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1. Introduction

Any congruence on an orthodox semigroup S induces a partition of the set
E of idempotents of S satisfying certain normality conditions. Meakin (1970) has
characterized those partitions of E which are induced by congruences on S as
well as the largest congruence p and the smallest congruence a on S corres-
ponding to such a partition of E. In this paper a more precise description of p
and a is given.

For an inverse semigroup S, Scheiblich (1974) has used the description of p
and <J corresponding to a given normal partition of £ to characterize the set of
congruences on S which induce this partition of E. The aim of this paper is to
present an analogue of these results for an orthodox semigroup.

2. Preliminary results and definitions

The reader is assumed to be familiar with the basic concepts, definitions,
and terminology of semigroup theory (Clifford and Preston, 1961). Throughout,
unless otherwise specified, S will denote an orthodox semigroup; that is, a
regular semigroup in which the set of idempotents forms a subsemigroup. For
any semigroup S, E(S) will be used to denote the set of idempotents of S. When
there is no danger of ambiguity, E will be used instead of E(S). The set of
inverses of an element a in S will be represented by V(a).

The following lemma will be used frequently in this paper.

LEMMA 2.1 (Reilly and Scheiblich, 1967, Lemma 1.3 and Lemma 1.4). Let S
be an orthodox semigroup. Then

(i) for each a, b E S, if a'EL V(a), b'E V(b), then b'a'E V(ab);
(ii) for each a E S, if a'E V(a), then aEa' CE;
(iii) for each e E E, V(e)C E.
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A subsemigroup H of S will be called self-conjugate if xHx' C H for each
x G S, x'G V(x). This is merely an extension of Howie's (1964) definition of
self-conjugacy for subsemigroups of inverse S.

For any subset G of S, define the closure of G to be*Ga> = {a G S : ga G G
for some g G G}. G will be called closed whenever G = Gu>. In general,
G C Go) does not hold; for example, consider G = {g}. However, if G is a
subsemigroup of 5 then G C Gu>.

3. The lattice of idempotent-separating congruences

Meakin (1971, Theorem 4.4) characterizes /x, the maximum idempotent-
separating congruence on orthodox S, as

H = {(a, fc) G S x S : there are inverses a' of a and ft' of b

for which aea' = beb' and a 'ea = b'eb for each e G E}.

An alternate characterization of ju, will be presented here.
Define the centralizer of E to be C(E) = {x G S : Xfi G E(S/ /J , )} ; that is,

C(E) = {x G S : (x, e) G jLt for some e G E} (Lallement, 1966, Lemma 2.2). One
can readily verify that C(E) is a self-conjugate, regular subsemigroup of S.

THEOREM 3.1. Let T = {(a, b)E S x S : rhere are inverses a' of a and b' of b

for which aa' = bb', a'a = b'b, and ab', a'b G C ( E ) } . Then fi = T.

PROOF. Let (a, b)E./x. Then aa' = bb' and a'a = b'b where a', b' are the
inverses of a, b respectively given in Meakin's characterization of /i (Meakin,
1971, proof of Theorem 4.4). In addition, (ab,bbf), (a'a, a'b) G /x so that ab',
a'bGC(E).

Conversely, let (a, b)E r. Then there are inverses a ' of a and b' of b for

which aa'=bb', a'a = b'b, and ab', a'b G C{E). So, aWb and a"Xb' which
gives ab'Wbb'. Since ab'GC(E), it follows that (ab')y, = (bb')fi. Therefore,
afi = an(a'a)(i = aix(b'b)n = (ab')ij.bfji = (bb')fibii = fe/u,.

The characterization of fi just presented is the analogue for orthodox S of
Howie's (1964, theorem 2.5) characterization of /n as {(a,b)e.SxS:aa~l =
bb'1 and a~xb G C(£)} for inverse S.

LEMMA 3.2. Lef A = {a G S : f/iere is an inverse a' of a for which a'eae =
aa'e and eaea' = ea'a for each e G E). Then C(E) = A.

PROOF. Let a G C(£) so that (a, f) G n for some / G E. Since n CW, there
exists a' G V(a) D Ha such that aa' = a'a = f so that (a' , /) G )tt. Choose e G £.
Then (aea', /e/)G /u and (a'ea,fef)G n which says that aea' = fef and a'ea =
fef. Therefore, a'eae = /e/e = fe = aa'e and eaea' = e/e/ = ef = ea'a.

Conversely, if a & A, then there is an inverse a' of a such that a, a' satisfy
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the equalities in the definition of A for each e G £. Since aa', a'aEE,
aa' = aa'(aa') = a'(aa')a(aa')= a'aaa' = (a'a)a(a'a)a' = (a'a)a'a = a'a.
So, given e G E

aea' = a(a'a)ea' = a{aa'e)a' = a(a'eae)a' = aa'(eaea')

= aa'e(a'a) = aa'eaa'

and

a'ea = a'e(aa')a = a'(ea'a)a = a'(eaea')a = (a'eae)a'a

= aa'e(a'a) = aa'eaa'.

Hence, (a,aa')E ft.
If S is an inverse semigroup, then C(£) = {a G S : ea = ae for each e G £}

which is precisely Howie's (1964) definition of C(E). To see this, let a G S and
let a"' denote the inverse of a in S. If ea = ae for each e & E, then
aa"1 = ( f l f l^ ja^ = (d"'(i(i)(iH = a'\aaa'') = a~'(aa~'a) = a~la. Therefore,
for each e £ £ , a'eae=a~1eea = a1(ea)=a~1ae = aale and eaea~x =
aeea ' = ( a e ) a " 1 = eaa^ = ea'a. On the other hand, if a'eae = aa~'e and
eaea'1 = eala for each e E E, then as in the proof of Lemma 3.2 aa" 1 = a~la.
Hence, ea = e(aa ')a = ( e a " ' a ) a = (eaca" ' ) a = ea(ea'a) = ea(a'ae) =
(eaa~')ae = (aa~!e)ae = a(a *eae) = a(aa~*e) = a(a~la)e = ae.

The following theorem gives a description of the lattice of idempotent-
separating congruences on orthodox S. Define ^ = {K C S : E C K C C(F) and
K is a self-conjugate, regular subsemigroup of S}. Then, clearly, £ and C(E)
belong to %.

THEOREM 3.3. The map K -»• (K) = {(a, b)E S x S : there are inverses a' of a
and b' of b for which aa' = bb', a'a = fc'fe, and ab', a'b E K) is a 1:1 order
preserving map of <€ onto the set of idempotent-separating congruences on S.

PROOF First it will be shown that if K G <€, then (K) is an idempotent-
separating congruence. Since £ C K, it is clear that (K) is a reflexive relation.
Furthermore, K C C(£) implies that (K)Cfi [Theorem 3.1] so that (K) is an
idempotent-separating relation. For (a, b)G (K), let a', b' be the inverses of a, fc
respectively given in the definition of (K). Then, since K is self-conjugate,
ba' = (bb')ba' = a(a'b)a'<= aKa'C K and

b'a = b'a(a'a)= b'(ab')b E b'Kb CK

so that (b,a)E: (K). Hence, (K) is symmetric. Before proceeding with the proof
of this theorem, it is important to note that

(3.4) (a,b)G(K) implies ab*,a*beK for each a* G V(a),b* G V(b).

The verification of this reSult readily follows from the symmetry of (K) and the
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self-conjugacy of K. Suppose now that (a, b), (b,c)£(K). Then there are
inverses a ' of a, b' and b* of b, c* of c such that aa' = bb', a'a = b'b, bb* = cc*,
b*b = c*c. Thus aWbXc so that there exists c 'G V(c)such that aa'= bb' = cc'
and a'a = b'b = c'c. Furthermore, ab', a'b, be', b'c G K [3.4]. Therefore,

ac' = aa'ac' = (ab')(bc')G K and a'c = a'aa'c = (a'b)(b'c)G K.

So, (a, c)G(K). To see that (K) is compatible, let (a, b), (c, d ) G ( K ) . Since
K CC(E), (K)Cfi so that (a, b), (c, d)E. fi. Hence, there are inverses a ' of a, b'
of b, c' of c, a" of d such that the defining conditions of Meakin's characteriza-
tion of IM are satisfied. It then follows that aa'= bb', a'a-b'b, cc'=dd',
c'c = d'd (Meakin, 1971, proof of Theorem 4.4). So, since c'a' ='(ac)' G V(ac)
and d'b' = (bd)'E V(bd) [Lemma 2.2],

(ac)(ac)' = a(cc')a' = a(dd')a' = b(dd')b' = (bd)(bd)',

(ac)'(ac)=c'(a'a)c = c'(b'b)c = d'(b'b)d = (bd)'(bd),

and

(ac)(bd)' = acd'fc' = acd'(b'b)b' = (acd'a')ab' G aKa'KcK,

(ac)'(bd) = c'a'bd = c'a'b(dd')d = (c'a'bc)c'd G c'KcKcK.

Thus, (ac,
Now, if T is an idempotent-separating congruence on S, it will be shown that

there exists an element K in <# such that (K) = T. First, recall that the kernel of x
is defined to be Ker T = {a G S : ar G E(S/T)} or equivalently Ker T =
( d £ S : ( ( i , e ) £ r for some e £ £ ) (Lallement, 1966, Lemma 2.2). Note that this
use of the word kernel differs from that of Clifford and Preston (1961) and that of
Meakin (1970, 1971). Then Ker T is a self-conjugate subsemigroup of S
containing E. Moreover, Ker T is regular. To see this, let a G Ker T SO that
(a, e)G T for some e G E. Choose a ' G V(a). Then a V £ V(ar) = V{er). Since
S is orthodox, S/T must be orthodox so that a ' r £ V(er) implies that a ' r G
E(S/T) implies that a'r G E(S/T) [Lemma 2.1]. Finally, since T is an
idempotent-separating congruence on S, Ker x C C ( £ ) . Therefore, Ker x G ^.
Furthermore, (Ker x) = x. For, if (a, b)E. (Ker x) then there are inverses a ' of a
and b' of b such that aa' = bb', a'a = b'b, and ab', a'b G.Kerx. So, a"Xb and
a"Xb' which gives ab'Wbb'. Hence, ab'G Ker T implies that (ab')r = (bb')r.
Therefore, at = ax(a 'a)x = ax(fc'6)x = (ab')rbT = (bb')Tbr = br. Conversely, if
(a, b)G T, then (a,b)G 5if so that there are inverses a ' of a and b' of b such that
aa'= bb' and a'a = b'b. In addition, (ab',bb'), (a'a, a'b)E.T so that afc',
a'b e. Ker x. Therefore, the given map is onto.

Since the given map is clearly order preserving, it only remains to show that
the map is 1:1. So, let K, L G % with (K) = (L). Choose k G K. Since
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KCC(E), k G C(E) so that (k,e)E fi for some e G E. Since nQ%, there
exists k' G V(fc) fl Hk such that kk' = k'k = e. Now /C is regular, so there exists

k*G V(fc)DK. Then k' = (k'k)k*(kk')& EKE CK. Thus, kWk'k, k(k'k) =
k&K, and k'(k'k)= k'(kk')= k'G K so that (k,k'k)G(K). Since (K) = (L),
(fc, fc'fc) G (L); that is, fc(fc'fc)* G L for each (fc'fc)* G V(fc'fc) [3.4]. In particular,
k(k'k)£L so that k G L. Similarly LcK so that i"C = L.

4. Idempotent-equivalent congruences

Let P = {£„ : a G J} be a partition of E. Then P is a normal partition of £ if
(i) for each a, /3 G / there exists y G J such that EaEp C Ey;
(ii) for each o £ J , a G S, a 'GV(a) there exists /3 G J such that

a£aa' C Ep.
Denote by TTP the equivalence relation on E induced by the normal partition P.
Clearly, if T is a congruence on S, then T induces a normal partition of E. Meakin
(1970, Theorem 2.3 and Theorem 3.3) has determined the smallest and largest
congruences on S whose restriction to E is np. In this section, more precise
characterizations of these congruences will be given.

It will be useful to introduce the following notation. If e, f are two
idempotents of S, then define e ~ / if e,f are in the same class Ea of the normal
partition P.

THEOREM 4.1. Let a = {(a,b)G. S x S : there exist a 'G V(a), b'EV(b);
a, /3, y, S, G / ; and e G Ea, / G £«, g G £„, h G Ey such that aa', bb'aa' G Eo;
a'a, a'ab'bGEp; bb', aa'bb'EEy; b'b, b'ba'a £ £ , ; and ea = b/, ag = Ax6}.
Then a is the smallest congruence on S whose restriction to E is TTP.

PROOF. It is trivial to verify that a is a reflexive, symmetric relation. To see

that a is transitive, let (a,b), (b, c )G<r. Then there exist a ' G V ( a ) , b ' G V(b);

e ~ aa', f ~ b'b, g ~ a'a, h ~ bb' such that aa' ~ bb'aa', a'a ~ a'ab'b, bb' ~
aa'bb', b'b-b'ba'a, ea = bf and ag = hb. And there exist b*GV(fe),
c*G V(c); e~~bb*, f~c*c, g~b*b, h ~ cc* such that bb*~cc*bb*, b*b~
b*bc*c, cc*~bb*cc*, c*c~c*cb*b, eft = c/and bg = he. Thus,

aa'~ bb'aa' = bb*{bb*)bb''aa'~ bb*{cc*bb*)bb'aa'

= (bb*cc*)(bb'aa')~cc*aa'

and

c*c ~ c*d>*fc = c*cb*b(b'b)b'b ~ c*cb*b{b'ba'a)b'b

= {c*cb*b){a'ab'b)~c*ca'a.

Also, (ee)a = ebf = c(ff) where ee ~ bb*(aa')~ bb*bb'aa' = bb'aa' ~ aa'
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and / / ~ {c*c)b'b ~ c*cb*bb'b = c*cb*b ~ c*c. Symmetrically,
cc* ~ aa'cc*a'a ~ a'ac*c, a(gg) = (hh)c where gg ~ a'a, hh ~ cc*.
Therefore, (a, c) G cr.

Suppose next that (a, b)Eo~ and c G S. Then there exist a 'GV(a) ,
ft'G V(b); e ~ aa', f ~ b'b, g ~ a'a, h ~ bb' such that the defining properties of
o-are satisfied. Let c'G V(c). Then c'a'= (ac)'G V(ac) and c'b'=(bc)'E V(bc)
[Lemma 2.1]. So,

(ac)(ac)' = a{a'a)cc'a'~ aa'a{b'bcc')a' = a(a'a)b'bcc'b'b(b'b)cc'a'

~ agb'bcc'b'bfcc'a' = hbb'bcc'b'eacc'a' ~ bb'bb'bcc'b'aa'acc'a'

= bcc'b'acc'a' = (bc)(bc)'(ac)(ac)'

and

(bc)'(bc)=c'(b'b)cc'c ~ c'b'b(a'acc')c = c'{b'ba'a)cc'a'acc'c

-c'b'bcc'a'acc'c = (bc)'(bc)(ac)'(ac).

Also, (bcc'b'eacc'a')ac = be (c'b'bfcc'a'ac) where bcc'b'eacc'a' ~
bcc'b'aa'acc'a' = bcc'b'acc'a' = (be)(be)'(ac)(ac)' ~ (ac)(ac)' and
c'b'bfcc'a'ac ~ c'b'bb'bcc'a'ac = c'b'bcc'a'ac = (bc)'(bc)(ac)'(ac)~~ (bc)'(bc).
Symmetrically, (fcc) (fee)' ~ (ac) (ac )'(fcc) (fee)', (ac )'(ac) ~ (ac )'(ac) (be )'(bc),
and acx = ybc where x, y G £, x ~ (ac)'(ac), y~(bc)(bc)'. Therefore,
(ac,bc)Ecr. The left compatibility of a is similarly established. Thus, CT is a
congruence on S.

It will now be shown that a | £ coincides with TTP. Suppose first that e,
f E. Ea. Then, since e £ V(e), / G V(/), e and / clearly satisfy the defining
properties of a. Hence, (e, /) G cr. Conversely, suppose that e,fE.E for which
(e, f)E cr. Then there exist idempotents g, h such that eg = hf where g ~ e'e,
h ~ff for some e 'G V(e), / ' G V(f). So, e = e(e'e)~eg = hf ~ (ff')f = f.

Lastly, let T be a congruence on S for which T | E = TTP. For (a, b) £ a there
exist a 'GV(a), ft'G V(b); e~aa', f~b'b, g~a'a, h ~ bb' such that the
defining properties of a are satisfied. Consequently, ar = (aa')raT = erar =
(ea)r = (bf)r = brfr = br(b'b)T = br. Hence, cr C T and the proof of the
theorem is completed.

THEOREM 4.2. Lefp = {(a, b)ES x S : there exist a' E V(a),b'E V(b) such
that e G / implies aEea', bEcb'aEca'CEa; a'Eea, a'Etab'Etb CEP; bEtb',
aEta'bEtb'CEy; b'Ecb, b'E,ba'Eea CES for some a,/3,y,8, G / . Then p is the
largest congruence on S whose restriction to E is -rrp.

PROOF. It is obvious that p is a reflexive, symmetric relation. To see that p is
transitive, let (a, b), (b, c)G p. Then there are inverses a' of a, b' of b and b* of
ft, c* of c such that the defining properties of p are satisfied. Let e G / and
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choose e £ Ec. Note that eb', eb* £ V(be) [Lemma 2.1] so that beb'dlbeb* and
b'e, b*e E V(eb) [Lemma 2.1] so that b'eb£b*eb. Thus,

aea'~ beb'aea' = beb*(beb*)beb'aea'~ beb* cec *(beb* beb')aea'

= (beb* cec*) (beb'aea') ~ cec*aea'
and

a'ea ~ a'eab'eb = a'eab'eb(b*eb)b*eb ~ a'ea(b'ebb*eb)c*ecb*eb

= (a'eab'eb)(c*ecb*eb)~ a'eac*ec.

Symmetrically, cec * ~ aea'cec * and c*ec ~ c*eca'ea so that (a, c )£p .
Suppose next that (a, fr)E p and c E S. Then there are inverses a' of a and

b' of b such that the defining properties of p are satisfied. Let c' £ V(c) so that
c'a' = (ac)'E V(ac) and c'b' = (bc)'& V(bc) [Lemma 2.1]. Now let e £ 7 and
choose e £ Er. Then

(ac)e(ac)' = a(cec')a' ~ b(cec')b'a(cec'a)a' =

and

(ac)'e(ac) = c'(a'ea)cc'c ~ c'a'ea(b'ebcc')c = c'(a'eab'eb)cc'b'ebcc'c

~ c'a'eacc'b'ebcc'c = (ac)'e(ac)(fcc)'e(fcc).

Likewise (fcr)e(/>c)'~ (ac)e(ac)'(6c)e(fcc)' and (fcc)'e(fec)-
(frc)'e(bc)(ac)'e(ac) so that p is right compatible. In a similar fashion, one
shows that p is left compatible. Thus, p is a congruence on S.

To see that p | E = TTP, first suppose that e, / £ Ea. Then, since e £ V(e),
/ £ V(f), e and / clearly satisfy the defining properties of p so that (e, /) £ p.
Now let e, / £ E and suppose that (e, /) £ p. Then there are inverses e' of e and
/ ' of / such that the defining properties of p are satisfied. So, e =(ee'e')e ~
(fe 'fee 'e ')e = fe 'f'e = ffj'ffe 'f'e) ~ /(/'/'/) = /•

Lastly, suppose T is a congruence on S for which T\E = TTP. Let (a, ft) £ T.
Choose a ' £ V(a), ft'£ V(fc). Suppose e £ / and let e £ EE. Then (ae, fte)£r
and (ea')r £ V((ae)r), (efc')T e ^ ( ( ^ ) T ) [Lemma 2.1] so that (aea')T0)(ae)T =
(be)T0?(beb')T. Thus, (aea')r = (beb')T(aea')T = (beb'aea')T implying that
aea' ~ beb'aea' and (beb')r = (aea')T(beb')T = (aea'beb')r implying that beb' ~
aea'beb'. Similarly, a'ea ~ a'eab'eb and fe'efc ~ b'eba'ea. Therefore, T C p and
the theorem is proved.

Given the characterizations of a, the smallest congruence on S such that
a | E = vp, and p, the largest congruence on S such that p | E = TTP, it will be
worthwhile to examine cr and p from another viewpoint.

For each a £ / , [Ea]cr E. E(S/cr). Denote this by [Eaja = a. Hence, for
each a E /, Ha is a subgroup of S/cr. Let Ga = (Ha)a '. Then Ga is a
subsemigroup of S with Ea as its set of idempotents.
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LEMMA 4.3. For each a G /, Ga = {a £ S: there exist c £ £ . and a' & V(a)
such that aa'e, ea'a G Ea and eaa' ~ aa', a'ae ~ a'a}.

PROOF Let a e S and suppose that there exist e E Ea, a'e V(a) such that
aa'e, ea'a E Ea; eaa', aa' G £p and a'ae, a'aE.Ey for some j8, -y G/. Now
e(aa')EEaEfi and eaa' 'G£p imply that a/3 =/3 and (aa')e E EpEa and
aa'e G £„ imply that /3a = a which says /3$a. So a<r$t(aa')cr = /35£a. Similarly,

. Hence, acr G f/a or equivalently a G Ga.

For a G Ga, aa G //„. Let « £ £ „ , a'G V(a). Then ecr = a&tao-Sft(aa')a
and eo- = a^£aai£(a'a)o\ It thus follows that (aa'e)cr = ea, (ea'a)a = ecr,
(eaa')<r = (aa')o-, (a'ae)cr = (a'a)a so that a a ' e ~ e , ea'a ~ e, eaa '~aa ' ,
a'ae ~ a'a.

Before proceeding, it is important to consider Ga as it relates to any
congruence T on S for which T | £ = irp.

LEMMA 4.4. Let T be a congruence on S for which r\E = np. Then
(i) a, b G Ga imply aj'Xbj;
(ii) a-r'MeT for some e G Ea implies a G Ga;
(iii) a G Ga implies a(a'r)a G V ( a r ) n Ha for each a ' G V(a) .

PROOF. Suppose a, b G Ga. Then there exist a 'G V(a), b'E. V(4>); e,
f&Ea; and /3, -y, /8, -y G J such that aa'e, ea'a, bb'f, fb'b G £„ ; eaa', a a ' G £ p ;
a'ae, a 'a G Ey; fbb', bb' E E?; b'bf, b'b E £,-. As in the proof of Lemma 4.3, it
follows that fi0ta and /3$a so that /3$/8. Hence, ar$t (aa ')r = /3Ŝ /3 =

r. Similarly, ari?(a 'a)T = yi?y = (b'b)rXbr. Therefore, ar^br.

If arWer for some e G £„, then for any a'G V(a) (aa')T^ar9?eT so that
(aa'e)T = er and (eaa')r = (aa')r implying aa'e ~ e and eaa'~ aa'. Also,
(a'a)rifaTifeT so that (ea'a)r = eT and (a'ae)r = (a'a)r implying ea'a ~ e
and a'ae ~ a'a. Thus, a G Ga [Lemma 4.3].

Finally, if a E Ga then by (i) arSfa. Choose a'G V(a). One can readily
show that a(a'r)a G V(ar). To see that a(a'r)a G %a, first note that (a'a)r E
RaT C\LaT = Rar C\La implies that a(a ' r )G Ra D La T = Rar D La T (Clifford
and Preston, 1961, Lemma 2.17). So, a(a'r)E H{aa>. Therefore, (aa')r G Rar H
LaT = Rar\Liaa^ implies that a(a'r)a E R(aa)r n La = RaT D La = Ra (1 La

(Clifford and Preston, 1961, Lemma 2.17). So, a(a'r)a G Ha.
For any congruence T on 5, recall that the kernel of r is defined to be Ker

T = {a G S : at G E(S/T)} or equivalently Ker T = {a E S : (a, e) E T for some
e G £} (Lallement, 1966, Lemma 2.2). Moreover, Ker T is a self-conjugate,
regular subsemigroup of S containing £ [Proof of Theorem 3.3]. Let M = Ker <x
and N = Ker p. Then M and N are each self-conjugate, regular subsemigroups
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of S containing £. For each a G J, define Ma = {a G S : acr = a} and Na =
{ a £ S : o p = a}. It follows that both Ma and Na are subsemigroups of S
containing £o. In addition, M = U Ma and N = U No. More precise descriptions
of Ma and Na are given in the following proposition.

PROPOSITION 4.5. For each a G J, Ma = {a G Ga : eae = e /or some e G £„} .
Moreover, Ma is closed in Ga; that is, Ma = M»w D Ga.

PROOF. If a G Ga, then a<x G H,, so that eae = e for some e G £„ implies
that acr = aaaa = eaaaea = (eae)cr = ea = a. Hence, a G Ma.

Conversely, for a G Ma acr = a so that a G G,,. Furthermore, acr = a
implies that air = ea for some e G Ea. So, (ea, e) G cr. From the definition of a,
there exist (ea)'G V(ea), e'G V(e); f, g G £ with /~(ea)(ea) ' , g~e'e such
that ee' ~ (ea)(ea)'ee' and /(ea) = (e)g. Thus (egfe)a(egfe) = eg/e with eg/e ~
e(e'e)(ea)(ea)'e = (ea)(ea)'e = [(ea)(ea)'ee']e ~ ee'e = e.

The proof that Ma is closed in Ga is omitted as this readily follows from the
definition of Ma and Maa>.

It should be noted here that, in fact, Ma = Eaw Pi Ga. To see this, first note
that Ea C Ma so that Eaa> f) Ga C Maa) C\ Ga = Ma. On the other hand, for
a G Ma, a G Ga and eae = e for some e G Ea. Thus, eaea = ea so that ea G E.
Since e, a G C , it follows that ea G £„. Hence, a G Eaw D Go.

PROPOSITION 4.6. For each a G 7, N« = {a G Go : EaEpEa C£T implies
aE(,Eaa'Ea, Eaa'EaE^a CEy for each a' G V(a)}. Moreover, Na is closed in Ga;
that is, Na = Na(x) (~1 Ga.

PROOF. First note that Na C Ga; for if a G Na then ap = a so that apiKa.
which implies a G GD [Lemma 4.4 (ii)]. Now suppose that a G No, EaE^Ea CEy,
and a 'GV(a) . Then o(a'p)« = (ap)(«'p)(ap)= ap = «• Thus,
{aEpEaa'Ea)p = (ap)/3[a(a'p)a] = aj3a = y and (Eaa'EaEfia)p =
[a(a'p)a]/3(ap) = a/3a = 7. Consequently, aEpEaa'Ea, Eaa'EaEfia CEy.

Conversely, let a G Ga and suppose that £„£(,£„ C £y implies that
aEpEaa'Ea, Eaa'EaEpaCEy for each a'&V(a). Let /J,SAT be the maximum
idempotent-separating congruence on S/a. Recall that fiS/^ = p/a =
{{aa, ba)GS/a x S/o-: (a, b)G p} (Reilly and Scheiblich, 1967, Theorem 3.4).
Also, since S is orthodox, S/a is orthodox so that /*s/cr =
{(aa, ba)E. S/a x S/a : there are inverses x of acr, y of ba for which ao-(5)x =
Dcr(5)y and x(S)aa = y(S)ba for each 5 G E(S/a)}. It will be shown that if
e G £a then (acr, ea) G /i.s/^. Choose a*GV(a) . Since a G Go, a(a*cr)a G
V(aa) [Lemma 4.4 (iii)]. Then for any S G E(S/a), a8a G E(S/a), say aSa =
y. So, since a G V(o), aaS[a(a*a)a] = aaSa(a*a)a = y = aSa and
[a(a*cr)a]c>acr = a(a*cr)aSacr = y = aSa. Therefore, (acr, a)G /AS/C. If e G £„,
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t h e n (aa, ea)E fis/<, = p/cr o r e q u i v a l e n t l y ( a , e)E p s o t h a t ap = ep = a a n d
aENa.

It is easy to show that Na is closed in Ga and thus the proof is omitted.

5. Kernels of homomorphisms

If P = {Ea : a E J} is a normal partition of E, define 6(P) to be the set of
congruences on S which induce P. Theorem 4.1 and Theorem 4.2 characterize a
and p, the smallest and largest members of 0(P), respectively. Scheiblich (1974)
completely describes 6(P) for inverse S. An analogue of these results for
orthodox S follows.

First define 3V = {K CS : M CK CN, K is a self-conjugate, regular sub-
semigroup of S, and for all a E. J Ka = K (1 Ga is closed in
Ga{Ka = Kaco n Ga)}. Note that both M, Ne 3C.

THEOREM 5.1. The map K-^(K) = {(a, b)E S x S : there exist a'E V(a),
b'E V(b) and a,/3, y, 8 E J such that aa', bb'aa'EEa; a'a, a'ab'bEE^; bb',
aa'bb' £ Ey; b'b, b'ba'a E Ey; and ab', a'b E K} is a 1:1 order preserving map
of X onto 0(P).

The proof of the theorem will proceed as follows. First, it will be shown that
the map

(5.2) K^Ko-a

is a 1 :1 order preserving map of X onto ^si*, the set of self-conjugate, regular
subsemigroups of S/cr between E(S/cr) and C(E(S/cr)). Then, by Theorem 3.3,
the map

(5.3) Kan->(K<Ta)

will be a 1:1 order preserving map of %;,„ onto the lattice of idempotent-
separating congruences on S/a. Next it will be shown that {Ko-a) = (K)/<r so that
the map

(5.4) . K-*(K)/tr

is a 1:1 order preserving map of % onto the lattice of idempotent-separating
congruences on S/cr [5.2 and 5.3]. Since the map

(5.5) (K)^{K)/a

is also a 1 :1 order preserving map of 6{P) onto the lattice of idempotent-
separating congruences on S/cr (Reilly and Scheiblich, 1967, proof of Theorem
3.4), it follows that K-*(K) is a 1:1 order preserving map of jfc onto 0(P) [5.4
and 5.5].
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PROOF First note that M = (E(S/a))aai. In addition, N =
C(£(S/o-))crn ' for a E N iff ap = a for some a G J iff (a, e) E p for some
e £ £ , iff (ao\ ea) G p/<r = /xs;<, for some e & Ea iff a G C(E(S/a)).

Let K G %. Since K is a regular subsemigroup of S such that M CK CN,
Ka^ must be a regular subsemigroup of S/cr for which E(S/cr)CKaa C
C(E(S/a)). TO see that Ko-n is self-conjugate in S/cr, let acr E S/cr and choose
xcr G V(acr). Then (ax)a, (xa)cr G E(S/a) so that ax, xa G M. Hence,
for any /c G K, a'G V(a), a(fc)(xa)a'(ax)E aKMa'M CaKa'K CKK CK and
thus aa(ka)xa = acr(kcr)xcr(acra'cracr)xcr = (akxaa'ax)a E Kcrn. Likewise
xcr(fccr)acr G Ktra so that Kcrn is self-conjugate in S/cr. Therefore, Ka° E Ŝ/CT.

Conversely, if H G <&,„, let K = H<ra '. Clearly, K is a self-conjugate
subsemigroup of S such that M CK CN. To see that K is regular, let k G K and
choose k' G V(fc). Then kcr E H which is regular, so there exists xa G V(fccr) fl
H. Now k'a- = (k'k)axa(kk')(T&E(S/cr)HE(S/a)CH and therefore d ' G K

Finally, for K to be in JK, it is necessary to verify that Ka is closed in Ga. Since
Ka - K D Go is a subsemigroup of K, Ka C Kau so that Ko C Kaco n Ga. On the
other hand, if x G £„&> n GQ then kx E X,, for some k E Ka. Now /c E Ka =
K H G . implies that there exists fc' E V(k) Pi K and a (k 'a)a E V(ka) f~l Ha.
Thus, since Gacr = H,,,

xcr = a(xcr) = [a(fc'cr)a(fca)]xcr = a(k'a)a(kx)(r <E E(S/a) HE{S/cr) H CH

so that x £ K But x £ Ga which gives that x E Ka.
So far it has been shown that K —» KcrD is a map of X onto ^s/w. Since this

map is clearly order preserving, it only remains to show that the map is 1 :1 . So,
let K , L G f with Kaa = Lan. Choose IcEK. Then k E Ka = K f~l Ga for some
a G J. So, kcr G Kcrc n Ha. Since Kcr" = Lcr°, leer = Icr for some I E L. Then
(cr = ka G Ha so that 1 E L n G. = L« and thus for each
l 'EV(l)«( l ' f f ) ( ieV(l(r)nH, [Lemma 4.4 (hi)]. Let e G Ea. Then
(el'ek)a = a(l'a)aka = a(l'a)ala = a so that el'ekE.Ma. Therefore,
/e/'efc E LQMa CLa and (lel'e)a — la(al'aa)= a so that /e/'e G Ma CLa giving
that k G LaQ). Since fc E Ka = X n Ga, k E L<,o> n G a = L . C L In a similar
fashion, L C K. Thus X = L.

By virtue of the comments on the proof of this theorem, it only remains to
show that (Kaa) = (K)/a for each K E 3f in order to complete the proof of this
theorem. So, let K E l For (aa, ba)G (KcrD), (aa, ba)E Wsla and aa{ba)',
(aa)'baEKan for each (ba)'<E V(ba), (aa)' E V(aa) [Theorem 3.3]. Let
a'eV(a), b'EV(b). Then (aa')a®aa&ba®(bb')a so that (aa')a =
(bb')a(aa')a = (bb'aa')a implying that aa'~bb'aa' and (bb')a =
(aa')a(bb')a = (aa'bb')a implying that bb'~ aa'bb'. Likewise
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{a'a)a^a(T^b(T^(b'b)a so that a'a ~ a'ab'b and b'b ~ b'ba'a. Also (ab')a =
aab'a; (a'b)a = a'crba E Kaa so that ab', a'bEK. Therefore, (a, b)E(K) or
equivalently (acr, bcr) £ (K)/cr.

Conversely, if (acr, bcr) G (K)/cr, then (a, b) G (/C) so that there are inverses
a' of a and 6' of /> such that aa' ~ bb'aa', a'a ~ a'ab'b, bb' ~ aa'bb',
b'b ~ b'ba'a, and afe', a'bEK. One can easily verify that a a ' ~ bb'aa',

bb'~ aa'bb' imply aafflbcr and a ' a ~ a'ab'b, b'b ~ b'ba'a imply aa^ba. Thus,

aaXba. Let a'G V(a). Then a'cr E V(aa) so that aaWba implies the existence
of ycr G V(bcr) D Ha „. So, acra'cr = bcrycr and a'cracr = ycrbcr. Furthermore,
a'crbcr = (a'b)cr G Kaa and acrya = acr{a'a)crtcr = a<r(a'ab'b)crycr =
(aa')<r(ab')cr(by)(T G E(S/(r)KcraE(S/<T)C K<ra. Therefore, (aa,ba)E (Kan).

Many thanks are due to H. E. Scheiblich who has supervised the author in
her research for this paper. Thanks also to the referee for his suggestions
regarding the proof of Theorem 3.1.
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