y are infinite then, for every a e S(X, Y), there exists p e S(X, Y)
such that r(P) = min{|A:|, |y|} and dp = Got.
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PROOF, (i) Suppose X or Y is finite. By assumption, we have:

r(a) = r(0a) < r{9) < min{|X|,

Hence, ran 9 C X and ran a c Y, and both ran 9 and ran a are finite. Let a e X\ran#,
b € K\rana and define p : doma U [a) —> Y by:

ib if x =a\
xfi — \

yxa if x e doma\{a}.

Clearly, P e S(X, Y) for the case when S(X, Y) equals T(X, Y) or P(X, Y). And it
is also true when S(X, Y) = I (X, Y) since b £ ran a. Also, 9p = 6a since a £ ran©.

We claim that ran/J = ran a U {b}, which implies that r(fi) > r{a) since ran a
is finite. By definition of £, ran/3 = (doma\{a))a U {b}. Hence, if a £ doma,
the claim is valid. On the other hand, if a e doma, then act e ran a = ran 9a, so
aa = za for some z € ran# D doma, and hence

rana = (doma\{a})a U {aa} = ((doma\{a}) U {z})a = (doma\{a})a,

thus the claim is valid in this case also.
(ii) Suppose X and Y are infinite. By assumption r{9) < \X\ and r{9) < \Y\.

Hence, since r{9a) < r(9) and X, Y are infinite, we have |X\ran#| = |X| and
|K\ran6»a| = |K|.

Case 1. \X\ < \Y\. Let y be any one-to-one map from X\ran# into K\ran#a,
and define/3 e P(X, Y) by

I xa if x e ran# ndoma;

xy if x e X\ran#.

Note that if 5(X, Y) = T(X, Y) then doma = X and so yS e T(X, Y). Likewise, if
a is one-to-one then so is £. Also, since r(8a) < |X|, r(y3) = |X| = min{|X|, |y|}.
In addition, we have dom#/J = dom#a, and it follows that 8ft = 9a.

Case 2. |X| > \Y\. This implies |X\ran#| > |y\ran^a| , so we can choose
A c X\ran^ with the same cardinal as y\ran#a and let y be any bijection from A
onto K\ran#a. Define /3 e P(X, Y) by

fjca if x € (X\A) ndoma;
xp — \

\xy if x € A,

and note that, as before, if S(X, Y) = T(X, Y) then p e T(X, Y). Also, since
ran/f c Y, r(P) = \A\ = \Y\ = min{|X|, |y|}. In addition, since ran9 c X\A, we
have d o m ^ = domfla, and it follows that 9p = 8a.
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That completes the proof in this case if S(X, Y) equals P(X, Y) or T(X, Y). If
S(X, Y) = I (X, Y), we choose A and y as before, and define 0' e P(X, Y) by

I xa if x € ran0 fl doma;

xy if x e A.

Then, since ran0 c X\A and a is one-to-one, 0' is also. And an argument similar to
the one before shows that fi' is the required mapping. •

The next result shows that, under certain conditions, S(X, Y) contains infinitely
many proper subsemigroups. For convenience, we write {*,} to denote {x, : i e /}
where the index set / can be deduced from context.

LEMMA 3. Let X and Y be infinite sets. Suppose 0 e S(Y, X) has infinite rank and
choose an infinite subset A ofranG such that |ran#\A| = r(6). For each a € A,
choose ya e aO'1 and let U = {a € S(X, Y) : \Aa n (F\{ya})| < \A\}. Then U is a
proper subsemigroup of(S(X, Y), 0).

PROOF. Clearly, U contains every a € S(X, Y) with finite rank. To show U is
closed under the operation *, we let {ya}

c denote Y\{ya} and observe that if a, f$ e U
then

A(a9P) n {ya}
c = [(Act D [ya)

e)9P U (Aa n [ya))6p] n {ya}
c

c [(Act n {yaY)BP U {[ya))9p] n [yaV

c (Aa n (va}c)^ U (AjS n {vfln,

and hence a^)3 e U. To show £/ is a proper subset of 5(X, Y), first note that
{yj c A0~\ so dom6>\A6»-' c dom6»\{ya} c Y\{ya}. Therefore,

|ran6»\A| < | dom6»\A6»-'| < \Y\{ya}\.

Since \A\ < |ran^| = |ran#^A|, we can therefore choose a one-to-one mapping
li from A into Y\{ya}. Then \An D (Y\[ya})\ = \Afi\ = \A\, so /* e S(X, K)\£/
if 5(AT, 7) equals P(X, K) or I(X, Y). If 5(X, K) = T(X, Y), we let fi' be any
extension of \x to the whole of X: that is, A/x' = A/x and so y! 6 T(X, Y)\U. D

Recall that each a e S(X, Y) induces an equivalence a o a"1 on its domain in X.
The next result bears comparison with the characterisation of Green's S£ and 3?.
relations on T(X) ([1, Lemma 2.5 and Lemma 2.6]). Its proof is routine and therefore
is omitted.

LEMMA 4. The following statements hold for S(X, Y) and any sets X, Y.
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(i) If a G S(X, Y), 0 € S(X, X) and a o a"1 = P o p~\ then there exists
ix G S(X, Y) such that a = Pfi.

(ii) If a e S(X, Y), P G 5( K, 7) a/wf ran a C ran 0, //ien there exists fi G 5(X, Y)
such that a = fip.

LEMMA 5. Let 6eS(Y, X) and let U be a dense subsemigroup of (S(X, Y), 9).
Then {a e S(X, Y) : r(a) > r(9)} C U.

PROOF. By the Zigzag Theorem, if a e S(X, Y)\U, then a = P6y for some
P € U,y G S(X, Y) and this implies r(a) < r(6). •

\
LEMMA 6. Let 9eS( Y, X) and let U be a dense subsemigroup of(S(X, Y), 9) and

r(9) < minflXI, I*U Then U = S(X, Y).

PROOF. Write 5 = S(X, Y) and suppose S\U # 0.
Case 1. X or y is finite. Note that for all a e S, r(a) < min{|X|, \Y\] < Xo-

Hence, there exists P e S\U with maximal rank. Since U is dense in (S,0), the
Zigzag Theorem implies that p — X6y for some A. e U,y e S\U. Then, using the
maximality of r(P), we have r(P) < r(0y) < r(y) < r()S) and equality follows.
But ranOy c r a n / , and these are two sets of the same finite size, so they are
equal. Hence, by Lemma 2 (i), there exists /J, e S such that r(/z) > r(y) and
9[i = 6y. Then r((i) > r(P) and, by choice of p, this means /x € U. So, we have
P = X6y = A.#/ii = A * /z G [/, a contradiction.

Case 2. X and K are infinite. By the Zigzag Theorem, if r) G S\£/, then rj = A0y
for some X e U and y G 5. By Lemma 2 (ii), 8y = Op for some p e S with
r(£) = min{|X|, | y|}. This and the supposition imply that r(P) > r(9) and so p G U
by Lemma 5. Hence, r] = X9y — X9p e U, a contradiction. •

The next two results will be used to show that if X or Y is finite then S(X, Y) cannot
have a proper dense subsemigroup. In the proof of the first we rely on the simple
observation that if U is a dense subsemigroup of a semigroup S and p is a congruence
on 5 then [xp : x G U] is a dense subsemigroup of the semigroup S/p.

LEMMA 7. Let X, Y be arbitrary sets with X finite. Suppose 9 e S(Y, X), ran# =
X and U is a dense subsemigroup of(S(X, Y), 9). Then U = S(X, Y).

PROOF. Write S — S(X, Y). Since ran# = X, there exists a one-to-one mapping
y : X -> Y such that y9 = idx. Then y G S. Next we let V = {a <= S : a6 e G(X))
and define a relation p on V (compare Symons' ^-relation in [11]) by

(a,P)ep if and only if a8 = P9.

To show U = S, consider the following statements.
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(1) V is a subsemigroup of (5, 9).
(2) For a e 5, ran a9 = X implies that a e V.
(3) For a, 0 € 5, <x9fi € V implies that a, fi e V.
(4) p is a congruence on V and V/p is isomorphic to G(X).
(5) If V ^ U then £/ n V is a dense subsemigroup of V.
(6) VCU.

The proofs of (1), (2), (3) and the first half of (4) are straightforward. The second
half of (4) follows from the fact that the mapping: V —> G(X),a H* a6 is an
epimorphism whose kernel is p.

Let rj e V\U. Since U is dense in 5, the Zigzag Theorem implies there is a zigzag,
Z say, in 5 over U with value r). Since r\ e V, it follows from (3) that Z is a zigzag
in V over U D V with value rj. This proves [/ n V is a dense subsemigroup of V, so
(5) is proved.

Suppose (6) does not hold and let r) e V\U. By (5), {cep : a € £/ n V} is a dense
subsemigroup of V/p. Since G(X) is a finite group, Theorem 1 implies G(X) has
no proper dense subsemigroup, and so {ap : a € U C\ V} — V/p. Hence, from the
definition of p, for each a € V there exists a' e U D V such that ad = a'#. Since
£/ fi V is dense in V and rj e V\U, the Zigzag Theorem implies 77 = aOX for some
a e V, A. € U n V. Then r? = a'0A = a' * A. e f / n V , a contradiction. Thus (6)
holds.

Now we prove U = S. Suppose U ^ 5 and note that r(a0) < |X| < Ko for all
a € S. Hence there exists fi e S\U such that r(/i#) is maximal. Since ix $ U and
V c [/ by (6), we deduce from (2) that ran/z6> C X, and so r(/z#) < |X| since X
is finite. In addition, the Zigzag Theorem implies /^ — X.9/3 for some A. € U and
P e S\U. Hence, using the maximality of r(^9), we have:

< r(fi6) <

and equality follows. Let x0 e X\ran/39 andjri e X\r&nX9. Since ran0 = X (by
assumption), we can choose y 6 K such that y9 = x0 and define /$' : domy3U{jCi} -» Y

by

if x e dom^\{^i};

i f x = X\.

Clearly, 0' 6 5 if 5 equals 7(X, y)orP(X, K). Ify = xfi for some JC 6 dom£\{jc,},
then J:0 = y0 = J:^'0 = xfi9 e ran ^0, contradicting the choice of x0. Hence, fi' e 5
if 5 = /(X, Y).

Now, since /J and /?' agree on dom ^\{jC]} and x\ £ r a n ^0, we have k90' = X9fi =
fi. Clearly, ran JX9 c ran^^ and, as already shown, these two sets have the same
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finite size, hence they are equal. Therefore,

r{p'9) = \XP'6\ > \(rank6 U {xl})p'9\

= \(rznkep)9 U {xo}\ = | rannO U {*0}|

= r(P6) + 1 >

It follows from the maximality of r(fx9) that P' 6 U. Hence, fi = X6fi' — X * fi' <= U,
a contradiction. Therefore, U = 5 as required. •

LEMMA 8. Le/X, K be arbitrary sets with Yfinite. Suppose 9 e S(Y, X), dom0 =
Y and U is a dense subsemigroup of(S(X, Y), 6). Then U = S(X, Y).

PROOF. Write 5 = S(X, Y). We have r{9) < \domO\ = \Y\ < Ko. Also, either
r{9) = |* | or r(9) = \Y\ or r(9) < min{|X|, |y|J. If the first occurs, then X is
finite and ran# = X, so Lemma 7 implies U = S. If the last occurs, then U — S by
Lemma 6.

Hence we assume r{9) = \Y\. In this event, the domain and range of 9 have the
same finite size, 9 is one-to-one and \Y\ < \X\. Let V = {a e S : (ran#)a = Y]
and define a relation p on V by (or, P) G p if and only if #ar = Op. To show U = S,
consider the following statements.

(1) V is a subsemigroup of (5, 9).
(2) For a,PeS, rana<9/3 = / implies that /3 e V.
(3) For a,p € S, u9p e V implies that a,p e V.
(4) p is a congruence on V and V/p is isomorphic to G(Y).
(5) If V 2 £/ then £/ n V is a dense subsemigroup of V.
(6) Vet/.
(7) For a € 5, ran a = y implies that a e U.

The proofs of (1), (2), (3) and the first half of (4) are straightforward.
Since r{9) = \Y\, we know that G(ran#) is isomorphic to G(Y) so, to complete

the proof of (4), it suffices to prove that V/p is isomorphic to G(ran#). But this
follows immediately since the map: V -> G(ran#),a i-> (a|ran#)0 is clearly an
epimorphism whose kernel is p.

Suppose there exists r) e V\U and let Z be a zigzag in 5 over U with value rj. It
follows from (3) that Z is a zigzag in V over U D V with value r\. This proves that
U n V is a dense subsemigroup of V which verifies (5).

Suppose (6) does not hold, so there exists TJ e V\U. By (5) and an observation
before the statement of Lemma 7, {ctp : a € U D V} is a dense subsemigroup of
V/p. Since Y is finite and V/p is isomorphic to G(Y), Theorem 1 implies that V/p
has no proper dense subsemigroup. Hence {ap : a e U n V} = V/p. But, since
(/ D V is dense in V and rj e V\ [/, the Zigzag Theorem implies that t] = X9p for
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some keUDV and PeV. Then P\ran9 = fi\ ran9 for some /x € UHV. Thus,

Op = Ofi and so rj = X6p = k9fx = k*fie U n V, contradicting the choice of r).

Therefore, V c U and thus (6) holds.
Let a e S and ran a = Y, and suppose a <£ U. Then by the Zigzag Theorem,

a = P6y for some P G U,y € S. Hence, Y = ran pdy, and so y e V c [/by (2)
and (6). Consequently, a = p * y e £/, a contradiction. Therefore, (7) holds.

Now we prove U = S. Suppose U ^ S. Since for all a e S, r(u) < \ Y\ < Xo, it
follows that there exists fi e S\U with maximal rank. By (7) this means r(/x) < | Y\.
Since U is dense in (5, 9) and /x G S\U, the Zigzag Theorem implies t̂ = A0^y =
(P0Xi)6y for some Xo, X, e 1/ and p,y € S\U such that Xo = fiGkx. Then, using
the maximality of r(/x), we have:

KM) < r(Ao) < r(j8) < r(ji), rQi) < r(y) < r(ji),

and equality follows throughout. Then ran /x — ran y since ran /x c ran y and these
two sets have the same finite size.

We claim that there exists 6' e S(Y, X) such that X09' = \06, ranfl'y = ran y and
r{6') < | K|. To prove this, let 60 : Y -*• X be such that

#o I ran Xo = 8 \ ran Ao and (Y\ ran Xo)^o £ (ran Xo)^.

Then 0O € ^(K, X) and ran^0 = (ranAo)0. Put 6»' = 8Q if S = T(X, Y) and
0' = 0| ran k0 in the other two cases. Then 9' e S(y, X), XO0' = AO0 and r{9') =
\(ranko)9\ < r(k0) < \Y\. Also,

ran^'y = (ranA.o0)y = tan(ko9y) = ran/x = rany,

and the claim is valid.
Now we have r(9') < min{|X|, | Y\] (since | Y\ < \X\, as we observed at the start)

and ran#'y = ran y. Then by Lemma 2 (i), there exists rj € S such that r(r]) > r(y)
and 9'r) — 9'y. Therefore, r{r)) > r([i), so /? e U by choice of fi. Moreover, since
ko9 = ko9' and 9'y = 9'r], we have

ix = (\0&)y = ko8'y = ko(9'r)) = ko9r}.

Consequently, /J. = k0 * rj e U, contradicting the choice of n, and the proof is
complete. •

The next result enables us to construct proper dense subsemigroups of (S(X, Y), 9).

LEMMA 9. Let X, Y be infinite sets. Suppose 9eS(Y, X) and r{9)= min{|X|, | Y\}.
Let A be an infinite subset of ran 9 such that \ ran 9\A \ = r{9) and, for each a € A,
choose za € ad~l. Put U = [a e S(X, Y) : \Aa 0 (Y\{z*))\ < \A\). Then U is a
proper dense subsemigroup of(S(X, Y), 9).
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PROOF. Write 5 = S(X, Y). By Lemma 3, U is a proper subsemigroup of (5, 9).
To show that U is dense in (5, 6), we have to show 5 c Dom(£/, 5); and for this, we
must prove that for each a e S there is a zigzag in S over U with value a. To do this,
we first construct a one-to-one mapping:

<p : {ya"1 : y € rana} - • {x6~l : x e ran0}

as follows. For each y e rana, choose ay € ya"1 D A provided this set is non-empty,
and put

I =av9~1 if ya~l DA v^0;

e {x9~l :x eran0\A} i f y « - ' n A = 0 .

Note that, since A C ran^, each ay9~l is non-empty, and the mapping:

{ya~x : ya~l D A jL 0} - • {a^"1 : ya"1 DA ^ 0}, ya"1 h-> a^"1

is a bijection. By assumption, we have min{|X|, \Y\] = \ ran^\A|, so

\iya~1 : y e rana and ya~x n A = 0}| < r(a) < min{|X|, | K|}
= KA:^"1 :X eran6»\A}|.

In other words, it is possible to define <p as in (1) so that <p is one-to-one.
Now, from the definition of <p, we see that

M{(ya l)<p : y e rana} c dom#

and if ya ' D A ^ 0 then zOv e ay9 ' = (ya l)<p. Let A. : doma —>• dom^ be a
mapping with the property:

(2)

From the supposition, we know r(X) < min{|A"|, |K|} = r(9) = \ran9\A\, and
hence there exists r\x e I(X, Y) such that dom^ c ran^\A and ran^ = ranX.
Let T)2 : X -*• Y be an extension of r)t such that lA^I < 1^1. and put rj = r]2 if
S = T(X, Y) and t) = r\x in the other two cases. Then r) e S.

To complete the proof, we require the following statements.

(a) k,r] e U.
(b) a o a - ' = (A.0)o(A.0)-'.
(c) There exists y € S such that a = X.9y.
(d) >j6»y e (/.
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(e) There exists yS e 5 such that \ = fiGr).

If these statements hold, we have the following zigzag in 5 over U with value a:

a = k9y, ke U,y € S

k = pen, rje u,p € 5

a, n9y 6 U.

Therefore, by the Zigzag Theorem, a e Dom(U, S) as required.
To show that (a)-(e) hold, we proceed as follows.
(a) From the definition of k, (ya~l D A)k = {zOy} whenever ya'1 n A

Therefore, since domX = doma, we have

Ak = (A ndomoOA. = [U{A Hya'1 : y € ranor}]A.

= {zay :ya-lnA ^ 0 } c {Za : a e A}.

Hence, Akn(Y\{Za}) = 0andthusA e U. From the definition of r\, |A?j|=|
if 5 = T{X, Y),and\Ar)\ = |Arj,| = 0 in the other two cases: this implies that r? € U.

(b) Since domA = doma and ran A c dom#, we have domkd = doma. That
aoa'1 = (kO) o (key1 now follows readily from (1) and (2).

(c) This follows directly from (b) and Lemma 4 (i).
(d) This follows from the definition of U and the fact that |A(r)6y)\ < \Arj\ < |A|.
(e) From the definitions of r)\ and r), we have:

ranX =ran)7i — (domfji)rji c (ran^)rji C (ran^)rj = ran9r).

Therefore, from Lemma 4 (ii), there exists fi e S such that f}(Bt)) = A., as required. •

We now restate the theorem presented in Section 1 with more details, and use the
foregoing lemmas to prove it.

THEOREM 10. Suppose X, Y are arbitrary sets. Let S = S(X, Y) denote any
one of T(X, Y), P(X, Y) or /V(X, Y) and let B € S(Y, X). Then the semigroup
(5, 6) has a proper dense subsemigroup if and only if X and Y are both infinite
and r(e) = min{|X|, | Y\}. Moreover, when this occurs, the following statements are
true.

(1) Suppose A is an infinite subset ofran B such that \ ran B\A \ = r(0), and for each
a 6 A, choose ya e ad~l. Then the set U defined by

U = {a e S : \Aa n (Y\{ya : a e A})\ < \A\)

is a proper dense subsemigroup of (S, 9).
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(2) (5, 6) has infinitely many proper dense subsemigroups, and the cardinality of
the collection of all such subsemigroups is at least min{|X|, | Y\}.

PROOF. Suppose X is finite or Y is finite or r(6) < min{|X|, \Y\}. If the last of
these occurs, then 5 has no proper dense subsemigroup by Lemma 6. If r{9) = |X|
then X is finite and ran# = X, whence 5 has no proper dense subsemigroup by
Lemma 7. If r{9) = | Y\ then Y is finite and dom# = Y, so the desired result follows
from Lemma 8. The converse, and statement (1) of the theorem, follow directly from
Lemma 9.

To prove statement (2), assume X and Y are infinite and r{9) = min{|X|, \Y\}.
Since |ran# x ran#| = r{9), there exists a partition {Ax : x e ran#) of ran 9 such
that \AX | = r(0) for all x G ran 0. Then | ran 9\AX | = r(9) for all x G ran 9. For each
x e ran#, choose yx e x6~l and let

Ux = {aeS: \ A x a D ( Y \ { y a : a e Ax))\ < \AX\).

By Lemma 9, each Ux is a proper dense subsemigroup of (S, 9). Moreover, let x, x'
be distinct elements of ran 6. Then \AX UAX.\ = \AX\ = \{ya : a e Ax}\. Hence, there
exists a € I(X, y )wi thdoma = A x U A x. and ran a = {ya : a € Ax}. Choose^ € S
such that /J| doma = a. Then Axfi Q [ya : a e Ax] and

Ax,p £{ya:ae Ax) c Y\[ya : a e Ax.}.

Hence, the intersection of Axp and Y\{ya : a e Ax] is empty, whereas the intersection
of Ax fi with Y\[ya : a e A x ) has the same cardinality as AX' (since a is one-to-one).
That is, f3 G Ux but /8 ^ Ux-. This shows the sets Ux, x e ran 9, are all distinct, thereby
verifying (2). •
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