OPÉRATEURS À ITÉRÉS UNIFORMEMENT BORNÉS

PAR JOSÉ I. NIETO

RÉSUMÉ. Dans un espace de Banach complexe (X, | |) on considère un opérateur linéaire borné A de spectre $\sigma(A)$ et de rayon spectral r(A)=1. On établit des conditions, en termes du spectre périphérique de $A:\sigma_{\pi}(A)=\{\lambda\in\sigma(A):|\lambda|=1\}$, qui garantissent l'existence d'une norme $| \cdot |_0$, équivalente à $| \cdot |_1$, définie par un produit scalaire si $| \cdot |_1$ l'est et telle que $| \cdot |_0 = \sup\{|Ax|_0:|x|_0=1\}=1$. Si A est à itérés uniformément bornés $(| \cdot |_A^n | | \le M \text{ pour } n=1,2,\ldots)$ une telle norme peut ne pas exister.

0. **Introduction.** Soit $(X, | \cdot|)$ un espace normé, réel ou complexe, et soit $\mathcal{L}(X)$ l'algèbre normée des opérateurs linéaires bornés dans X, munie de la norme $||A|| = \sup\{|Ax|: |x| = 1\}$. Si la norme | est définie par un produit scalaire, on dira qu'elle est hilbertienne. Pour $A \in \mathcal{L}(X)$ on désigne par r(A) = $\lim_{n\to\infty} ||A^n||^{1/n}$ le rayon spectral de A. On dira que A est à itérés uniformément bornés s'il existe une constante M>0 tel que $||A^n|| \le M$ pour tout $n \in \mathbb{N} =$ $\{0, 1, 2, \ldots\}$ (On suppose que A^0 est l'opérateur identité I). Pour un tel opérateur, on a $r(A) \le 1$ et on sait qu'il existe une norme $|\cdot|_0$, à savoir $|x|_0 = \sup\{|A^n x| : n \in \mathbb{N}\}\$ pour $x \in X$, qui est équivalente à $||(|x| \le |x|_0 \le M |x|)$ et telle que $||A||_0 = \sup\{|Ax|_0 : |x|_0 = 1\} \le 1$. Cependant, si la norme | est hilbertienne, la norme $| \cdot |_0$ n'est pas en général une norme hilbertienne. Par exemple, pour la matrice $A = \begin{pmatrix} 0 & 4 \\ \frac{1}{4} & 0 \end{pmatrix}$ et la norme hilbertienne $|(\xi, \eta)| = (|\xi|^2 + |\eta|^2)^{1/2}$ dans \mathbb{C}^2 on a Sup{ $||A^n||: n \in \mathbb{N}$ } = 4, r(A) = 1, mais la norme $|x|_0 =$ $\sup\{|A^nx|:n\in\mathbb{N}\}\$ n'est pas hilbertienne, car elle ne satisfait pas la loi du parallélogramme: pour x = (1, 0), y = (0, 1) on a $|x + y|_0^2 + |x - y|_0^2 = 32\frac{2}{16} \neq 34 =$ $2(|x|_0^2+|y|_0^2)$. Ceci nous amème à considérer le problème suivant: Si A est à itérés uniformément bornés, existe-t-il une norme $|\cdot|_0$ (qui dépendera de A)

- (i) $| \cdot |_0$ est équivalente à $| \cdot |$
- (ii) $| \cdot |_0$ est hilbertienne si $| \cdot |$ l'est
- (ii) $||A||_0 \le 1$.

telle que:

Dans ce problème, il faut distinguer deux cas. Tout d'abord, si r(A) < 1, il n'est pas nécessaire de supposer que A est à itérés uniformément bornés, cette

Reçu par la redaction le 20 novembre 1980. AMS Subject Classification Numbers: 47A10, 47A30, 47B05.

propriété étant une conséquence de r(A) < 1. Dans le cas où r(A) < 1, Kurepa [8] a montré que la norme

(1)
$$|x|_0 = (|x|^2 + |Ax|^2 + |A^2x|^2 + \cdots)^{1/2}$$

déjà considérée par Rota [10], [5, Problème 122] lorsque X est un espace de Hilbert, est une solution au problème précédent, et l'on a $||A||_0 < 1$.

Dans la section 1 de cet article, on étudie les opérateurs A à itérés uniformément bornés avec r(A)=1 et on montre dans une proposition que pour ces opérateurs le problème peut ne pas avoir de solution si X est de dimension infinie. Pour établir cela, nous nous servons d'un contre-exemple donné par Foguel [3] à un problème soulevé par Sz-Nagy. Etant donné que dans le cas r(A)=1 les conditions (i), (iii) entraînent $\|A\|_0=r(A)=1$, on est amené à considérer un deuxième problème, relié au premier, qui est le suivant: si X est un espace de Banach complexe et si $A \in \mathcal{L}(X)$ est un opérateur avec r(A)>0, quelles conditions, sur le spectre de A, sont suffisantes pour qu'il existe une norme $|\cdot|_0$ satisfaisant (i) et (ii), et telle que $\|A\|_0=r(A)$? De telles conditions, faisant intervenir seulement les points λ du spectre de A avec $|\lambda|=r(A)$, sont formulées dans un théorème à la section 2.

1. Soit $(H, | \ |)$ un espace de Hilbert et soit \langle , \rangle son produit scalaire. On dit qu'un opérateur $W \in \mathcal{L}(H)$ est uniformément positif s'il existe une constante m > 0 tel que $\langle Wx, x \rangle \ge m |x|^2$ pour tout $x \in H$. A un tel opérateur W on peut associer le produit scalaire \langle , \rangle_0 , défini par $\langle x, y \rangle_0 = \langle Wx, y \rangle$, qui est équivalent à \langle , \rangle (c'est-à-dire leurs normes sont équivalentes). C'est bien connu aussi que, réciproquement, tout produit scalaire \langle , \rangle_0 , équivalent à \langle , \rangle , est de la forme $\langle x, y \rangle_0 = \langle Wx, y \rangle$, où W est uniformément positif, et par conséquent $|x|_0^2 = \langle Wx, x \rangle = |W^{1/2}x|^2$, c'est-à-dire $|x|_0 = |W^{1/2}x|$. Etant donné que l'opérateur $Q = W^{1/2}$ est uniformément positif, donc inversible dans l'algèbre $\mathcal{L}(H)$, si $|\cdot|_0$ est une norme hilbertienne, équivalente à $|\cdot|$, il existe un opérateur uniformément positif Q tel que

(2)
$$||A||_0 = ||QAQ^{-1}|| \text{ pour chaque } A \in \mathcal{L}(H),$$

car

$$||A||_0 = \sup\{|Ax|_0 : |x|_0 = 1\} = \sup\{|QAx| : |Qx| = 1\}$$

= $\sup\{|QAQ^{-1}y| : |y| = 1\} = ||QAQ^{-1}||$.

De (2) et des propriétés d'un opérateur A avec r(A) < 1 on obtient:

- (I) Pour un opérateur $A \in \mathcal{L}(H)$ on a $||A||_0 \le 1$ pour une certaine norme hilbertienne $|\cdot|_0$, équivalente à $|\cdot|$, si et seulement si $||QAQ^{-1}|| \le 1$ pour un certain opérateur uniformément positif Q.
- (II) Tout opérateur $A \in \mathcal{L}(H)$ avec r(A) < 1 est semblable à une contraction stricte.

PROPOSITION. Soit $(H, | \cdot |)$ un espace de Hilbert de dimension infinie. Alors il existe un opérateur à itérés uniformément bornés $A \in \mathcal{L}(H)$, avec r(A) = 1, pour lequel il n'existe aucune norme hilbertienne $| \cdot |_0$, équivalente à $| \cdot |$, satisfaisant $||A||_0 = 1$.

Démonstration. Foguel [3] (Cf. [6]) a montré qu'on peut construire un opérateur $A \in \mathcal{L}(H)$ à itérés uniformément bornés qui n'est semblable à aucune contraction. Donc, d'après (II), on doit avoir r(A) = 1. Alors, d'après (I), il n'existe aucune norme hilbertienne $| \cdot |_0$, équivalente à $| \cdot |_1$, telle que $||A||_0 = 1$.

§2. Soit $(X, | \ |)$ un espace de Banach complexe et soit $\sigma(A)$ le spectre d'un opérateur $A \in \mathcal{L}(X)$. La partie non vide $\sigma_{\pi}(A) = \{\lambda \in \sigma(A) : |\lambda| = r(A)\}$ du spectre sera appelée le spectre périphérique de A.

Théorème. Soit $A \in \mathcal{L}(X)$ avec r(A) > 0. Si

(a) Pour chaque $\lambda \in \sigma_{\pi}(A)$:

$$X = \text{Ker}(A - \lambda I) \oplus (A - \lambda I)X$$
 (somme directe algébrique),

alors

- (b) Chaque $\lambda \in \sigma_{\pi}(A)$ est une valeur propre isolée.
- (c) L'opérateur A/r(A) est à itérés uniformément bornés.
- (d) Il existe une norme $| \ |_0$, équivalente à $| \ |$, qui est hilbertienne si $| \ |$ l'est, et qui satisfait: $||A||_0 = r(A)$, et $||P_{\lambda}||_0 = 1$ pour chaque $\lambda \in \sigma_{\pi}(A)$, où P_{λ} est le projecteur spectral associé à λ .
 - (e) Pour chaque $\lambda \in \sigma_{\pi}(A)$:

$$|x + (A - \lambda I)y|_0 \ge |x|_0$$
 pour tout $x \in \text{Ker}(A - \lambda I)$ et pour tour $y \in X$.

Démonstration. (b): Soit $\lambda \in \sigma_{\pi}(A)$. La condition (a) entraîne que λ est une valeur propre et que $(A - \lambda I)X$ est fermé [7, Proposition 36.2] [4, Théorème IV.1.12]. Etant donné que la restriction de $A - \lambda I$ à $\operatorname{Ker}(A - \lambda I)$ a $\{0\}$ comme spectre et que la restriction de $A - \lambda I$ à $(A - \lambda I)X$ est bijective, (a) entraîne que $A - \mu I$ est inversible dans l'algèbre $\mathcal{L}(X)$ pour tout μ , $0 < |\mu - \lambda| < \delta$, pour un certain $\delta > 0$. Donc λ est un point isolé du spectre de A. (c): $\sigma_{\pi}(A)$ étant compact, (b) entraîne que $\sigma_{\pi}(A)$ est constitué d'un nombre fini de points $\lambda_1, \ldots, \lambda_q$. Etant donné que l'ensemble $\sigma_0(A)$ des points de $\sigma(A)$ qui n'appartiennent pas à $\sigma_{\pi}(A) = \{\lambda_1, \ldots, \lambda_q\}$ est contenu dans un disque $\{z : |z| \le r_1\}$ pour un certain $r_1 < r(A)$, on peut associer à $\sigma_0(A)$ et aux points $\lambda_1, \ldots, \lambda_q$ des projecteurs spectraux P_0, P_1, \ldots, P_q , et l'on a $P_i(X) = \operatorname{Ker}(A - \lambda_i I)$, donc $AP_i = \lambda_i P_i$, pour $i = 1, \ldots, q$. D'autre part, étant donné que $X_i = P_i(X)$, $i = 0, 1, \ldots, q$ sont des sous-espaces fermés invariants de A et que

$$X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$$

on a

(3)
$$A^n = A_0^n + \sum_{i=1}^q \lambda_i^n P_i$$
 pour tout $n = 1, 2, ...,$

où $A_0 = AP_0$ est la restriction de A à X_0 . Le spectre de $A_0 \in \mathcal{L}(X_0)$, étant $\sigma_0(A)$, on a $r(A_0/r(A)) < 1$. Grâce à (3) on a que A/r(A) est à itérés uniformément bornés. (d): étant donné que $r(A_0/r(A)) < 1$, il existe une norme $| \cdot |_*$ dans X_0 (par exemple la norme définie par (1)), équivalente à $| \cdot |_*$ (dans X_0), telle que $||A_0/r(A)||_* < 1$ et qui est hilbertienne si $| \cdot |_*$ l'est. Pour $x = x_0 + x_1 + \cdots + x_a$, $x_i \in X_i$, on pose

$$|x|_0 = (|x_0|_*^2 + |x_1|^2 + \cdots + |x_q|^2)^{1/2}.$$

Il est facile de vérifier que la norme $|\cdot|_0$ ainsi définie dans X est équivalente à la norme de départ $|\cdot|$ et qu'elle est hibertienne si $|\cdot|$ l'est. En plus, $||P_i||_0 = 1$ pour $i = 1, \ldots, q$, car $P_i \neq 0$ et $|P_i(x)|_0^2 = |x_i|_0^2 = |x_i|_0^2 \le |x|_0^2$. D'autre part, étant donné que $|Ax_0|_* \le r(A)|x_0|_*$, on a

$$|Ax|_0^2 = |Ax_0 + \lambda_1 x_1 + \dots + \lambda_q x_q|_0^2 = |Ax_0|_{\frac{1}{2}}^2 + r^2(A)(|x_1|^2 + \dots + |x_q|^2)$$

$$\leq r^2(A)(|x_0|_{\frac{1}{2}}^2 + |x_1|^2 + \dots + |x_q|^2) = r^2(A)|x|_0^2.$$

D'où $\|A\|_0 = r(A)$. (e): Soit $\lambda_i \in \{\lambda_1, \ldots, \lambda_q\} = \sigma_{\pi}(A)$. Etant donné que $\operatorname{Ker}(A - \lambda_i I) = P_i(X)$, $(A - \lambda_i I)X = \operatorname{Ker} P_i$ et que $\|P_i\|_0 = 1$, on a $|x|_0 = |P_i(x + (A - \lambda_i I)y)|_0 \le |x + (A - \lambda_i I)y|_0$, pour tout $x \in \operatorname{Ker}(A - \lambda_i I)$ et pour tout $y \in X$.

RÉMARQUES. (1) L'inégalité dans (e) exprime que $\operatorname{Ker}(A-\lambda I)$ est orthogonal à $(A-\lambda I)X$ (au sens de Birkhoff [1]), par rapport à norme $|\ |_0$. Si λ et μ sont des valeurs propres distinctes appartenants à $\sigma_{\pi}(A)$ on a, donc, que $\operatorname{Ker}(A-\lambda I)$ est orthogonal à $\operatorname{Ker}(A-\mu I)$, par rapport à la la norme $|\ |_0$, car $z\in\operatorname{Ker}(A-\mu I)$ entraîne $z=(A-\lambda I)(z/\mu-\lambda)\in(A-\lambda I)X$.

(2) Si $(X, | \cdot |)$ est un espace de Hilbert, (d) entraîne que le projecteur spectral P_i associé à $\lambda_i \in \sigma_{\pi}(A)$ est un projecteur orthogonal, par rapport à la norme hilbertienne $| \cdot |_0$.

On dit qu'un opérateur $A \in \mathcal{L}(X)$ est *quasi-compact* si $||A^p - K|| < 1$ pour un certain entier positif p et un certain opérateur compact $K \in \mathcal{L}(X)$. Si X est de dimension finie, tout opérateur $A \in \mathcal{L}(X)$, étant compact, est donc quasi-compact.

COROLLAIRE 1. Soit $A \in \mathcal{L}(X)$ un opérateur quasi-compact avec r(A) = 1. Alors la condition (a) est équivalente à chacune des conditions suivantes:

- (a_1) A est à itérés uniformément bornés
- (a_2) $\lim_{n\to\infty} (A^n x/n) = 0$ pour tout $x \in X$
- (a_3) Ker $(A \lambda I)^2 = \text{Ker}(A \lambda I)$ pour chaque $\lambda \in \sigma_{\pi}(A)$.

Démonstration. $(a) \Rightarrow (a_1)$ est une conséquence du théorème, $(a_1) \Rightarrow (a_2)$ est évident, et $(a_2) \Rightarrow (a_3)$ est une conséquence de [2, Lemme 1, page 709], toutes ces implications étant valables sans l'hypothèse de la quasi-compacité de A. $(a_3) \Rightarrow (a)$: soit $\lambda \in \sigma_{\pi}(A)$. D'après [2, Lemme 2, page 709] et [11, Théorème 5.8-A], (a_3) entraîne que $X = \text{Ker}(A - \lambda I) \oplus (A - \lambda I)X$, avec dim $\text{Ker}(A - \lambda I) < \infty$. D'où (a).

Si X est de dimension finie, la condition (a_3) exprime que les racines du polynôme minimal de A de valeur absolue égale à r(A) sont simples [2, Théorème page 556]. Dans ce cas, l'équivalence de (a_1) et (a_3) avait été démontrée par Mott et Schneider [9].

REMARQUE 3. Le Corollaire 1 n'est pas vrai si A n'est pas quasi-compact. Par exemple, dans l'espace de Hilbert $X=L^2[0,1]$, soit A=I+K, où K est l'opérateur $(K\varphi)(t)=\int_0^t \varphi(s)\ ds,\ t\in[0,1]$, qui est compact et $\sigma(K)=\{0\}$. On a $\sigma(A)=\sigma_\pi(A)=\{1\}$, $\operatorname{Ker}(A-I)^2=\operatorname{Ker}(A-I)=\{0\}$, mais les itérés de A ne sont pas uniformément bornés, car l'inégalité $(A^n\varphi)(t)\geq nt$, vraie pour la fonction $\varphi(t)=1$, de norme 1, entraîne $\|A^n\|\geq n/\sqrt{3}$. L'opérateur A n'est pas quasicompact: s'il existait un opérateur compact K' et un entier $p\geq 1$ tels que $\|A^p-K'\|<1$, le fait que les opérateurs compacts forment un idéal dans $\mathscr{L}(X)$ entraînerait que $\|(I+K)^p-K'\|=\|I+K''\|<1$ pour un certain opérateur compact K'', ce qui aurait comme conséquence que K'' est inversible dans $\mathscr{L}(X)$, mais ceci est impossible.

REMARQUE 4. Si $(X, | \cdot|)$ est un espace de Hilbert, on a, d'après (I), le Théorème et le Corollaire 1, que tout opérateur $A \in \mathcal{L}(X)$ quasi-compact, avec r(A) = 1, satisfaisant une des conditions (a), (a_1) , (a_2) , (a_3) , est semblable à une contraction. Ceci généralise un résultat de Sz-Nagy [10, Théorème 3].

COROLLAIRE 2. Soit $(X, | \cdot|)$ un espace de Hilbert de dimension finie, et soit $A \in \mathcal{L}(X)$ tel que r(A) = 1. Si une des conditions $(a), (a_1), (a_2)$ ou (a_3) est satisfaite, alors $\|A\|_0 = 1$ et, pour chaque $\lambda \in \sigma_{\pi}(A)$, son projecteur spectral P_{λ} est orthogonal, par rapport à une certaine norme hilbertienne $|\cdot|_0$.

Il est à noter que, d'après la Remarque 4, dans le contre-exemple de Foguel l'opérateur ne peut pas être quasi-compact.

Pour finir nous suggérons le problème suivant: soit A et B des opérateurs avec r(A) = r(B) = 1, qui commutent. Quelles conditions, sur les spectres de A et B, sont suffisantes pour qu'il existe une norme $|\ |_0$, satisfaisant (i) et (ii), telle que $||A||_0 = ||B||_0 = 1$? On sait déjà [8] que si A et B commutent et r(A) < 1, r(B) < 1, alors il existe une norme $|\ |_0$, satisfaisant (i) et (ii) telle que $||A||_0 < 1$, $||B||_0 < 1$.

RÉFÉRENCES

- 1. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
- 2. N. Dunford et J. Schwartz, Linear Operators I (Interscience, New York, 1964).

360 J. I. NIETO

- 3. S. R. Foguel, A counterexample to a problem of Sz-Nagy, *Proc. Amer. Math. Soc.* **15** (1964), 788–790.
 - 4. S. Goldberg, Unbounded Linear Operators (McGraw-Hill, New York, 1966).
 - 5. P. R. Halmos, A Hilbert Space Problem Book (Van Nostrand, Princeton, 1967).
- 6. P. R. Halmos, On Foguel's answer to Nagy's question, *Proc. Amer. Math. Soc.* 15 (1964), 791–793.
 - 7. H. Heuser, Funktionalanalysis (Teubner, Stuttgart, 1975).
- 8. S. Kurepa, Some properties of the spectral radius on a finite set of operators, *Glasnik Mat.* Ser. III **14**(34), (1979), 283–288.
- 9. J. L. Mott, et H. Schneider, Matrix algebras and groups relatively bounded in norm, *Arch. Math.* **10** (1959), 1–6.
- 10. G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.
- 11. A. E. Taylor, Introduction to Functional Analysis, (Wiley, New York, 1966).

Université de Montréal Département de Mathématiques et de Statistique Montréal, Québec H3C 3J7