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On the Dihedral Main Conjectures of
Iwasawa Theory for Hilbert Modular
Eigenforms

Jeanine Van Order

Abstract. We construct a bipartite Euler system in the sense of Howard for Hilbert modular eigenforms

of parallel weight two over totally real fields, generalizing works of Bertolini–Darmon, Longo, Nekovar,

Pollack–Weston, and others. The construction has direct applications to Iwasawa’s main conjectures.

For instance, it implies in many cases one divisibility of the associated dihedral or anticyclotomic main

conjecture, at the same time reducing the other divisibility to a certain nonvanishing criterion for

the associated p-adic L-functions. It also has applications to cyclotomic main conjectures for Hilbert

modular forms over CM fields via the technique of Skinner and Urban.

1 Introduction

Let F be a totally real field of degree d, and fix a prime p ⊂ OF with underlying

rational prime p. Let f ∈ S2(N) be a cuspidal Hilbert modular eigenform of parallel

weight 2, level N ⊂ OF , and trival character. Assume that f is p-ordinary, in the sense

that its Tp-eigenvalue is a p-adic unit with respect to any fixed embedding Q→ Qp.

Assume as well that ordp(N) = 1, with f being either new of level N, or else arising

from a newform of level N/p. Let us always view f is a p-adic modular form via a

fixed embedding Q → Qp, writing O0 to denote the Zp-subalgebra of Qp generated

by the Fourier coefficients of f, O the integral closure of O0 in its field of fractions L,

and P the maximal ideal of O. We assume for simplicity that P is contained in O0.

Fix a totally imaginary quadratic extension K of F, with relative discriminant prime

to N. The choice of K then determines the following factorization of N in OF :

N = pN+N−,(1.1)

where N+ is divisible only by primes that split in K, and N− is divisible only by

primes that remain inert in K. Assume that N− is the squarefree product of a num-

ber of primes congruent to d mod 2. In this setting, the root number of the Rankin–

Selberg L-function L(f,K, s) at its central value s = 1 is equal to 1. Moreover, the

central value (as well as those of the associated twists by ring class characters) can

be described by the toric integral formula of Waldspurger [67], as generalized for

instance by Yuan–Zhang–Zhang [70]. Ultimately, this formula can be used to study
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the arithmetic behaviour of f in the dihedral or anticyclotomic Zδ
p-extension Kp∞ of

K, where δ denotes the index [Fp : Qp]. That is, let Gp∞ denote the Galois group

Gal(Kp∞/K), with Λ = O[[Gp∞]] the associated O-Iwasawa algebra. Using these

toric integral formulae, as well as the class field theoretic description of Gp∞ , there is

a natural construction of the associated p-adic L-function Lp(f,Kp∞) ∈ Λ, as shown

in the prequel paper [62] (following the constructions of Bertolini–Darmon [2, 3]).

In particular, in addition to satisfying the usual interpolation property, this p-adic L-

function is nontrivial thanks to the nonvanishing theorem of Cornut and Vatsal [16,

Theorem 1.4]. The main purpose of this paper is to use this construction to prove

the one divisibility of the associated dihedral or anticyclotomic main conjecture, as

well as to outline some applications beyond this. To be more precise, let Sel(f,Kp∞)

denote the P∞-Selmer group of f in Kp∞/K, with X(f,Kp∞) its Pontryagin dual.

The Iwasawa main conjecture in this setting predicts that X(f,Kp∞) is a torsion Λ

module, and moreover that there is an equality of principal ideals (Lp(f,Kp∞)) =

(charΛ(X(f,Kp∞))) in Λ. Here, charΛ(X(f,Kp∞)) is the Λ-characteristic power series

of X(f,Kp∞), which exists (by the structure theorem of [6]) as X(f,Kp∞) is Λ-torsion.

We show the following results towards this conjecture. Let us first impose the follow-

ing hypotheses, writing ρf : GF → GL2(O) to denote the P-adic Galois representation

associated with f by the construction of Carayol [10], Taylor [60], and Wiles [69] (see

Theorem 4.1). Here, GF denotes the Galois group Gal(Q/F).

Hypothesis 1.1 (i) The prime p is odd.

(ii) The prime p ⊂ OF is the unique prime above p in Kp∞ .
(iii) The eigenform f ∈ S2(N) is p-ordinary.

(iv) The Galois representation ρf is residually irreducible.

(v) The image of the residual Galois representation ρf contains SL2(Fp).

(vi) The degree d is either odd, or else even with the condition that N− 6= OF .

Remark Thanks to Dimitrov [19, Proposition 0.1], we have the following generaliza-

tions of the relevant results of Serre [55] and Ribet [54]: (i) for all but finitely many

rational primes p, the Galois representation ρf is residually irreducible ([19, Propo-

sition 3.1]), and (ii) for all but finitely many rational primes p, there exists some

power q = pa of p such that the image of the residual Galois representation ρf con-

tains SL2(Fq) ([17, Proposition 3.8]). Thus, Hypotheses 1.1(iv) and (v) are not pro-

hibitively strong.

Theorem 1.2 (Proposition 7.6, Corollary 7.7) Let f ∈ S2(N) be a cupsidal Hilbert

eigenform as above, with N ⊂ OF having the factorization (1.1), and with the conditions

of Hypothesis 1.1. Assume also that the following standard hypotheses hold:

(A) The totally real field F is linearly disjoint from the cyclotomic field Q(ζp).

(B) The Galois representation ρf satisfies a certain multiplicity one condition: Hypoth-

esis 11.6.

(C) A variant of Ihara’s lemma for Shimura curves holds: Hypothesis 11.13.

Then, X(f,Kp∞) is Λ-torsion, and there is an inclusion of ideals

(
Lp(f,Kp∞)

)
⊆

(
charΛ(X(f,Kp∞))

)
in Λ.(1.2)
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Remark on hypotheses. We refer the reader to the statements of Hypotheses 11.6

and 11.13 below for more details. We state them here in this form not only for sim-

plicity of exposition, but also because they are at present works in progress by others

(see for instance [12,13]). Condition (A) is used to prove a level raising at two primes

result; see Proposition 11.10. Condition (B) is a standard hypothesis (cf. [50, Propo-

sition 6.3]) that is crucial to our arguments. It is proved with our hypotheses on ρf

given above granted that p is unramified in F by Cheng in [12]. Condition (C) is

also treated by Cheng in [13], assuming that the level N is sufficiently large, and that

p > d. It is likely that these latter two technical hypotheses can be loosened.

Remark on µ-invariants. We can also deduce one divisibility in the µ-part of the

main conjecture from (1.2) , following the characterization of the µ-invariant as-

sociated with Lp(f,Kp∞) in the author’s previous work (see [62, Theorem 4.10]).

Roughly, following the approach of Vatsal [63], we find that µ(Lp(f,Kp∞)) = 2ν,

where ν = νf is the largest integer such that f is congruent to a constant mod Pν .

Following the line of argument of Pollack–Weston [50, §2.3], the hypothesis that ρf

be residually irreducible should indicate that µ(Lp(f,Kp∞)) = 0, and hence via (1.2)

that µ(Lp(f,Kp∞)) = µ(charΛ(X(f,Kp∞))) = 0. We hope to take up a more detailed

study of this interesting and subtle issue in a later work, perhaps in the context of

Euler characteristic computations (cf. [61]).

The strategy of the proof is to generalize the refined Euler system method of

Pollack–Weston [50] (following Bertolini–Darmon [3]) to the setting of totally real

fields. In doing so, we construct a bipartite Euler system in the sense of Howard

[29, Definition 2.3.2]. In particular, we obtain from [29, Theorem 3.2.3] the follow-

ing criterion for equality in (1.2), as explained in [62, §5]. Let us now assume for

simplicity that N is prime to the relative discriminant of K over F. Fix a positive

integer k. Define a set of admissible primes Lk of F, each being inert in K, by the con-

dition that for any ideal n ⊂ OF in the set Sk of squarefree products of primes in Lk,

there exists a nontrivial eigenform f(n) of level nN such that the following congruence

on Hecke eigenvalues holds:

f(n) ≡ f mod Pk.

Let S+
k ⊂ Sk denote the subset of ideals n ∈ Sk for which ωK/F(nN) = −1,

where ωK/F denotes the quadratic Hecke character associated with K/F. Equiva-

lently, S+
k ∈ Sk denotes the subset of ideals n ∈ Sk for which the root number of

the L(f,K, s) is equal to +1. Note that by our hypotheses of N, this set S+
k includes

the trivial ideal n = OF . Let S−
k ⊂ Sk denote the subset of ideals n ∈ Sk for which

ωK/F(nN) = +1, equivalently for which the root number of L(f,K, s) is equal to −1.

Given an ideal n ∈ S+
k , there is an associated p-adic L-function Lp(f(n),Kp∞) in Λ.

As explained below, Lp(f(n),Kp∞) = Lf(n)L∗
f(n) , where Lf(n) ∈ Λ is a completed group

ring element constructed in a natural way from f(n), and L∗
f(n) is the image of Lf(n)

under the involution Λ → Λ sending σ to σ−1 in Gp∞ . Let us write λn to denote

this completed group ring element Lf(n) , which is only well defined up to multiplica-

tion by elements of Gp∞ . Given an ideal n ∈ S−
k , there is an associated collection of

CM points of p-power conductor on the quaternionic Shimura curve M(N+, vnN−),
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where v is a k-admissible prime with respect to f, as we explain in §§7− 11 below. As

we also explain below, these points can be used to construct classes in the cohomol-

ogy group H1(Kp∞ ,Tf,k), which we denote here by κn (i.e., so that κvn = ζ(n) in our

notations below). We refer the reader to the discussion below, as well as to Section

4, for a definition of the Galois module Tf,k. Anyhow, we construct for each integer

k ≥ 1 a pair of families

{λn ∈ Λ/Pk
Λ : n ∈ S+

k } and {κn ∈ Ĥ1(Kp∞ ,Tf,k) : n ∈ S−
k }(1.3)

which, as k varies, are compatible with respect to the inclusion Sk+1 ⊂ Sk, as well as

with respect to the natural maps Tf,k+1 → Tf,k and Λ/Pk+1 → Λ/Pk. We show here

that these classes satisfy the first and second explicit reciprocity laws.

The first explicit reciprocity law (Theorem 13.1). For any vn ∈ S−
k with v a prime,

there is an isomorphism of Λ-modules

Ĥ1
sing(Kp∞,v,Tf,k) ∼= Λ/Pk

Λ

sending locv(κvn) to λn, where where locv denotes the localization map at v.

The second explicit reciprocity law (Theorem 13.2). For any vn ∈ S+
k , there is an

isomorphism of Λ-modules

Ĥ1
unr(Kp∞,v,Tf,k) ∼= Λ/Pk

Λ

sending locv(κn) to λvn, where locv denotes the localization map at v.

Now, since the empty product lies in Sk for each integer k ≥ 1, we can construct

a distinguished element

{
λ∞ ∈ Λ if ωK/F(N−) = −1,

κ∞ ∈ S(f/Kp∞) if ωK/F(N−) = +1,

by taking the inverse limit of λ1 or κ1 as k varies. Here, S(f/Kp∞) denotes the com-

pactified Selmer group of f over Kp∞ . Note that while the element κ∞ has been

studied independently by Howard in [30], it can also be recovered directly from the

construction given below. Note as well that by the nonvanishing theorems of Cornut

and Vastal [16], neither of these distinguished elements vanishes. Hence, we deduce

that the pair of families (1.3) defines a nontrivial bipartite Euler system in the sense

of Howard [29, Definition 2.3.2]. In particular, via Howard’s theory of bipartite Eu-

ler systems, we obtain the following result. Here, given any eigenform f ∈ S2(N)

with N ⊂ OF having the factorization (1.1), we assume Hypothesis 1.1 along with

the hypotheses (A), (B), and (C) of Theorem 1.2.

Theorem 1.3 Let X(f,Kp∞)tors denote the Λ-torsion submodule of X(f,Kp∞).

(i) We have the following rank formula:

rankΛ S(f/Kp∞) = rankΛ X(f,Kp∞) =

{
0 if ωK/F(N−) = −1,

1 if ωK/F(N−) = +1.
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(ii) For each height one prime Q of Λ,

ordQ

(
charΛ(X(f,Kp∞)tors)

)

≤ 2×

{
ordQ(λ∞) if ωK/F(N−) = −1

ordQ

(
charΛ(S(f/Kp∞)/Λκ∞)

)
if ωK/F(N−) = +1.

(iii) Equality in (ii) holds if the following condition is satisfied: there exists an integer

k0 such that for all integers k ≥ k0, the set

{λn ∈ Λ/Pk
Λ : n ∈ S+

k }

contains at least one element with nontrivial image in Λ/(Q,Pk0 ). In particular,

equality in (ii) holds if one of the elements λn is a unit in Λ.

Proof The result follows from Howard’s proof of [29, Theorem 3.2.3], which carries

over to this setting with minor changes. See also the discussion in [30]. We sketch

the deduction for lack of better reference. First, note that the general theory of Eu-

ler systems over Artinian ring developed in Howard [29, §2] applies to this setting.

In particular, [29, Proposition 3.3.1] (cf. [44, Lemma 5.3.13]) and [29, Proposition

3.3.3] carry over to this setting. The result of [29, Lemma 3.3.2] is also standard here;

see, for instance, [28, Theorem 7.1], using the basic fact that A(Kp∞)p∞ ⊂ A(Kp∞)tors

is finite for any abelian variety A defined over Kp∞ , in particular for the abelian vari-

ety Af associated with f in Proposition 4.2. The proof of [29, Theorem 3.2.3(c)] can

then be given by the argument of [29, § 3.4], with minor modifications, following

[30, §3.3]. That is, fix a height one prime ideal Q of Λ. Fix a sequence of specializa-

tions φi : Λ → S, in the sense of [30, Definition 3.2.5]. Suppose that this sequence

converges to Q, following [30, Definition 3.3.3]. Note that such a sequence always

exists by [30, Proposition 3.3.3.]. The argument of [29, §3.4 p. 21] can then be mod-

ified by taking tensors ⊗ΛS as done in [30, §3.4] to obtain the analogous result of

[29, Theorem 3.2.3] in this setting.

Combined, Theorems 1.2 and 1.3 imply following criterion for equality in (1.2).

Corollary 1.4 Suppose that for each height one prime ideal Q of Λ, there exists a

positive integer k0 such that for each integer k ≥ k0, the set S+
k contains an ideal n

for which the image of the associated completed group ring element λn in the quotient

Λ/(Q,Pk0 ) is not trivial. Then, there is an equality of ideals in (1.2); i.e., the full

dihedral (or anticyclotomic) main conjecture of Iwasawa theory holds:

(1.4)
(
Lp(f,Kp∞)

)
=

(
charΛ(X(f,Kp∞))

)
in Λ.

In particular, if one of the completed group ring elements λn is a unit in Λ, then the full

main conjecture equality (1.4) holds.

Some further remarks are in order at this point. The result of Theorem 1.2 has

many antecendents in the literature, among them the original work of Bertolini–

Darmon [3], as well as subsequent generalizations to totally real fields by Longo [41–
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43], Fouquet [23], and Nekovar [49]. The main novelty here is that we remove the

restrictive p-isolatedness hypotheses found in these works of Bertolini–Darmon and

Longo, following the approach of Pollack–Weston [50]. This innovation is not merely

technical, as it allows us to invoke the theory of bipartite Euler systems due to Howard

[29] to both reduce the other divisibility of the main conjecture to a nonvanishing

criterion for p-adic L-functions, as well as to treat both definite and indefinite cases

on the root number simultaneously. Perhaps more intriguingly, Theorem 1.2 above

can also be combined with techniques of Skinner–Urban [57] to give a new proof of

the associated cyclotomic main conjecture, which previously had only been accessible

by the Euler system method of Kato [36]. Moreover, it seems that the techniques

of Skinner-Urban [57] extend to the more general setting of totally real fields (by

work in progress of [68]), in which case the result of Theorem 1.2 would allow one

to deduce the associated cyclotomic main conjecture for totally real fields, which at

present is not accessible even by the method of Kato’s Euler system.

Application to modular abelian varieties. We obtain the following consequence for

modular abelian varieties. Let A be an abelian variety over F of arithmetic conductor

N ⊂ OF . Given any integer n ≥ 1 and any Galois extension L over F with P | p

a prime above p in L, we can associate with A a residual Selmer group SelPn (A/L),
defined by its inclusion in the exact sequence

0 −→ SelPn (A/L) −→ H1(L,A[Pn]) −→
⊕

v

H1(Lv,A[Pn])/im(Kv).

Here, the sum runs over all primes v ⊂ OL, and

Kv : A(Lv)/PnA(Lv) −→ H1(Lv,A[Pn])

denotes the local Kummer map at v. Now, an abelian variety A/F is said to be of

GL2-type if the endomorphism algebra End(A) ⊗Z Q contains a number field L of

degree equal to dim(A). An abelian variety A defined over F of GL2-type is said to be

modular if there exists a Hilbert modular eigenform f ∈ S2(N) such that the Galois

representation

ρA,λ : GF −→ GL2(OL) ∼= Aut (Taλ (A))

associated with the λ-adic Tate module Taλ(A) of A is equivalent to the Galois repre-

sentation

ρf,λ : GF −→ GL2(OL)

associated with f by the construction of Carayol [10], Taylor [60], and Wiles [69]

(Theorem 4.1) for any prime λ ⊂ OL, where OL contains all of the Fourier coeffi-

cients of f. One can make analogous definitions for the unramified and ordinary lo-

cal cohomology groups H1
unr(Kv,A[Pn]) ⊂ H1(Kv,A[Pn]) and H1

ord(Kv,A[Pn]) ⊂
H1(Kv,A[Pn]) as given below for Hilbert modular eigenforms. See for instance the

discussion in [42, §4]. Rather than give them here, let us just state the following

characterization.
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Proposition 1.5 If A/F is a modular abelian variety associated with an eigenform

f ∈ S2(N) as above, then we have the following description of im(Kv):

(i) im(Kv) = H1
unr(Lv,Af,n) if v ∤ N ⊂ OF ;

(ii) im(Kv) = H1
ord(Lv,Af,n) if v = p ⊂ OF .

Here, Af,n is the mod Pn Galois representation arising from the abelian variety Af asso-

ciated with f, as defined in Section 4.

Proof The result is well known; see for instance [14] or [42, §4.1].

Let

SelP∞(A/Kp∞) = lim
−→

n

SelPn (A/Kp∞),

where the limit is taken with respect to the natural maps A[Pn] → A[Pn+1]. Let

X(A/Kp∞) = Hom
(
SelP∞(A/Kp∞),Qp/Zp

)
. By Proposition 1.5, we can identify

SelP∞(A/Kp∞) = Sel(f,Kp∞) to obtain the following result.

Corollary 1.6 Let A/F be a modular abelian variety. If the eigenform f associated with

A satisfies all of the conditions of Theorem 1.2, then the dual Selmer group X(A/Kp∞)

is Λ-torsion, and there is an inclusion of ideals
(
Lp(f,Kp∞)

)
⊆

(
charΛ X(A/Kp∞)

)
in Λ.

Note as well that the analogous formulations of Theorem 1.3 and Corollary 1.4

carry over to the setting of modular abelian varieties. Now, consider the short exact

descent sequence

(1.5) 0 −→ A(Kp∞)⊗Qp/Zp −→ SelP∞(A/Kp∞) −→X(A/Kp∞)[P∞] −→ 0.

Here, X(A/Kp∞)[P∞] denotes the P-primary part of the Tate–Shafarevich group

X(A/Kp∞) of A over Kp∞ .

Corollary 1.7 Let A/F be a modular abelian variety. If the eigenform f associated

with A satisfies all of the conditions of Theorem 1.2, then for ρ any finite order character

of Gp∞ for which the specialization ρ−1
(
Lp(f,Kp∞)

)
does not vanish, the components

A(Kp∞)ρ, SelP∞(f,Kp∞)ρ, and X(A/Kp∞)[P∞]ρ are finite.

Proof This is a direct consequence of Corollary 1.6 applied to (1.5).

Note that by the nonvanishing theorem of Cornut–Vatsal [16, Theorem 1.4], the

nonvanishing hypothesis of Corollary 1.7 is satisfied for all but finitely many finite

order characters ρ of Gp∞ , as can be deduced as can be deduced from the algebraicity

theorem of Shimura [56].

Notations. We write AF to denote the adeles of F, with A = AQ, and A f the finite

adeles of Q. We shall sometimes write F̂× to denote the finite adeles of F. Given

a finite prime v of F, we fix a uniformizer ̟v of Fv. We let κv denote the residue

fields of Fv at v, with q = qv its cardinality, which is not to be confused with the

cohomology class constructed in (12.1). Throughout we write O0 to denote the Zp-

algebra generated by the images of the Fourier coefficients of f, and O the integral

closure of O0 in its fraction field L. We let P denote the maximal ideal of O, and for

each integer n ≥ 1 put Pn = Pn ∩ O0.
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2 Automorphic Forms

Hilbert modular forms. Given an ideal N ⊂ OF , let S2(N) denote the space of cus-

pidal Hilbert modular forms of parallel weight 2, level N, and trivial character. The

space S2(N) comes equipped with the action of standard (classically or adelically de-

fined) operators Tv for each prime v ∤ N ⊂ OF and Uv for each prime v | N ⊂ OF .

Let T(N) denote the Z-algebra generated by these operators. Given a Hilbert mod-

ular form f ∈ S2(N), let am(f) denote the normalized Fourier coefficient of f at an

ideal m of F. We refer to [24–26] for precise definitions and further background.

Definition 2.1 A Hilbert modular form f ∈ S2(N) is said to be a normalized eigen-

form if it is a simultaneous eigenvector for all of the Hecke operators Tv and Uv, with

Tvf = av(f) · f if v ∤ N, Uvf = av(f) · f if v | N, and aOF
(f) = 1.

Definition 2.2 A normalized eigenform f ∈ S2(N) is said to be a newform if there

does not exist a form g ∈ S2(M) for M | N ⊂ OF an ideal not equal to N such that

an(f) = an(g) for all ideals n ⊂ OF prime to N. Given a prime q | N, we say that

f ∈ S2(N) is new at q if it does not arise from another form g ∈ S2(N/q) in this way.

In general, given a normalized eigenform f ∈ S2(N), we fix a factorization N =

N+N− such that f is new at all primes dividing N−. We then write S2(N+,N−) to

denote the space of Hilbert modular cusp forms of parallel weight 2 and level N that

are new at all primes dividing N−, with T(N+,N−) the corresponding algebra of

Hecke operators. Finally, let us also make the following definition.

Definition 2.3 An eigenform f ∈ S2(N) is p-ordinary if its Tp-eigenvalue ap(f) is a

p-adic unit with respect to any fixed embedding Q→ Qp. In this case, if p ∤ N, then

there exists a p-adic unit root αp(f) to the polynomial

x2 − ap(f)x + q,(2.1)

where q denotes the cardinality of the residue field at p.

In what follows, let us always view f ∈ S2(N) as a p-adic modular form via a

fixed embedding Q → Qp. Let O0 denote the Zp-subalgebra of Qp generated by the

Fourier coefficients of f, let O denote the integral closure of O0 in its field of fractions

L, and let P denote the maximal ideal of O.

The Jacquet–Langlands correspondence. Let B denote a quaternion algebra defined

over F, with Ram(B) the set of places of F where B is ramified. The theorem of Jacquet

and Langlands [32] establishes a bijection from the space of automorphic representa-

tions of (B⊗AF)× of dimension greater than 1 to the space of cuspidal automorphic

representations of GL2(AF) that are discrete series (i.e., square integrable) at each

place v ∈ Ram(B). This injection being a bijection on its image, we obtain the fol-

lowing more concrete result. Fix a compact open subgroup H ⊂ B̂×. Let S2(H,B)

denote the space of automorphic forms of weight 2 and level H on B (to be defined

precisely later), with the additional assumption that the forms are cuspidal if B is

an indefinite quaternion algebra. The space S2(H,B) comes equipped with actions
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of standard Hecke operators at each prime v ⊂ OF (to be defined precisely later).

Let T(H,B) denote the Z-algebra generated by these operators. Suppose that the

discriminant disc(B) of B is equal to some ideal N− ⊂ OF , and that the level of H

is equal to some ideal N+ ⊂ OF . Let us then write S2(N+,N−) = S2(H,B) with

T(N+,N−) = T(H,B). The correspondence of Jacquet and Langlands then estab-

lishes an isomorphism of Hecke modules S2(N+,N−) ∼= S2(N+,N−).

Automorphic forms on totally definite quaternion algebras. Let O be any ring. Let

D be any totally definite quaternion algebra defined over F. Fix a compact open

subgroup U ⊂ D̂×. Let S2(U ;O) = S2(U ,D;O) denote the space of O-valued auto-

morphic forms of weight 2 and level U on D, i.e., the space of functions

Φ : D×\D̂×/U −→ O

such that Φ(dgu) = Φ(g) for all d ∈ D×, g ∈ D̂×, and u ∈ U . Let S2(U ;O)triv ⊂
S(U ;O) denote the subspace of functions that factor through the adelization of the

reducted norm homomorphism, nrd : D̂× → F×.

Definition 2.4 Let S2(U ;O) = S2(U ;O)/S2(U ;O)triv. Functions in this space are

called O-valued modular forms of weight 2 and level U on D.

The space S(U ;O) comes equipped with actions of Hecke operators, defined via

double coset operators as follows. Given two compact open subgroups U ,U ′ ⊂ D̂×

and an element g ∈ D̂×, the group gU g−1 is commensurable with U ′. Fixing a

decomposition of U ′ into a disjoint union of cosets
∐

i αi(U
′ ∩ gU g−1) gives an

identification U ′gU =
∐

i giU , where gi = αig. The associated double coset operator

[U ′gU ] is then given by the linear map

[U ′gU ] : S2(U ;O) −→ S2(U ′;O),
(
[U ′gU ]Φ

)
(x) =

∑

i

Φ(xgi).

Definition 2.5 Fix a compact open subgroup U ⊂ D̂×. Fix a finite set of places

S ⊃ Ram(D) of F such that U admits a decomposition US × U S. The Hecke al-

gebra TS(U ) = TS(U ,B) is the (commutative) subring of Z[U\D̂×/U ] generated

by double coset operators [U gU ] with g ∈ (D̂S)×. It is isomorphic as a ring to

Z[Tw, Sw, S−1
w : w /∈ S], where Tw and Sw are the standard Hecke operators Tw =

[UηwU ] and Sw = [U̟wU ].

Fix a prime v /∈ S of F. Hence, D is split at v, and we may fix an isomorphism Dv
∼=

M2(Fv). Let us assume additionally that this isomorphism sends the component Uv

to GL2(OFv
). In what follows, we shall make the identification Uv

∼= GL2(OFv
) im-

plicitly. Let U (v) ⊂ U be the subgroup defined by

U (v) =

{
u ∈ U : uv ≡

(
∗ ∗
0 ∗

)
mod ̟v

}
.
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We have a pair of natural degeneracy maps

α∗
= [U (v)1U ] : S2(U ;O) −→ S2(U (v);O), (α∗

Φ)(g) = Φ(g)

β∗
= [U (v)ηvU ] : S2(U ;O) −→ S2(U (v);O), (β∗

Φ)(g) = Φ(gηv),

as well as a pair of associated trace maps

α∗ = [U 1U (v)] : S2(U (v);O) −→ S2(U ;O)

β∗ = [UηvU (v)] : S2(U (v);O) −→ S2(U ;O).

These degeneracy and trace maps commute with the actions of Hecke operators Tw

(for w /∈ Ram(D) ∪ {v}) on S2(U ;O) and S2(U (v);O), as well as with the action by

the centre of D
×

.

Definition 2.6 The v-new susbspace of S2(U (v);O) is the subspace defined by

S2

(
U (v);O

) v-new
= ker

(
S2

(
U (v);O

) α∗,β∗
−−−−→ S2(U ;O)⊕2

)
.

This subspace is stable under the actions of Hecke operators Tw (for w /∈ Ram(D) ∪
{v}), as well as under the action of the centre of D̂×.

Shimura curves. Fix a place τ1 in the set of archimedean places {τ1, . . . , τd} of F. Let

B be any quaternion algebra over F that is split at τ1 and ramified at the remaining

set of real places {τ2, . . . , τd}. Let X = C − R, which is two copies of the Poincaré

upper-half plane. The group B× ⊂ B×
τ1

∼= GL2(R) acts naturally on X via fractional

linear transformation. Let H ⊂ B̂× be any compact open subgroup. The diagonal

left action of B× on B̂×/H × X defines a Riemann surface

MH(C) = MH(B,X)(C) = B×\B̂× × X/H.(2.2)

Shimura proved that the curve MH(C) has a canonical model defined over the totally

real field F. We adopt the standard convention of writing MH to denote this model,

whose complex points are identified with the Riemann surface MH(C). The curve

MH is irreducible, but not necessarily geometrically irreducible. Indeed, by strong

approximation and the theorem of the norm, the reduced norm homomorphism

nrd : B −→ F is seen to induce a bijection of finite sets

π0 (MH(C)) ∼= F×
+ \F̂

×/nrd(H),

as explained, for instance, in [9, § 1.2].

We have the following description of Hecke operators acting on MH . Given g ∈
B̂×, fix a pair of compact open subgroups H,H ′ ⊂ B̂× such that g−1Hg ⊂ H ′.

Multiplication on the right by g induces natural maps MH(C) → MH ′(C), which

descend to finite flat morphisms MH → MH ′ . We may then define from these maps
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Hecke operators via double coset operators. To be more precise, given a complex

point x = [g, h] ∈ MH(C), the double coset operator [HgH] acts as

[HgH](x) =
∑

i

[xgi , h] ∈ Div(MH(C)),

where HgH =
∐

i giH. The algebra of Hecke operators

TH = EndZ[B̂×]

(
Z[B̂×/H]

)
∼= Z[H\B̂×/H]

has a natural left action on the Jacobian JH of MH . Hence, we also write TH to denote

the subring of End( JH) generated by these Hecke operators.

Automorphic forms on indefinite quaternion algebras. Let us now fix an indefinite

quaternion algebra B as above, ramified at all but but one real place τ1 of F. Let us

also fix a compact open subgroup H ⊂ B̂×. Recall that we let MH(C) denote the

associated complex Shimura curve (2.2), with MH its canonical model defined over F.

Definition 2.7 Let S2(H,B) denote the space of functions Φ : (B⊗AF)× → C such

that

(i) Φ is left B×-invariant;

(ii) Φ is right invariant under R× ×
∏d

i=2 B×
τi
⊂ (B⊗ R)×;

(iii) Φ is right invariant under H;

(iv) for each g ∈ (B⊗ AF)× and θ ∈ R,

Φ

(
g

[(
cos θ − sin θ
sin θ cos θ

)
, 1, . . . , 1

])
= exp(2iθ) · Φ(g);

(v) for each g ∈ (B⊗ AF)×, the function defined by

z = x + i y 7−→ Φ(g, z) :=
1

y
· Φ

(
g

[(
−y x

0 1

)
, 1, . . . , 1

])

is holomorphic on the lower half plane H−.

Note that there is a left action of g ∈ B̂× on S2(H,B) via the rule (g ·Φ)(x) = Φ(xg).

We refer the reader to [16, §3.6] for more details.

Let ΩH denote the sheaf of differentials on the Shimura curve MH , with ΩH(C) its

pullback to MH(C). Hence, ΩH(C) is the sheaf of holomorphic 1-forms on MH(C).

Let Γ(ΩH(C)) denote the global sections of ΩH(C).

Proposition 2.8 There is a B̂×-equivariant bijection of C -vector spaces Γ(ΩH(C)) ∼=
S2(H,B).

Proof The identification is standard; see, for instance, [16, Proposition 3.10].

Let JH denote the Jacobian of MH , with J∗H(0) the complex cotangent space of JH

at 0.
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Corollary 2.9 There is a B̂×-equivariant bijection of C-vector spaces J∗H(0) ∼=
S2(H,B). In particular, there is an identification of the associated Hecke algebras:

TH = T(H,B).

Proof This follows from the (canonical) identification of J∗H(0) with Γ(ΩH(C)).

3 p-adic L-functions

We sketch here the construction of p-adic L-functions given in [62].

The integer factorization. Recall that we fix a prime p ⊂ OF , with p the underlying

rational prime. Fix an integral ideal N0 with ordp(N0) ≤ 1. Let

N =

{
N0 if p | N0

pN0 if p ∤ N0.
(3.1)

Hence, ordp(N) = 1. Fix a totally imaginary quadratic extension K of F, with relative

discriminant prime to N/p. The choice of K then determines a unique factorization

N = pN+N− of N in OF , with v | N+ if and only if v is split in K, and v | N− if and

only if v is inert in K. Let us assume additionally that N− is the squarefree product

of a number of primes congruent to d mod 2. Hence, there exists a totally definite

quaternion algebra D say of discriminant N− defined over F. Observe that D is split

at p by hypothesis. Hence, we can and do fix an isomorphism ιp : Dp
∼= M2(Fp).

Fix a cuspidal Hilbert modular eigenform f ∈ S2(N). Let us assume that f is either

a newform, or else that it arises from a newform of level N/p via the process of

p-stabilization. Fix a compact open subgroup U ⊂ D̂× of level M ⊂ OF prime to

N− (we shall often just take M = pN+), assumed to be maximal at p.

Ring class towers. Given an ideal c ⊂ OF , let Oc = OF + cOK denote the OF-order of

conductor c of K. Let K[c] denote the abelian extension of K characterized by class

field theory via the isomorphism:

K̂×/Ô×
c K×

recK

−−−−→ Gal(K[c]/K).

Here, recK denotes the Artin reciprocity map, normalized to send uniformizers to

geometric Frobenius elements. Write G[c] to denote the Galois group Gal(K[c]/K).

Let K[p∞] =
⋃

n≥0 K[pn] with Galois group G[p∞] = Gal(K[p∞]). Hence, G[p∞]

has the structure of a profinite group, G[p∞] = lim
←−n

G[pn]. It is well known that

the torsion subgroup G[p∞]tors ⊂ G[p∞] is finite, and moreover that the quotient

G[p∞]/G[p∞]tors is topologically isomorphic to Zδ
p, where δ = [Fp : Qp] (see for

instance [16, Corollary 2.2]). Let Gp∞ = G[p∞]/G[p∞]tors denote the Zδ
p quotient

of G[p∞]. Let Kp∞ denote the dihedral or anticyclotomic Zδ
p of K, so that Gp∞ =

Gal(Kp∞/K) ∼= Zδ
p. Given a positive integer n, let Kpn denote the extension of K for

which Gpn = Gal(Kpn/K) ∼=
(

Z/pnZ
)δ

, so that Gp∞ = lim
←−n

Gpn .
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Strong approximation. Fix a set of representatives {xi}
h
i=1 for the modified class

group ClF/F×
p , where ClF denotes the narrow class group

ClF = F×
+ \F̂

×/Ô×
F

of F, with the condition that (xi)p = 1 for each i = 1, . . . h. A standard consequence

of the strong approximation theorem ([66, § III.4, Thm. 4.3]) with the theorem of

the norm ([66, § III.4, Thm. 4.1]) shows that there is a canonical bijection

h∐
i=1

D×ξiD
×
p U

ηp

−→ D̂×.

Here, each ξi is an element of D̂× such that (ξi)p = 1 and nrd(ξi) = xi . For each

i = 1, . . . h, let us then define a subgroup

(3.2) Γi =
{

d ∈ D× : dv ∈ (ξi,v)Uv(ξi,v)−1 for all v ∤ p
}
⊂ D×.

A standard argument shows that these subgroups Γi ⊂ D× embed discretely into

D×
p . Hence, via our fixed isomorphism ιp : D×

p
∼= GL2(Fp), we can and do view these

subgroups as discrete subgroups of GL2(Fp). Now, ηp induces a canonical bijection

(which we also denote by ηp)

h∐
i=1

Γi\D
×
p /Up

ηp

−→ D×\D̂×/U

via the map given on each component by [d] 7→ [ξi · d]. Hence, we can view each

modular form Φ ∈ S2(H;O) = SD
2 (H;O) as an h-tuple of functions (φi)h

i=1 on

GL2(Fp) such that φi(γduz) = φi(d) for each i = 1, . . . , h, with γ ∈ Γi , d ∈ D×
p ,

u ∈ Up, and z ∈ F̂×
p . A simple argument shows that these functions φi factor through

homothety classes of full rank lattices of Fp⊕Fp, and hence can be viewed as functions

on the edge set of the Bruhat–Tits tree of D×
p /F×

p
∼= PGL2(Fp). To be more precise,

let Tp = (Vp,Ep) denote the Bruhat–Tits tree of B×
p /F×

p
∼= PGL2(Fp), which is the

tree of maximal orders of M2(Fp) ∼= Bp such that

(i) the vertex set Vp is indexed by maximal orders of M2(Fp);

(ii) the edge set Ep is indexed by Eichler orders of level p of M2(Fp);

(iii) the edge set Ep has an orientation, i.e., a pair of maps

s, t : Ep −→ Vp, e 7→
(

s(e), t(e)
)

that assigns to each edge e ∈ Ep a source s(e) and a target t(e). Once such a

choice of orientation is fixed, let us write E∗
p to denote the so-called “directed”

edge set of Tp.

The group D×
p /F×

p acts naturally by conjugation on Tp. It is a standard result that

this action is transitive, and moreover that there is an identification

Vp
∼= PGL2(Fp)/PGL2(OFp

).
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In particular, we see that the discrete subgroups Γi ⊂ D×
p
∼= GL2(Fp) modulo F×

p act

transitively by conjugation on Tp. Now, each quotient graph Γi\Tp is a finite graph.

Hence, we may consider the disjoint union of finite quotient graphs

h∐
i=1

Γi\Tp =

( h∐
i=1

Γi\Vp,
h∐

i=1

Γi\E
∗
p

)
.

Definition 3.1 Let S2

(∐h
i=1 Γi\Tp;O

)
denote the space of vectors (φi)h

i=1 of

O-valued, (Γi)
h
i=1-invariant functions on Tp.

Remark Here, it is understood that Φ ∈ S2

(∐h
i=1 Γi\Tp;O

)
is a function on∐h

i=1 Γi\Vp if p ∤ M, and a function on
∐h

i=1 Γi\E
∗
p if p | M. We refer the reader to

the discussion in [62, §3] for more explanation.

A simple argument ([62, Proposition 3.6]) shows that the canonical bijection ηp

induces a bijection of O-modules

(3.3) S2

( h∐
i=1

Γi\Tp;O
)
−→ S2(U ;O).

Let us for simplicity of notation write Φ to denote both a modular form in S2(U ;O),

as well as its correponding vector of functions (φi)h
i=1 in the space S2

(∐h
i=1Γi\Tp;O

)
.

We obtain from (3.3) the following combinatorial description of the standard Hecke

operators Tp and Up acting on S2(H;O). Here, Up denotes the standard Hecke op-

erator defined in [62, §3], and not the compact open subgroup U ⊂ D̂× defined

above.

Case I: p ∤ M. Let Φ(v) denote evaluation of the corresponding h-tuple of functions

(φi)h
i=1 at a vertex v ∈ Vp. Then

(TpΦ)(v) =
∑

w→v

cΦ(w).

Here, the sum ranges over all q + 1 vertices w adjacent to v.

Case II: p |M. Let Φ(e) denote evaluation of the corresponding h-tuple of functions

(φi)h
i=1 at a directed edge e ∈ E∗

p . Then

(UpΦ)(e) =
∑

s(e ′)=t(e)

cΦ(e ′).

Here, the sum runs over the q + 1 edges e ′ ∈ E∗
p such that s(e ′) = t(e), minus the

edge obtained by reversing orientation.

We also obtain the following explicit version of the Jacquet–Langlands correspon-

dence induced by the bijection ηp. That is, fix an integral ideal N ⊂ OF as defined

in (3.1), with underlying integral ideal N0 ⊂ OF . Fix a Hilbert modular eigenform

f0 ∈ S2(N0) that is new at all primes dividing the ideal N−.
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Definition 3.2 Let N0 ⊂ OF be an integral ideal that is not divisible by p. The

p-stabilization f ∈ S2(N) of f0 ∈ S2(N0) is the eigenform given by

f = f0 − βp(f0) ·
(
Tpf0

)
,

where βp(f0) denotes the non-unit root to (2.1). This is a p-ordinary eigenform in

S2(N) with Up-eigenvalue αp = αp(f0).

We now consider an eigenform f ∈ S2(N) that is given by f0 if p divides N0,

or given by the p-stabilization of f0 if p does not divide N0. We have the following

quaternionic description of f in either case. To be consistent with the notations above,

let us write Uv to denote the Hecke operator Tv acting on SB
2 (H;O) at a prime v | N+

(again, not to be confused with the component at v of the level structure U ⊂ D̂×).

Proposition 3.3 (Jacquet–Langlands) Given an eigenform f ∈ S2(N) as defined

above, there exists a function Φ ∈ S2

(∐h

i=1Γi\Tp; C
)

such that

• TvΦ = av(f) · Φ for all v ∤ N;
• UvΦ = αv(f) · Φ for all v | N+;
• UpΦ = αp · Φ.

This function is unique up to multiplication by non-zero complex numbers. Conversely,

given an eigenform Φ ∈ S2

(∐h

i=1Γi\Tp; C
)

, there exists an eigenform f ∈ S2(N) such

that

• Tvf = av(Φ) · f for all v ∤ N;
• Uvf = αv(Φ) · f for all v | N+;
• Upf = αp(Φ) · f.

Here, av(Φ) denotes the eigenvalue for Tv of Φ if v ∤ N, and αv(Φ) the eigenvalue for Uv

of Φ if v | N.

Proof See [62, Proposition 3.7], which is a direct generalization of [3, Proposi-

tion 1.3] to totally real fields.

Construction of measures. We now sketch the construction of p-adic measures

given in [62], which generalizes that of [3, § 1.2]. Fix an integral ideal N ⊂ OF

having the factorization (3.1). Recall that we write D to denote the totally definite

quaternion algebra of discriminant N− defined over F. Let Z denote the maximal

OF[ 1
p

]-order of K. Let R ⊂ D denote an Eichler OF[ 1
p

]-order of level N+. Let us

fix an optimal embedding Ψ of Z into R, i.e., an injective F-algebra homomorphism

Ψ : K → D such that Ψ(K) ∩ R = Ψ(Z). Such an embedding exists if and only if K

is split at all primes dividing the level of R ([66, § II.3]). Hence, such an embedding

exists by our choice of integer factorization (3.1).

The Galois group G[p∞] has a natural action on the directed edge set E∗
p of Tp.

That is, the reciprocity map recK induces a bijection

K̂×/
(

K× ∏
v∤p

Z×
v

) rK

−→ G[p∞].

https://doi.org/10.4153/CJM-2012-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-002-x


418 J. Van Order

Passing to the adelization, the optimal embedding Ψ induces an embedding

K̂×/
(

K× ∏
v∤p

Z×
v

)
Ψ̂

−→ D×\D̂×/
∏
v∤p

R×
v .

Consider the compact open subgroup of D̂× defined by
∏

v∤p R×
v , with associated

subgroups Γi as defined in (3.2). As explained above, strong approximation induces

a canonical bijection

h∐
i=1

Γi\D
×
p /F×

p

ηp

−→ D×\D̂×/
∏
v∤p

R×
v .

The composition η−1
p ◦Ψ̂◦r−1

K then gives rise to a natural action ⋆ of the Galois group

G[p∞] on the Bruhat–Tits tree Tp = (Vp,E
∗
p): it is the induced conjugation action

on maximal orders of Dp
∼= M2(Fp). This action factors through that of K×

p /F×
p on

Tp via the local optimal embedding Ψp : Kp → Dp. Moreover, it fixes a single vertex

if p is inert in K, or no vertex if p is split in K. Given an integer n ≥ 1, let us write Un

to denote the standard compact open subgroup of level n of K×
p /F×

p ,

Un =
(

1 + pnOK ⊗ OFp

)×
/
(

1 + pnOFp

)×
.

We can then fix a sequence of consecutive edges {e j} j≥1 in E∗
p such that

StabK×p /F×p
(e j) = U j .

Now, the choice of an eigenform Φ ∈ S2(
∐h

i=1 Γi\E
∗
p ;O) determines a pairing

[ · , · ]Φ : G[p∞]× E∗
p −→ O

(σ, e) 7−→ Φ
(
η−1

p ◦ Φ̂(σ) ◦ r−1
K (σ) ⋆ e

)
.

Let H∞ denote the group rec−1
K (G[p∞]), with profinite structure H∞ = lim

←−n
Hn,

where Hn = H∞/Un. Since the Up-eigenvalue αp is invertible in the ring of values

O, the pairing [ · , · ]Φ can be shown to give rise to a natural O-valued measure ϑΦ on

H∞ via the rule

ϑΦ(σU j) = α
− j
p · [σ, e j]Φ

for all compact open subgroups of H∞ of the form σU j , with σ ∈ H∞. This distri-

bution gives rise to an element LΦ in the completed group ring O[[G[p∞]]] via the

rule

(LΦ)n =

∑

h∈Hn

ϑΦ(hUn) · h.
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Let us commit an abuse of notation in also writing LΦ to denote the image of this

element in the Iwasawa algebra Λ = O[[Gp∞]]. This image element is not well de-

fined, since a different choice of sequence of consecutive edges {e j} j≥1 has the effect

of multiplying LΦ by an element of Gp∞ . Hence, let L∗
Φ

denote the image of LΦ

under the involution Λ→ Λ induced by inversion σ 7→ σ−1 ∈ Gp∞ . We then let

Lp(Φ,Kp∞) = LΦL
∗
Φ.

Observe that Lp(Φ,Kp∞) is then a well-defined element of Λ. We shall refer to

this element Lp(Φ,Kp∞) ∈ Λ as the p-adic L-function associated with Φ. More-

over, if Φ is associated with a Hilbert modular eigenform f ∈ S2(N) via the

Jacquet–Langlands correspondence (as described above), then we shall also write

Lp(f,Kp∞) = Lp(Φ,Kp∞), with Lp(f,Kp∞) = LfLf
∗.

Interpolation properties. The p-adic L-function Lp(Φ,Kp∞) satisfies the following

rough interpolation property; we refer the reader to [62, Theorem 4.7] for a more

precise version. Given a finite order character ρ of Gp∞ , let

ρ
(
Lp(Φ,Kp∞)

)
=

∫

Gp∞

ρ(σ)dLp(Φ,Kp∞)(σ)

denote the specialization of Lp(Φ,Kp∞) to ρ. Here, dLp(Φ,Kp∞) denotes the mea-

sure of Λ defined by Lp(Φ,Kp∞). Let 〈Φ,Φ〉 denote the Petersson inner product of

Φ. Fix embeddings Q → Qp and Qp → C. Fix a finite order character ρ of Gp∞ .

Suppose that ρ factors through Gpm for some integer m ≥ 1. Let us view the values

of ρ and dLp(Φ,Kp∞) as complex values via the embedding Qp → C, in which case

we write |ρ(Lp(Φ,Kp∞))| to denote the complex absolute value of the specialization

Lp(Φ,Kp∞). We then have the following interpolation formula:

(3.4) |ρ
(
Lp(Φ,Kp∞)

)
|2 = α−4m

p · κ(Φ, F) · L(Φ× ρ, 1).

Here, κ(Φ, F) is a nonvanishing product of algebraic constants (which can be given

precisely in terms of certain special values of some related L-functions), and L(Φ ×
ρ, 1) is the central value of the Rankin–Selberg L-function of Φ times the twisted

theta series associated with ρ. Moreover, both sides of (3.4) belong to Qp. This result

is deduced from the generalization of Waldspurger’s formula shown in Yuan–Zhang–

Zhang [70]. In particular, we see from this that the specialization ρ(Lp(Φ,Kp∞))

vanishes if and only if the central value L(Φ × ρ, 1) vanishes. Hence, we deduce

from the nonvanishing theorem of Cornut–Vatsal [16, Theorem 1.4] that the p-adic

L-function Lp(Φ,Kp∞) does not vanish identically.

The dihedral µ-invariant. Recall that we let P denote the maximal ideal of the local

ring O. Given an element λ ∈ Λ, we define the dihedral mu-invariant µ(λ) of λ to be

the largest exponent c such that λ ∈ Pc
Λ. Following the method of Vatsal [63] it can

be shown ([62, Theorem 4.10]) that µ(Lp(Φ,Kp∞)) = 2ν, where ν = νΦ is defined

to be the largest positive integer such that Φ is congruent to a constant modulo Pν .
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4 Galois representations

Galois representations associated to Hilbert modular forms. Recall that we write

GF denote the absolute Galois group Gal(Q/F).

Theorem 4.1 (Carayol–Taylor–Wiles) Fix an eigenform f ∈ S2(N), with πf its as-

sociated automorphic representation of GL2(F). Let Of be the ring of integers of any

number field such that there exists a morphism θf : T(N) −→ Of with f|T = θf(T)f for

any Hecke operator T ∈ T(N). Then, for each prime λ ⊂ Of, there exists a continuous

representation

ρf,λ : GF −→ GL2(Of,λ)

such that the following property holds: for any prime v ⊂ OF of residue characteristic

not equal to that of λ, the restriction of the representation ρf,λ to the decomposition

subgroup at v is conjugate to the λ-adic representation of associated by local Langlands

correspondence to the local component of πf at v. Here, Of,λ denotes the localization at

λ of Of.

Proof This results follows from the specializations of works of Carayol [10], Taylor

[60], and Wiles [69] to parallel weight 2.

Recall that we view f ∈ S2(N) as a p-adic modular form via a fixed embedding

Q → Qp, writing O0 to denote the Zp-subalgebra of Qp generated by the Fourier

coefficients of f, O the integral closure of O0 in its field of fractions L, and P to

denote the maximal ideal of O. We then write

ρf = ρf,P : GF −→ GL2(O)

to denote the P-adic Galois representation associated with f by Theorem 4.1. Let Tf

be the lattice O2, together with the action of GF given by ρf. If (as we shall always

assume) the residual representation Tf/P is irreducible, then Tf is the unique GF-

stable sublattice of L2 up to homothety. We then define Af = (Tf⊗L)/Tf
∼=

(
L/O

)2
.

We also define GF-modules

Tf,n = Tf/PTf and Af,n = Af[Pn].

These modules are, of course, isomorphic. However, we maintain a notational dis-

tinction as these modules form respective projective and injective systems

Tf = lim
←−

n

Tf,n and Af = lim
−→

n

Af,n.(4.1)

Abelian varieties associated with Hilbert modular forms. We now explain how to

associate to f ∈ S2(N) an abelian variety over F, following the construction of Carayol

[10]. Recall that we assume, for simplicity, that P is contained in O0.
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Proposition 4.2 Fix an eigenform f ∈ S2(N), with πf the associated automorphic

representation of GL2(AF). Assume that either d is odd, or else d is even with the condi-

tion that there exists a finite place v ⊂ OF at which πf is either special or supercuspidal.

Then, we can associate with f an abelian variety A defined over F. Moreover, there is a

GF-module isomorphism TaPA⊗O0
L ∼= Af ⊗O L.

Proof The result is presumably well known; see, for instance, [16, § 3]. We sketch

the construction for lack of a better reference.

Fix positive integers k ≥ 2 and w having the same parity. Let Dk,w denote the

representation of GL2(R) that occurs via unitary induction as Ind(µ, ν), where µ and

ν are the characters on R× given by

µ(t) = |t|
1
2

(k−1−w) sgn(t)k, ν(t) = |t|
1
2

(−k+1−w).

Fix integers k1, . . . kd all having the same parity. Let π ∼=
⊗

v πv be a cuspidal auto-

morphic representation of GL2(AF) such that for each real place τi of F, there is an

isomorphism πτi
∼= Dki ,w. It is well known that such representations correspond to

holomorphic Hilbert modular forms of weight k = (k1, . . . , kd). If d is even, then we

assume that there exists a finite prime v ⊂ OF where the local component πv is either

a special or supercuspidal representation of GL2(Fv).

Let B be a quaternion algebra over F that is ramified at {τ2, . . . , τd} if d is odd,

and ramified at {τ2, . . . , τd, v} if d is even. Let G = ResF/Q(B×) denote the associated

algebraic group over Q. Hence, we have an isomorphism G(R) ∼= GL2(R)×(H×)d−1,
where H denotes the Hamiltonian quaternions. Let Dk,w denote the representation

of H× corresponding to Dk,w via the Jacquet–Langlands correspondence. We then

consider cuspidal automorphic representations π ′
=

⊗
v π

′
v of G(AF) such that π ′

τ1

∼=
Dk1,w and πτi

∼= Dki ,w for i = 2, . . . , d. Let us now fix such a representation π ′

associated with π = πf. Hence, k = (2, . . . , 2). Fix a vector Φ ∈ π ′. Hence, Φ is seen

to be a function in the space S2(H,B) for some compact open subgroup H ⊂ G(A f ).

By Proposition 2.8, we can identify Φ with a section of the sheaf of holomorphic 1-

forms ΩH(C) on the complex Shimura curve MH(C) = MH(B,X)(C). Recall that we

let JH denote the Jacobian of the canonical model MH . Let T denote the subalgebra

of End( JH) generated by Hecke correspondences acting on JH . By Proposition 2.8,

we deduce the identification T = T(H,B). Consider the homorphism θΦ : T → O

that sends each operator in T the eigenvalue for its action on Φ. Let IΦ = ker(θΦ).
Consider the quotient abelian variety defined by AH = JH/IΦ JH . Hence, we have

constructed from f ∈ S2(N) an abelian variety A = AH defined over F. Now, by the

construction of Carayol [10], we claim that the Galois representation ρf is equivalent

to the Galois representation arising from the P-adic Tate module of A. Hence, we

deduce that there is an identification of GF-modules TaPA⊗O0
L ∼= Af ⊗O L.

Corollary 4.3 For each integer n ≥ 1, there is a canonical, nondegenerate GF-equi-

variant pairing Tf,n × Af,n → µpn .

Proof The pairing is induced from the Weil pairing, after composition with a suit-

able choice of polarization map. See for instance the discussion in [30, § 2.3].
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Given a prime w ⊂ OF , let us choose a decomposition subgroup of GF above w,

which we can and will identify with the Galois group GFw
= Gal(Fw/Fw) for some

choice of algebraic closure Fw. Let Iw = IFw
denote the inertia subgroup at w.

Lemma 4.4 For each prime w | N− ⊂ OF , the maximal Iw-invariant submodule of

Af is divisible of O-corank one.

Proof If f is associated with a modular abelian variety defined over F of arithmetic

conductor N having good reduction outside of N, ordinary reduction at p, and purely

toric reduction at each prime w | N−, then this condition is satisfied (cf. [3, Remark 1,

p. 14] with the relevant sections of [42] or [41]). Granted that f is p-ordinary, we can

deduce from Proposition 4.2 that the associated abelian variety A always has these

properties. In particular, the toric reduction of A at primes w | N− can be deduced

from the general theory of Néron models given in the standard reference [5, Ch. 9],

using the fact that the associated Shimura curve has a semistable reduction at w. See

for instance the discussion in [49, 1.6.4] along with the description of integral models

given below.

5 Selmer Groups

Global cohomology. Given integers m, n ≥ 1, we define continuous cohomology

groups of GKpm = Gal(Q/Kpm ) with coefficients in the modules Tf = lim
←−n

Tf,n and

Af = lim
−→n

Af,n,

H1(Kpm ,Tf) = lim
←−

n

H1(Kpm ,Tf,n), H1(Kpm ,Af) = lim
−→

n

H1(Kpm ,Af,n).

Note that these identifications can be justified (see [59, Proposition 2.2]). We also

define cohomology groups of GKp∞
= Gal(Q/Kp∞),

Ĥ1(Kp∞ ,Tf) = lim
←−

m

H1(Kpm ,Tf), H1(Kp∞ ,Af) = lim
−→

m

H1(Kpm ,Af).

Here, the direct limit is taken with respect to natural restriction maps, and the inverse

limit with respect to natural corestriction maps. Note that the compatible actions of

the group rings O[Gpm ] on the cohomology groups H1(Kpm ,Tf) and H1(Kpm ,Af) for

each integer m ≥ 1 induce an action of the Iwasawa algebra Λ = O[[Gp∞]] on the

cohomology groups Ĥ1(Kp∞ ,Tf) and H1(Kp∞ ,Af).

Local cohomology. Fix an integer m ≥ 1. Given a finite prime v of F, for notational

simplicity let us write

Kpm,v = Kpm ⊗ Fv =
⊕
v|v

Kpm,v

to denote the direct sum over completions of Kpm at each prime v above v in Kpm .
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Hence, we can define local cohomology groups

Ĥ1(Kp∞,vTf,n) = lim
←−

m

⊕
v|v

H1(Kpm,v,Tf,n),

Ĥ1(Kp∞,vTf) = lim
←−

m

⊕
v|v

H1(Kpm,v,Tf),

H1(Kp∞,v,Af,n) = lim
−→

m

⊕
v|v

H1(Kpm,v,Af,n),

H1(Kp∞,v,Af) = lim
−→

m

⊕
v|v

H1(Kpm,v,Af).

Here (as in the global case), the direct limits are taken with respect to natural restric-

tion maps, and the inverse limits with respect to natural corestriction maps. Taking

appropriate limits from (4.1) again, we then define

Ĥ1(Kp∞,v,Tf) = lim
←−

n

H1(Kp∞,v,Tf,n), H1(Kp∞,v,Af) = lim
−→

n

H1(Kp∞,v,Af,n).

As before, these identifications can be justified (see [58, Proposition 2.2]). As in the

global case, the Iwasawa algebraΛ acts on the local cohomology groups Ĥ1(Kp∞,v,Tf)

and H1(Kp∞,v,Af) in such a way that is compatible with respect to the respective core-

striction and restriction maps.

Local Tate pairings. Recall that for each integer n ≥ 1, we have an isomorphism of

GF-modules Tf,n
∼= Af,n. Recall as well that by Corollary 4.3 (cf., [30, §2.3]), there

exists a canonical GF-equivariant pairing

Tf,n × Af,n −→ Z/pnZ(1) = µpn .

Composition with the cup product of local cohomology then gives a collection of

local Tate pairings

〈 · , · 〉m,v : Ĥ1(Kpm,v,Tf,n)×H1(Kpm,v,Af,n) −→ Qp/Zp.

Passage to the limit(s) then induces a perfect pairing

〈 · , · 〉v : Ĥ1(Kp∞,v,Tf,n)×H1(Kp∞,v,Af,n) −→ Qp/Zp.(5.1)

We refer the reader to [46, §1], [1], or [30] for relevant background on local Tate du-

ality. The main fact we shall use is that (5.1) induces an isomorphism of Λ-modules

Ĥ1(Kp∞,v,Tf,n) ∼= H1(Kp∞,v,Af,n)∨.

Here, H1(Kp∞,v,Af,n)∨ denotes the Pontryagin dual of H1(Kp∞,v,Af,n), endowed

with the usual Λ-module structure. (cf., [3, §2]).
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Singular/unramified structures. Given a prime v ⊂ OF , let Im,v =
⊕

v|v Im,v denote

the direct product over all primes v above v in Kpm of the inertia subgroups Im,v =

IKpm ,v in GKpm .

Definition 5.1 Let v ∤ N ⊂ OF be a prime that does not divide the residue charac-

teristic of p. Let Mf,n denote either Af,n or Tf,n.

(i) The singular structure H1
sing(Kpm,v,Mf,n) ⊂ H1(Kpm,v,Mf,n) is

H1
sing(Kpm,v,Mf,n) = H1(Im,v,Mf,n)GKv .

(ii) The residue map ∂v is the natural restriction map

∂v : H1(Kpm,v,Mf,n) −→ H1
sing(Kpm,v,Mf,n).

(iii) The unramified structure H1
unr(Kpm,v,Mf,n) ⊂ H1(Kpm,v,Mf,n) is the kernel of the

residue map ∂v.

Analogous definitions hold under passage to projective limits in the case where

Mf,n = Tf,n, and under inductive limits in the case where Mf,n = Af,n. Let us also

write ∂v to denote the induced residue maps on GKp∞
-cohomology.

Ordinary structures. Recall that for each prime divisor w | N−, Lemma 4.4 shows

that the maximal Iw-invariant submodule of Af is divisible of O-corank one. Hence,

we have an exact sequence of Iw-modules

0 −→ A(w)
f −→ Af −→ A(1)

f −→ 0,

where A(1)
f is the maximal submodule of Af on which Iw acts trivially, giving trivial

isomorphisms of Iw-modules

A(w)
f
∼= A(1)

f
∼= L/O.

Suppose now that we consider the prime p ⊂ OF . Recall we assume that f is p-ordi-

nary in which case it is known that there is an exact sequence of Ip-modules

0 −→ A(p)
f −→ Af −→ A(1)

f −→ 0,

where Ip acts on A(p)
f by the cyclotomic character εp : GF → Aut(µp∞) times a mul-

tiplicative factor of±1.

Definition 5.2 Given a prime w | pN− ⊂ OF , we define the ordinary structure

H1
ord(Kp∞,q,Af,n) ⊂ H1(Kp∞,q,Af,n) as follows.

(i) If w | N− ⊂ OF , then it is the unramified cohomology

H1
ord(Kp∞,q,Af,n) = H1(Kp∞,q,A(w)

f,n ).
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(ii) At the prime p ⊂ OF ,

H1
ord(Kp∞,p,Af,n) = res−1

p H1
(

IKp∞ ,p
,A(p)

f,n

)
.

Here, resp : H1(Kp∞,p,Af,n) → H1(IKp∞ ,p
,Af,n) denotes the map induced from

the restriction at the prime above p in Kp∞ .

Note that we do not define ordinary parts at primes w | N+ ⊂ OF , as these groups

are seen easily to vanish by variant of the argument given in Corollary 5.6 (cf. [41,

5.2.2]). Note as well that we may also define ordinary cohomology groups for the

GF-modules Af and Tf by taking the limits (4.1).

Admissible primes. Here, we define the notation of an n-admissible prime with re-

spect to f, for n ≥ 1 an integer. As we shall see in Proposition 6.2, the set of n-

admissible primes controls the Selmer group Sel(f,Kp∞).

Definition 5.3 A prime v ⊂ OF is said to be n-admissible with respect to f in K for

some integer n ≥ 1 if

(i) v ∤ pN;

(ii) v is inert in K;

(iii) P does not divide N(v)2 − 1;

(iv) Pn divides one of N(v) + 1− av(f) or N(v) + 1 + av(f).

We shall use the following two facts repeatedly throughout.

(1) If v ⊂ OF is an n-admissible prime with respect to f, then the associated mod Pn

Galois representation Tf,n is unramified at v. Moreover, the arithmetic Frobenius

at v acts semisimply on Tf,n with eigenvalues 1 and N(v)2, both of which are

distinct mod Pn.

(2) If v ⊂ OF is an n-admissible prime with respect to f, then by condition (ii) it is

inert in K. We commit an abuse of notation in writing v to also denote the prime

above v in K. Hence, Kv denotes the localization at the prime above v in F, which

is isomorphic to the quadratic unramified extension of Fv. Writing Fv2 to denote

the quadratic unramified extension of Fv, we shall then always make the implicit

identification Kv
∼= Fv2 .

Some identifications. Here, we give some identifications for the finite, singular, and

ordinary structures of the local Galois cohomology groups defined above. The results

here are analogous to the case where F = Q (cf. [3, §2]).

Proposition 5.4 Let v ⊂ OF be a finite prime.

(i) If v ∤ N, then the cohomology groups Ĥ1
unr(Kp∞,v,Tf,n) and H1

unr(Kp∞,v,Af,n) an-

nihilate each other under the local Tate pairing 〈 · , · 〉v.

(ii) If v | N with ordv(N) = 1, then the cohomology groups Ĥ1
ord(Kp∞,v,Tf,n) and

H1
ord(Kp∞,v,Af,n) annihilate each other under the local Tate pairing 〈 · , · 〉v.

In particular, the local cohomology groups Ĥ1
sing(Kp∞ ,Tf,n) and H1

unr(Kp∞ ,Af,n) are

Pontryagin dual to each other.
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Proof The result over finite layers Kpm,v is a standard consequence of local Tate du-

ality, see [3, Proposition 2.3] or [4, §2.1]. Passage to limits then proves the claim.

Let us from now on write

〈 · , · 〉v : Ĥ1
sing(Kp∞,v,Tf,n)×H1

unr(Kp∞,v,Af,n) −→ Qp/Zp(5.2)

to denote the perfect pairing induced by the local Tate duality of Proposition 5.4.

Lemma 5.5 Let v ∤ p be any finite prime of OF . If v is inert in K, then v splits

completely in Kpm for any integer m ≥ 1.

Proof This is a standard consequence of global class field theory. See for instance

[58, Proposition 2.3], using that Kpm is of generalized dihedral type over F.

Corollary 5.6 Let v ∤ N be a finite prime of OF .

(i) If v splits in K, then we have identifications

Ĥ1
sing(Kp∞,v,Tf,n) = H1

unr(Kp∞,v,Af,n) = 0.

(ii) If v is inert in K with v ∤ N, then we have identifications

Ĥ1
sing(Kp∞,v,Tf,n) ∼= H1

sing(Kv,Tf,n)⊗ Λ,

H1
unr(Kp∞,v,Af,n) ∼= Hom

(
H1

sing(Kv,Tf,n)⊗ Λ,Qp/Zp

)
.

Proof The first assertion is shown in [3, Lemma 2.4]. That is, it suffices by non-

degeneracy of the local Tate pairing (5.2) to show that H1
unr(Kp∞,v,Af,n) vanishes. If

vOK = v1v2, then a similar application of global class field theory as used in Lemma

5.5 shows that that the Frobenius at each vi is the topological generator of a finite

index subgroup of Gp∞
∼= Zδ

p. We can then view Kp∞,v as the direct sum of copies

of the maximal unramified p-extension of Fv. Since Af,n = Af[Pn] has exponent Pn,

we deduce that any unramified class in H1(Kpm,v,Af,n) must have trivial restriction to

H1(Kpm ′ ,v,Af,n) for m ′ sufficiently large. Hence, H1
unr(Kp∞,v,Af,n) = 0. The second

assertion is shown in [3, Lemma 2.5]. That is, since v splits completely in Kp∞ by

Lemma 5.5, any choice of prime vm above v in Kpm determines an isomorphism

H1(Kpm,v,Tf,n) −→ H1(Kv,Tf,n)⊗ O[Gpm ].

A compatible system of choices of primes vm above v in Kp∞ then determines an

isomorphism

Ĥ1(Kp∞,v,Tf,n) ∼= H1(Kv,Tf,n)⊗ Λ.

Passage to the singular cohomology then proves the claim, with the latter isomor-

phism being a consequence of Proposition 5.4.
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Lemma 5.7 If v ⊂ OF is an n-admissible prime with respect to f, then the local coho-

mology groups H1
sing(Kv,Tf,n) and H1

unr(Kv,Af,n) are both isomorphic to O/Pn. More-

over, the local cohomology groups Ĥ1
sing(Kp∞,v,Tf,n) and H1

unr(Kp∞,v,Af,n) are both free

of rank one over Λ/Pn.

Proof The first assertion follows from the same proof as given in [3, Lemma 2.6],

using the identification H1
sing(Kv,Tf,n) = H1(IKv

,Tf,n)GKv along with the fact that Tf,n

is unramified at v. The second assertion then follows directly from the second part of

Lemma 5.6 above (cf. [3, Lemma 2.7]).

Residual Selmer groups. Recall that we defined the residue maps ∂v on local coho-

mology to be the natural restriction maps

∂v : H1(Kp∞,v,Af,n) −→ H1
sing(Kp∞,v,Af,n),

∂v : Ĥ1(Kp∞,v,Tf,n) −→ Ĥ1
sing(Kp∞,v,Tf,n).

Let us commit an abuse of notation in also writing ∂v to denote the composition

of these maps with the restriction from Kp∞ to Kp∞,v, which gives residue maps on

global cohomology

∂v : H1(Kp∞ ,Af,n) −→ H1
sing(Kp∞,v,Af,n),

∂v : Ĥ1(Kp∞ ,Tf,n) −→ Ĥ1
sing(Kp∞,v,Tf,n).

Let us establish for future reference the following notations:

• If ∂v(c) = 0 for a class c ∈ Ĥ1(Kp∞ ,Tf,n), then ϑv(c) denotes the image of c in

Ĥ1
unr(Kp∞,v,Tf,n).

• If ∂v(c) = 0 for a class c ∈ H1(Kp∞ ,Af,n), then ϑv(c) denotes the image of c in

H1
unr(Kp∞,v,Af,n).

Recall that the integer factorization N = pN+N− ⊂ OF of (3.1) is assumed. Let us

write sv denote the image of a class s under the restriction from Kp∞ to Kp∞,v.

Definition 5.8 The residual Selmer group Self,n(Kp∞) associated with (f, n,Kp∞) is

defined to be the group of classes s ∈ H1(Kp∞ ,Af,n) such that

(i) the residue ∂v(s) vanishes at all primes v ∤ N;

(ii) the restriction sv is ordinary at all primes v | pN−;

(iii) the restriction sv is trivial at all primes v | N+.

Observe that the residual Selmer group Self,n(Kp∞) depends only on the mod Pn

Galois representation Tf,n associated with f, and not on the Galois representation f

itself.

Compactified Selmer groups. We now define compactified Selmer groups.

Definition 5.9 Let S ⊂ OF be any integral ideal prime to N. The compactified

Selmer group Ĥ1
S(Kp∞ ,Tf,n) associated with (f, n,Kp∞) is defined to be the group of

classes s ∈ Ĥ1(Kp∞ ,Tf,n) such that
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(i) the residue ∂v(s) vanishes at all primes v ∤ SN;

(ii) the restriction sv is ordinary at all primes v | pN−;

(iii) the restriction sv is arbitrary at all primes v | SN+.

Admissible sets. Let us also for future reference define the notion of an n-admissible

set with respect to f.

Definition 5.10 A finite set of primes S of OF is said to be n-admissible with respect

to f if

(i) each prime v ∈ S is n-admissible with respect to f;

(ii) the natural map Self,n(K)→
⊕

v|S H1
unr(Kv,Af,n) is injective.

Theorem 5.11 If S in an n-admissible set of primes of OF with respect to f, then

Ĥ1
S(Kp∞ ,Tf,n) is free of rank |S| over Λ/Pn.

Proof See [3, Theorem 3.3]. The proof in the more general setting follows in the

same way from [1, Theorem 3.2], which is given for arbitrary abelian extensions over

K.

Now, recall that the Galois group Gp∞ is topologically isomorphic to Zδ
p with δ =

[Fp : Qp], and hence pro-p. Hence, the Iwasawa algebraΛ is a local ring of dimension

δ + 1. Let mΛ denote the maximal ideal of Λ. We have the following result.

Theorem 5.12

(i) The natural map H1(K,Af,1) → H1(Kp∞ ,Af,1)[mΛ] induced by restriction is an

isomorphism.

(ii) If S is an n-admissible set of primes with respect to f, then the natural map

H1(K,Tf,1)→ H1(Kp∞ ,Tf,1)/mΛ induced by corestriction is an injection.

Proof See [3, Theorem 3.4]. The proof given there carries over here with the same

argument by using Proposition 5.11.

Relations between Selmer groups. Let us start with some motivation. Our approach

to dihedral main conjectures generalizes the Euler system argument of Bertolini–

Darmon [3]. More precisely, it generalizes the refinement of this argument given

by Pollack–Weston in [50]. As such, it requires the construction of classes in

Ĥ1
v (Kp∞ ,Tf,n) indexed by n-admissible primes v ⊂ OF with respect to f. The residues

of these classes can be related to their corresponding group ring elements LΦ ∈
Λ/Pn via the first and second explicit reciprocity laws introduced above (Theo-

rems 7.1 and 7.3). Here, Φ denotes the mod Pn quaternionic eigenform correspond-

ing to f mod Pn under the Jacquet–Langlands correspondence. Recall that we write

Lp(f,Kp∞) to denote the associated p-adic L-function Lp(Φ,K) = LΦL
∗
Φ
∈ Λ/Pn.

The explicit reciprocity laws, which a priori only give relations in the compactified

Selmer group Ĥ1
v (Kp∞ ,Tf,n), in fact give relations in the dual residual Selmer group

Self,n(Kp∞)∨ = Hom(Self,n(Kp∞),Qp/Zp)

thanks to the following result.
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Proposition 5.13 If s ∈ Ĥ1
v (Kp∞ ,Tf,n), then for all s ∈ Self,n(Kp∞),

〈
∂v(s), ϑv(s)

〉
v
= 0.

Proof The proof is a direct generalization of [3, Proposition 2.10]. That is, fix classes

s and s as above. The global reciprocity law of class field theory implies that

∑

v

〈
∂v(s), ϑv(s)

〉
v
= 0.(5.3)

Here, the sum runs over all finite primes v ⊂ OF . Let S ⊂ OF be any integral ideal

prime to N. If s ∈ Ĥ1
S(Kp∞ ,Tf,n) and s ∈ Self,n(Kp∞), then 〈∂v(s), ϑv(s)〉v = 0 for

all v ∤ S by local conditions defining these groups, and ∂v (s) = 0 for all v | S. It

follows from (5.3) that

∑

v|S

〈
∂v(s), ϑv(s)

〉
v
= 0.

Taking S = v then proves the claim.

Finally, we make the following definition.

Definition 5.14 Let

Sel(f,Kp∞) = lim
−→

n

Self,n(Kp∞),

where the limits are taken with respect to those in (4.1). We claim as before that

these identifications can be justified, for instance, by [59, Theorem 2.2] (cf. also [50,

Proposition 3.6]).

6 Control Theorems

We shall use the following results to prove the main conjecture divisibility (1.2).

The Fitting ideals criterion. Given R a ring, and X a finitely-presented R-module, let

FittR(X) denote the Fitting ideal of X over R. We refer the reader to [45, Appendix]

for definitions and background on Fitting ideals.

Proposition 6.1 Suppose that X is a finitely-generated Λ-module, and that L is an

element of Λ. If ϕ(L) ⊂ FittO ′
(
X ⊗ϕ O ′

)
for all homomorphisms ϕ : Λ → O ′ with

O ′ any discrete valuation ring, then L ⊂ charΛ(X).

Proof See [3, Proposition 3.1], which proves the claim for the case of F = Q (i.e.,

with δ = 1), and [42, Proposition 7.4] for the general case.
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Control of Selmer. Recall that for each finite prime v ∤ N ⊂ OF not dividing the

residue characteristic of p, we have a natural residue map

∂v : H1(Kv,Af,1) −→ H1
sing(Kv,Af,1).

Recall as well that we commit a minor abuse of notation in also writing ∂v to denote

the composition of maps

H1(K,Af,1) −→ H1(Kv,Af,1) −→ H1
sing(Kv,Af,1).

Theorem 6.2 Given a nonzero class s ∈ H1(K,Af,1), there exist infinitely many

n-admissible primes v ⊂ OF with respect to f in K such that ∂v(s) = 0 and ϑv(s) 6= 0.

Proof The proof is by direct generalization of [3, Theorem 3.2]. That is, fix a class

s ∈ H1(K,Af,n). Let F(Af,n) denote the extension of F fixed by the kernel of the

GF-representation Af,n. Let L denote the compositum extension KF(Af,n). Since we

assume that the relative discriminant DK/F is prime to the level N, we claim that the

extensions F(Af,n) and K are linearly disjoint over F. Granted this property, we obtain

the following description of the Galois group of L over F:

Gal(L/F) = Gal(K/F)× Gal(F(Af,n)/F)

⊆ {1, τ} × AutO/Pn (Af,n).

Here, τ ∈ Gal(K/F) denotes the complex conjugation automorphism. Hence, any

element of Gal(L/F) can be written as a pair (τ j ,T), with j ∈ {0, 1} and T ∈
AutOF/Pn (Af,n). Let s denote the image of s under restriction to the cohomology group

H1(L,Af,1) = Hom(Gal(Q/L),Af,1).

Let Ls denote the extension of L cut out by this class. Assume without loss of gen-

erality that s belongs to a fixed eigenspace for the action of the complex conjugation

automorphism τ . Let us then write ̟ to denote the eigenvalue of τ acting on s, so

that we have the relation τ · s = ̟s, where ̟ ∈ {±1}. It follows from this assump-

tion that Ls, a priori only Galois over K, is in fact Galois over F. Moreover, since

Af,1 is an irreducible GF-module by Hypothesis 1.1(iii), we can and will make the

identification

Gal(Ls/F) = Af,1 ⋊ Gal(L/F).

Here, Gal(L/F) acts on the normal abelian subgroup Af,1 by the rule

(τ j ,T)(a) = ̟ jTa,(6.1)

where a denotes an element of Af,1, and T denotes the image of T in AutO/P(Af,1).

Since the image of ρf contains SL2(Fp) by Hypothesis 1.1, we can and will identify

AutO/P(Af,1) with SL2(Fp). We deduce from this description that Gal(Ls/F) contains

at least one element (a, τ ,T) such that the following conditions hold:
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1. The automorphism T has distinct eigenvalues ̟ and λ, where the eigenvalue λ
lies in (O/P)×, has order prime to p, and satisfies the property that N(λ) is not

congruent to±1 mod p.

2. The vector a ∈ Af,1 belongs to the ̟-eigenspace for the action of T.

Let us now take v ∤ N to be any prime of F that is unramified in the extension Ls, with

the additional condition that

Frobv(Ls/F) = (a, τ ,T).(6.2)

Observe that infinitely many such primes exist by the Cebotarev density theorem. We

deduce from (6.2) that Frobv(L/F) = (τ ,T), and in particular that v is n-admissible

with respect to f. We now argue that ϑv(s) 6= 0. To see this, fix a prime v above v in L.

Let e denote the degree of the corresponding residue field. Note that e is necessarily

even, as Lv contains the quadratic unramified extension of Fv. Using (6.1) along with

condition 2. for (a, τ ,T), we find that

Frobv(Ls/L) = (a, τ ,T)e
= a + ̟Ta + T

2
a + · · ·̟T

e−1
a = ea.

Here, the addition symbol denotes group multiplication. Recall that we let s denote

the image of s in H1(L,Af,1) = Hom(Gal(Q/L),Af,1) under restriction. Since e is

prime to p by Hypothesis 1.1 (i), we find that

s
(
Frobv(Ls/L)

)
= e · s(a) 6= 0.

Hence, the restriction at v of s does not vanish. Hence, ϑv(s) does not vanish, as

required.

7 The Euler System Argument

Let us first describe the Euler system that we shall construct in the subsequent sec-

tions. This construction and subsequent argument will generalize those of Bertolini–

Darmon [3], or more specifically the refinements of these due to Pollack–Weston

[50]. Fix an integer n ≥ 1. Recall that we write S2(N+,N−) to denote the subspace

of S2(N+N−) consisting of cuspforms that are new at all primes v ⊂ OF dividing

N−. Recall as well that we write T(N+,N−) to denote the algebra of Hecke operators

acting faithfully on S2(N+,N−), with T0(N+,N−) its p-adic completion. Let us now

fix an eigenform f ∈ S2(N+,N−). We shall use the theories of level raising congru-

ences and CM points on Shimura curves over totally real fields to construct for each

n-admissible prime v ⊂ OF with respect to f a class

ζ(v) ∈ Ĥ1(Kp∞ ,Tf,n).(7.1)

Observe that since v is n-admissible, we have the decompositions

Ĥ1(Kp∞,v,Tf,n) = Ĥ1
unr(Kp∞,v,Tf,n)⊕ Ĥ1

ord(Kp∞,v,Tf,n)

= Ĥ1
unr(Kp∞,v,Tf,n)⊕ Ĥ1

sing(Kp∞,v,Tf,n).
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Hence, we may view the homomorphism

ϑv : Ĥ1(Kp∞,v,Tf,n) −→ Ĥ1(Kp∞,v,Tf,n)/Ĥ1
ord(Kp∞,v,Tf,n)

as a projection onto the first component of the first decomposition, and the homo-

morphism

∂v : Ĥ1(Kp∞,v,Tf,n) −→ Ĥ1
sing(Kp∞,v,Tf,n)

as a projection onto the second component of the second decomposition. We shall

deduce in subsequent sections the following explicit reciprocity laws for the classes

(7.1).

Theorem 7.1 (The first explicit reciprocity law) Let f ∈ S2(N+,N−) be a p-ordinary

eigenform, as defined above. Assume that the conditions of Theorem 11.5 and Corol-

lary 11.7 are satisfied. If v ⊂ OF is an n-admissible prime with respect to f, then

ϑv (ζ(v)) = 0. Moreover, the equality ∂v(ζ(v)) = Lf holds in Ĥ1
sing(Kp∞,v,Tf,n) ∼=

Λ/Pn, up to multiplication by elements of O× or Gp∞ .

Proof See Theorem 13.1.

To state the second reciprocity law for these classes (7.1), we require the follow-

ing weak level-raising result at two primes. That is, let v1 and v2 be two distinct

n-admissible primes with respect to f such that

N(vi) + 1− εi · avi
(f) ≡ 0 mod Pn

for each of i = 1, 2, where εi ∈ {±1}.

Proposition 7.2 Let f ∈ S2(N+,N−) be a p-ordinary eigenform, as defined above.

Assume that the conditions of Theorem 11.5 and Corollary 11.7 are satisfied, and more-

over that F is linearly disjoint from the cyclotomic field Q(ζp). There exists a mod Pn

eigenform g with respect to the Hecke algebra T0(N+, v1v2N−) such that the following

congruences hold:

(i) Tw(g) ≡ aw(f) · g mod Pn for all primes w ∤ v1v2N+N− of OF ;

(ii) Uw(g) ≡ aw(f) · g mod Pn for all primes w | N+N− of OF ;

(iii) Uvi
(g) ≡ εi · g mod Pn for i = 1, 2.

Proof See Proposition 11.10.

We then use this result to deduce the following theorem.

Theorem 7.3 (The second explicit reciprocity law) Keep the notations and hypothe-

ses of Proposition 7.2. The equality ϑv1
(ζ(v2)) = Lg holds in Ĥ1(Kp∞,v2

,Tf,n) ∼= Λ/Pn,
up to multiplication by elements of O× or Gp∞ .

Proof See Theorem 13.2.

Observe that since the choice of n-admissible primes v1 and v2 is symmetric in

Theorem 7.3, we obtain the following immediate corollary.
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Corollary 7.4 The equality

ϑv1

(
ζ(v2)

)
= ϑv2

(
ζ(v1)

)

holds in Λ/Pn, up to multiplication by elements of O× or Gp∞ .

The inductive argument. We now prove the main conjecture divisibility, assuming

the existence of an Euler system of classes (7.1) that satisfy the first and second explicit

reciprocity laws (Theorems 7.1 and 7.3). The arguments in this section are essentially

the same as those of [50] (based on those of [3, §4] but removing the unneccesary

p-isolatedness hypothesis), which extend without much trouble to this setting.

Recall that T0(N+,N−) denotes the p-adic completion of the Hecke algebra

T(N+,N−) acting on the space of cusp forms S2(N+,N−). Fix an integer n ≥ 1.

Let us now always view f ∈ S2(N+,N−) as a homomorphism

θf : T0(N+,N−) −→ O0/Pn

in the natural way, by sending Hecke operators to their associated eigenvalues. We

shall often commit an abuse of notation in writing f to denote this homomor-

phism θf.

Definition 7.5 Fix an O-algebra homomorphism ϕ : ΛO → O ′. Here, O ′ is

any discrete valuation ring, with maximal ideal denoted by P ′. Let sf denote the

O ′-length of Sel(f,Kp∞)∨ ⊗Λ O ′. Let 2tf denote the O ′-valuation of ϕ
(
Lp(f,Kp∞)

)

in O ′/ϕ(P ′)n, setting 2tf =∞ if ϕ
(
Lp(f,Kp∞)

)
= 0.

Proposition 7.6 Fix integers n ≥ 1 and t0 ≥ 0. Let f̃ be an O0/Pn+t0
-valued eigen-

form for the completed Hecke algebra T0(N+,N−), with f its projection onto O0/Pn.

Assume that

(i) the homomorphism θf : T0(N+,N−)→ O0/Pn is surjective;

(ii) the first and second explicit reciprocity laws (Theorems 7.1 and 7.3) hold;

(iii) we have the inequality 2tf < 2t0.

Then, we have the inequality sf ≤ 2tf.

Before getting to the proof, let us give the following corollary.

Corollary 7.7 Keep the notations and hypotheses of Proposition 7.6. Then the dual

Selmer group Sel(f,Kp∞)∨ is a torsion Λ-module, hence has a characteristic power series

charΛO
Sel(f,Kp∞)∨. Moreover, there is an inclusion of ideals

(
Lp(f,Kp∞)

)
⊆

(
charΛ Sel(f,Kp∞)∨

)
in Λ.(7.2)

Proof Let X = Sel(f,Kp∞)∨. Observe that to show the divisibility (7.2), it suffices

by Proposition 6.1 to show the containment ϕ(Lf) ∈ FittO ′(X), where ϕ : Λ → O ′

is any homomorphism, and O ′ any discrete valuation ring. Fix a such a ring O ′ and

homomorphism ϕ : Λ → O ′. Observe that if ϕ(Lp(f,K)) = 0, then Lp(f,K) ∈
FittO ′(X) trivially. If ϕ

(
Lp(f,K)

)
6= 0, then let us take t0 to be larger than the
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O ′-valuation of ϕ
(
Lp(f,K)

)
. Using Proposition 7.6 for all n ≥ 0, it follows that

ϕ
(
Lp(f,K)

)
∈ FittO ′ (X). Now, observe that once (7.2) is shown, the nonvanishing

of the p-adic L-function Lp(f,Kp∞) (deduced from [16, Theorem 1.4]) implies that

Sel(f,Kp∞) is Λ-cotorsion. The result follows.

Proof of Proposition 7.6. Let us keep all of the notations defined above. We start by

defining the following classes. Fix an (n + tf)-admissible prime v ⊂ OF with respect

to f. Define from this an (n + tf)-admissible set S = {v} with respect to f, and a

cohomology class

ζ(v) ∈ Ĥ1
S(Kp∞ ,Tf,n+tf

)

as in (7.1). Let ζ ′
ϕ(v) denote the image of ζ(v) in

H1
S(Kp∞ ,Tf,tf+n)⊗ϕ O ′.(7.3)

Note that (7.3) is free of rank 1 over O ′/ϕ(P)n+tf by Theorem 5.11. Let

t = ordP ′
(
ζ ′
ϕ(v)

)
.

Since the residue map ∂v is a homomorphism, Theorem 7.1 implies that

t < ordP ′
(
∂v(ζ ′

ϕ(v))
)
= tf.(7.4)

Let us now write ξ ′ϕ(v) to denote an element of the module (7.3) such that

(P ′)tf · ξ ′ϕ(v) = ζ ′
ϕ(v).

Let ξ ′ ′ϕ (v) denote the image of this element ξ ′ϕ(v) in H1
S(Kp∞ ,Tf,n)⊗ϕ O ′.

Lemma 7.8 The element ξ ′ ′ϕ (v) satisfies the following properties.

(1) ordP ′(ξ
′ ′
ϕ (v)) = 0.

(2) ∂w

(
ξ ′ ′ϕ (v)

)
= 0 for all primes w | vN+ in OF .

(3) ϑv

(
ξ ′ ′ϕ (v)

)
= 0.

(4) ordP ′
(
∂v

(
ξ ′ ′ϕ (v)

))
= tf − t.

(5) ∂v

(
ξ ′ ′ϕ (v)

)
lies in the kernel of the natural surjection

πv : Ĥ1
sing(Kp∞,v,Tf,n) −→ Self,n(Kp∞)∨ ⊗ϕ O ′.

Proof See [3, Lemmas 4.5 and 4.6]. Property (1) follows from the definition of

ξ ′ ′ϕ (v), along with the fact that ordP ′(ζ
′
ϕ(v)) = t . Property (2) follows from the

fact that ζ ′
ϕ(v) ∈ Ĥ1

S(Kp∞ ,Tf,n+tf
), using explicit definitions. Properties (3) and

(4) follow from Theorem 7.1. Property (5) follows from the same argument as [3,

Lemma 4.6], which uses the global reciprocity law of class field theory. .

Using Lemma 7.8, we can show the following proposition.

Proposition 7.9 If tf = 0, then Self,n(Kp∞)∨ is trivial.
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Proof See [3, Proposition 4.7]. If tf = 0, then ϕ (Lf) is a unit. Theorem 7.1 then

implies that the residue ∂v (ζ(v)) generates Ĥ1
sing(Kp∞,v,Tf,n) for v ⊂ OF any n-

admissible prime with respect to f. Observe that this renders the projective map

πv in Lemma 7.8(5) trivial. Let us now suppose that Self,n(Kp∞)∨ were not trivial.

Nakayama’s lemma would then imply that

(
Self,n(Kp∞)[mΛ]

)∨
= Self,n(Kp∞)/mΛ 6= 0.

Here, as above, mΛ denotes the maximal ideal of Λ. We could then choose a class

s 6= 0 in Self,n(Kp∞)/mΛ. By Theorem 5.12, we could then identify this class s with an

element of H1(K,Af,1). By Theorem 6.2, we could then choose another n-admissible

prime q ⊂ OF with respect to f such that ϑq(s) 6= 0. But observe then that the

projection πv cannot be trivial, by the nondegeneracy of the local Tate pairing 〈 , 〉v.

This supplies the desired contradiction.

We are now ready to begin a proof of Proposition 7.6 by induction on tf. By

Proposition 7.9, we may assume without loss of generality that tf > 0. Let us write Π0

to denote the set of (n + t0)-admissible primes for which the valuation ordP ′
(
ζ ′
ϕ(v)

)

is minimal.

Lemma 7.10 Suppose that t = ordP ′(ζϕ(v)) with v ∈ Π0. Then t < tf.

Proof See [3, Lemma 4.8]. Suppose otherwise that the claim did not hold. Then, by

(7.4), it would follow that

ordP ′
(
ζ ′
ϕ(v)

)
= ordP ′

(
ϕ(Lf)

)

for all (n+tf)-admissible primes v ⊂ OF with respect to f. By Theorem 5.12, we could

then find a nontrivial class s in H1(K,Af,1) ∩ Self,n(Kp∞). By Theorem 6.2, we could

then choose an (n+tf)-admissible prime v such that ϑv(s) 6= 0. Lemma 7.8(4) implies

that the natural image of ϑv

(
ζ ′
ϕ(v)

)
in H1(Kv,Tf,1) ⊗ϕ O ′ does not vanish. Lemma

7.8(5) implies that this image is orthogonal under the local Tate pairing 〈 , 〉v to the

nonvanishing class ϑs(v), contradicting the fact that 〈 , 〉v is a perfect, nondegenerate

pairing between the O ′/P ′-vector spaces to which these classes belong.

Let us now fix a prime v1 ∈ Π0. Let s ∈ H1(K,Tf) ⊗ O ′/P ′ denote the image of

ζ ′
ϕ(v) in

Ĥ1
S(Kp∞ ,Tf)⊗ O ′/P ′ ⊂ Ĥ1

S(Kp∞ ,Tf)/mΛ ⊗ O ′/P ′

⊂ Ĥ1
S(K,Tf)⊗ O ′/P ′.

By Theorem 6.2, there exists an (n + t0)-admissible prime v2 such that ϑv2
(s) 6= 0.

Here, ϑv2
: Ĥ1

S(Kp∞,v2
,Tf) → Ĥ1

unr(Kp∞,v2
,Tf). Now, observe that we have the rela-

tions

t = ordP ′
(
ζ ′
ϕ(v1)

)
≤ ordP ′

(
ζ ′
ϕ(v2)

)
≤ ordP ′

(
ϑv1

(ζϕ(v2)
)
.(7.5)
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The first inequality follows from the definition of Π0. The second inequality follows

from the fact that ϑv2
is a homomorphism. Corollary 7.4 to the second explicit reci-

procity law then gives us the relation

ordP ′
(
ϑv1

(
ζ ′
ϕ(v2)

))
= ordP ′

(
ϑv2

(
ζ ′
ϕ(v1)

))
.

Now, since ϑv2
(s) 6= 0, we find that

ordP ′
(
ϑv2

(
ζ ′
ϕ(v2)

))
= ordP ′

(
ζ ′
ϕ(v1)

)
.

It follows that the inequalities of (7.5) are equalities. In particular,

ordP ′
(
ζ ′
ϕ(v2)

)
= t.

Hence, we find that v2 ∈ Π0.

Let g denote the O0/P(n+t0)-valued eigenform associated with f and the pair of

n-admissible primes (v1, v2) with respect to f by Theorem 7.2. By Theorem 7.1, we

have that

ϑv2

(
ζ ′
ϕ(v1)

)
= Lg.

It follows that tg = t < tf. Now, since g satisfies all of the hypotheses of Proposi-

tion 7.6, we may apply the inductive hypothesis to deduce that sg ≤ 2tg. We may now

argue in the same way as [3, pp. 34-35] to conclude the argument. That is, let us

write Sel[v1v2](Kp∞) ⊆ Self,n(Kp∞) to denote the subgroup of classes that are trivial at

primes dividing v1v2. Let Self
v1v2

(Kp∞) denote the group defined by the exactness of

the sequence

0 −→ Self
v1v2

(Kp∞) −→ Self,n(Kp∞)∨ −→ Sel[v1v2](Kp∞)∨ −→ 0.(7.6)

Observe that by applying local Tate duality (Proposition 5.4) to the natural inclusion

Self
v1v2

(Kp∞)∨ ⊆ H1
unr(Kp∞,v1

,Af,n)⊕H1
unr(Kp∞,v2

,Af,n),

we obtain a natural surjection

ηf : Ĥ1
sing(Kp∞,v1

,Tf,n)⊕ Ĥ1
sing(Kp∞,v2

,Tf,n) −→ Self
v1v2

(Kp∞).

Let ηϕf denote the map obtained from ηf after tensoring with O ′ via ϕ. By Lemma 5.7,

the domain of ηf is isomorphic to (O ′/ϕ(P)n)2. Lemma 7.8(5) implies that ker(ηϕf )

contains the vectors (∂v1
(ξ ′ ′ϕ (v1)), 0) and (0, ∂v2

(ξ ′ ′ϕ (v2))) in

(
Ĥ1

sing(Kp∞,v1
,Tf,n)⊕ Ĥ1

sing(Kp∞,v2
,Tf,n)

)
⊗ϕ O ′ ∼=

(
O ′/ϕ(P)n

) 2
.

Observe that by of Lemma 7.8(3), we have the equalities

tf − tg = ordP ′
(
∂v1

(
ξ ′ ′ϕ (v1)

))
= ordP ′

(
∂v2

(
ξ ′ ′ϕ (v2)

))
.
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Thus, we obtain the inclusion

(P ′)tf−tg ∈ FittO ′
(

Self
v1v2

(Kp∞)⊗ϕ O ′
)
.(7.7)

Let us now repeat the same argument for the eigenform g. That is, consider the short

exact sequence

0 −→ Selg
v1v2

(Kp∞) −→ Selg,n(Kp∞)∨ −→ Sel[v1v2](Kp∞)∨ −→ 0(7.8)

and the natural surjective map induced by local Tate duality

ηg : Ĥ1
sing(Kp∞,v1

,Tg,n)⊕ Ĥ1
sing(Kp∞,v2

,Tg,n) −→ Selg
v1v2

(Kp∞).

Let ηϕg denote the map obtained from ηg after tensoring with O ′ via ϕ. The global

reciprocity law of class field theory implies that ker(ηϕg ) contains the vectors
(
ϑv1

(ξ ′ ′ϕ (v2)), 0
)

and
(
ϑv1

(ξ ′ ′ϕ (v1)), ϑv2
(ξ ′ ′ϕ (v1))

)
=

(
0, ϑv2

(ξ ′ ′ϕ (v1))
)

in
(

Ĥ1
sing(Kp∞,v1

,Tg,n)⊕ Ĥ1
sing(Kp∞,v2

,Tg,n)
)
⊗ϕ O ′ ∼=

(
O ′/ϕ(P)n

) 2
.

By Corollary 7.4,

ordP ′
(
ϑv1

(
ξ ′ ′ϕ (v2)

))
= ordP ′

(
ϑv2

(
ξ ′ ′ϕ (v1)

))
= tg − t = 0.

It follows that Selg
v1v2

(Kp∞) ⊗ϕ O ′ is trivial, in which case the natural surjective map

of (7.8) defines an isomorphism

Selg,n(Kp∞)∨ −→ Sel[v1v2](Kp∞)∨.(7.9)

Now, Lemma 7.10 implies that tg < tf. Recall that since g satisfies the hypotheses of

Proposition 7.6, we may invoke the inductive hypothesis to conclude that

ϕ
(
Lg

) 2
∈ FittO ′

(
Selg,n(Kp∞)∨ ⊗ϕ O ′

)
.(7.10)

Now,

(P ′)2tf = (P ′)2(tf− tg) · (P ′)2tg

∈ FittO ′
(

Self
v1v2

(Kp∞)⊗ϕ O ′
)
· FittO ′

(
Selg,n(Kp∞)∨ ⊗ϕ O ′

)

by (7.7) and (7.10). The isomorphism (7.9) gives an inclusion

FittO ′
(

Self
v1v2

(Kp∞)⊗ϕ O ′
)
· FittO ′

(
Selg,n(Kp∞)∨ ⊗ϕ O ′

)

⊆ FittO ′
(

Self
v1v2

(Kp∞)⊗ϕ O ′
)
· FittO ′

(
Sel[v1,v2](Kp∞)∨ ⊗ϕ O ′

)
.

The short exact sequence (7.6) and the theory of Fitting ideals then give

FittO ′
(

Self
v1v2

(Kp∞)⊗ϕ O ′
)
· FittO ′

(
Sel[v1v2](Kp∞)∨ ⊗ϕ O ′

)

⊆ FittO ′
(

Self,n(Kp∞)∨
)
.

In particular, we may conclude that

ϕ
(
Lf

) 2
∈ FittO ′

(
Self,n(Kp∞)∨ ⊗ϕ O ′

)
,

which proves Proposition 7.6.
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8 Integral Models of Shimura Curves

We collect here some facts about integral models of Shimura curves over totally real

fields, following the works of Carayol [9], Cerednik [11], Drinfeld [20], and Var-

shavsky [64, 65], as required for the Euler system construction. The reader should

note that in some places, in particular where we describe the work(s) of Carayol [9],

we assume for simplicity that the degree d of the totally real field is greater than 1.

This, however, does not affect the validity of the results stated below, for which the

d = 1 cases have already been established (see also the article of Buzzard [8]).

Reduction at split primes. Fix an indefinite quaternion algebra B over F as above,

ramified at all the real places of F save a fixed real place τ1. Fix a finite prime v ⊂ OF

where B is split. Hence, we may fix an isomorphism Bv
∼= M2(Fv).

Integral models. Fix a compact open subgroup H ⊂ B̂×. Let us assume that H

factorizes as Hv × Hv, with Hv ⊂ B×
v assumed to be maximal, i.e., isomorphic to

GL2(OFv
). The following theorem was first proved by Morita [47], then subsequently

generalized by Carayol in [9]. Recall that we let MH denote the quaternionic Shimura

curve associated to the complex manifold MH(C) = MH(B,X)(C).

Theorem 8.1 (Morita–Carayol) Fix a finite prime v ⊂ OF that splits the quaternion

algebra B. Let H ⊂ B̂× be any compact open subgroup admitting the factorization

Hv × Hv, with Hv
∼= GL2(OFv

). Then, the Shimura curve MH has good reduction at

v. In particular, there exists a smooth proper model MH of MH over O(v). This model is

unique up to isomorphism.

Proof See [9, 47], where the result is proved for Hv “sufficiently small”. If Hv is not

“sufficiently small”, then it is still possible to obtain an integral model MH of MH over

O(v), as explained in [33, §12] or [15, §3.1.3] (cf. [37, p. 508]). That is, let H
′v ⊂ Hv

be any sufficiently small, compact, open, normal subgroup, and put H ′
= H

′v ×Hv.

We can then define MH to be the quotient of MH ′ by the O(v)-linear right action of

H/H ′. It is then possible to show that this model MH is proper and regular if Hv

is maximal. Moreover, this construction does not depend on the choice of auxiliary

H
′v.

Supersingular points. Recall that we fix an isomorphism Bv
∼= M2(Fv). To be con-

sistent with the notations of Carayol [9], let us write H0
v to denote the compact open

subgroup of B×
v corresponding to GL2(OFv

) under this isomorphism. Given an in-

teger n ≥ 1, let Hn
v ⊂ H0

v denote the subgroup corresponding to matrices that are

congruent to 1 mod vn. Given any integer n ≥ 0, we then write Mn,Hv = MHn
v ×Hv to

denote the associated Shimura curve. Let M0,Hv denote the integral model of M0,Hv

over O(v). Consider the right action of the quotient group H0
v/Hn

v
∼= GL2(OFv

/vn) on

the OFv
-module (v−n/OFv

)2 given by the rule

g ∈ GL2(OFv
/vn) sends h ∈

(
v−n/OFv

) 2
to g−1 · h.

This same group H0
v/Hn

v acts on the Shimura curve Mn,Hv via the quotient M0,Hv . If

Hv is “sufficiently small” in the sense of [9], then this action is free. One can then
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define a scheme of OFv
-modules over M0,Hv :

En =
(

Mn,Hv ×
(

v−n/OFv

) 2)
/GL2(OFv

/vn).

These En form a compatible system with respect to the indices n and Hv, and the in-

ductive limit E∞ := limn En is the Barsotti–Tate group associated with the projective

limit

M∞ := lim
←−

Hv

M0,Hv .

A variant of the main method of [9] can be used to find unique extensions of

the groups En to finite, locally free group schemes En over the smooth, proper

O(v)-schemes M0,Hv . As before, the inductive limit E∞ := limn En is the Barsotti–

Tate group associated with the projective limit

M∞ := lim
←−

H

M0,Hv .

The group E∞ has also been studied by Drinfeld [21] (cf. also [9, Appendice]) as a

“divisible OFv
-module of height 2”. In particular, this description gives the following

classification of points. Let x be a point in the special fibre M0,Hv ⊗ κv. Consider the

covering M∞ → M0,Hv , and choose a lift y of x. Consider the pullback of E∞/M∞

with respect to the map y : Spec (κv) → M∞. The resulting OFv
-module, written

here as E∞|x, does not depend on choice of y. Drinfeld’s theory shows that there are

only two possibilities for this module:

(i) E∞|x ∼=
(
Fv/OFv

)
× Σ1. Here,

(
Fv/OFv

)
is the constant divisible OFv

-module,

and Σ1 the unique formal OFv
module of height 1.

(ii) E∞|x ∼= Σ2. Here, Σ2 is the unique formal OFv
-module of height 2.

Hence, we can make the following definition.

Definition 8.2 A geometric point x in the special fibre M0,Hv ⊗ κv is ordinary if

E∞|x ∼=
(
Fv/OFv

)
× Σ1, and supersingular if E∞|x ∼= Σ2.

Carayol [9, §11] shows that the set of supersingular points Mss
0,Hv⊗κv of M0,Hv⊗κv

is finite and nonempty. That is, let D denote the quaternion algebra obtained from B

by switching invariants at τ1 and v. Hence,

Ram(D) = Ram(B) ∪ {τ1, v}.

Proposition 8.3 (Carayol) Let Mss
0,Hv = M0,Hv ⊗ κv denote the set of supersingular

points of M0,Hv ⊗ κv. There are bijections of finite sets

Mss
0,Hv
∼= D×\B̂v× × F×

v /Hv × O
×
Fv

∼= D×\D̂×/Hv × O
×
Dv
.

Proof See [9, § 11.2] for the case of d > 1. The result for d = 1 is well known; see

for instance the paper of Ribet [53].
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Geometric connected components. Let Mn,nrd(H) denote the set of geometric con-

nected components of Mn,H , viewed as a finite F-scheme. Let Mn,Hv denote the nor-

malization of M0,Hv in Mn,Hv . (Carayol in [9], using the theory of Drinfeld bases

with an analogue of the Serre-Tate theorem, shows that Mn,Hv is an integral model

of Mn,Hv over O(v). Moreover, it is a regular scheme, finite and flat over M0,Hv ). The

reciprocity law for canonical models gives an isomorphism

Mn,nrd(H) −→ Spec (F ′).

Here, F ′ is a certain finite abelian extension of F. Hence, Mn,nrd(H) extends in a natu-

ral way to a normal O(v)-scheme

Mn,nrd(H) −→ Spec (O ′
(v)),

with O ′
(v) the ring of v integers of F ′. The structural morphism of Mn,H in Mn,nrd(H)

is then shown by Carayol [9] to extend to a morphism

Mn,H −→Mn,nrd(H).(8.1)

This morphism is smooth outside of the finite set of supersingular points. Moreover,

if x is a geometric point in the special fibre Mn,nrd(H)⊗κ, then the fibre over x in (8.1)

is given by a union of smooth irreducible curves indexed by P1(OFv
/vn) that intersect

transversally at each supersingular point and nowhere else.

Reduction at ramified primes. We now consider the reduction of a Shimura curve

modulo a prime that divides the discriminant of the underlying quaternion algebra.

Admissible curves. Let us for future reference establish the notion of an admissible

curve, following Jordan–Livné [35, § 3]. Let R be the ring of integers of any local field,

with κ the residue field, and π a uniformizer.

Definition 8.4 A curve C defined over R is said to be admissible if:

(i) C is proper and flat over R, with a smooth generic fibre.

(ii) The special fibre of C is reduced. The normalization of each of its irreducible

components is isomorphic to P1
κ. The only singular points on the special fibre

of C are κ-rational, ordinary double points.

(iii) The completion of the local ring of C at any one of its singular points x is iso-

morphic as an R-algebra to R[[X,Y ]](XY−πm(x)) for some uniquely determined

integer m(x) ≥ 1.

The special fibre of an admissible curve C/R can be described as a graph, following

[39]. In general, a graph G = (V,E) here consists of a vertex set V and an edge set E.

We fix an orientation of G, i.e., a pair of maps s, t : E → V that associates with each

edge e ∈ E a source s(e) and a target t(e). Each edge e then has an associated opposite

edge e such that s(e) = t(e) with e = e. (The possibility that e = e is allowed.) A

graph G is said to have a length if there exists a function

l = lG : E −→ N = {1, 2, 3, . . . }
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with l(e) = l(e). Such a graph has the following standard representation: a marked

point corresponds to a vertex; a line joining two marked points corresponds to a pair

of edges {e, e}, and has “length” l(e) = l(e).

Definition 8.5 Let C be an admissible curve over R, and C0 its special fibre. The

dual graph G(C) = (V(C),E(C)) of C is the following graph:

(i) The vertex set V(C) consists of the components of C0.

(ii) The edge set E(C) consists of the branches of C0 through each double point of

C0.

(iii) If an edge e ∈ E(C) passes through a double point x ∈ C0, then e is the other

branch of C0 passing through x. Moreover, s(e) is the component of C0 con-

taining x, and t(e) = s(e).

(iv) The lenth l(e) of an edge e ∈ E(C) passing through a double point x is the

uniquely determined integer m(x) defined above.

Mumford–Kurihara uniformization. Fix a finite prime v of F. Let Cv denote the

completion of a fixed algebraic closure of Fv. Let Ω̂ = Ω̂Fv
denote the v-adic upper

half plane over Fv, viewed as a formal scheme over OFv
. Hence, Ω̂ is flat and locally

of finite type over OFv
. It is regular and irreducible, and supports a natural action of

PGL2(Fv). The generic fibreΩ of Ω̂, which also supports a natural action of PGL2(Fv),

is a rigid analytic space with Cv-points given by

Ω(Cv) = P1
Cv
− P1

Fv
= Cv − Fv.

We refer the reader to [7, 35, 48] for further background on this construction. Let us

just collect the following crucial facts:

(i) The special fibre of Ω̂ is reduced and geometrically connected. Its components

are smooth, projective, κv-rational curves that intersect transversally.

(ii) The dual graph of Ω̂v equipped with its natural PGL2(Fv)-action is identified

canonically with the Bruhat–Tits tree ∆ = (V(∆),E(∆)) of SL2(Fv) (as con-

structed for instance in [48, §1]).

(iii) If Γ ⊂ PGL2(Fv) is a discrete, cocompact subgroup, then the quotient Γ\Ω̂ is

a formal scheme over OFv
, identified canonically with the completion of some

scheme ΩΓ over OFv
along its closed fibre.

Theorem 8.6 (Mumford–Kurihara) If Γ ⊂ PGL2(Fv) is any discrete, cocompact

subgroup, then the associated scheme ΩΓ is an admissible curve over OFv
whose dual

graph is canonically isomorphic to Γ\∆ minus loops.

Proof See [48] for the torsionfree case, and [39] for the general case.

Cerednik–Varshavsky uniformization. Fix a finite prime v ⊂ OF . Let Funr
v denote

the maximal unramified extension of Fv, with Ounr
Fv

its ring of integers. Let

Ω̂
unr

= Ω̂×Spf(OFv ) Spf(Ounr
Fv

).
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Following Drinfeld [20], we define a natural action of GL2(Fv) on Ω̂
unr as follows: for

any γ ∈ GL2(Fv) and (x, u) ∈ Ω̂
unr,

γ · (x, u) =
(

[γ]x, Frobn(γ)
v u

)
.

Here, [γ] denotes the class of γ in PGL2(Fv), and n(γ) = −ordv(det(γ)). Suppose

now that Γ ⊂ GL2(Fv) is a discrete cocompact subgroup containing some power of

the matrix
(

πv 0
0 πv

)
. Then the quotient Γ\Ω̂unr exists, and is given canonically by the

completion of a scheme Ω
unr
Γ

along its closed fibre. This scheme Ω
unr
Γ

is, moreover,

an admissible curve over OFv
.

Let N+ and N− be relatively coprime ideals of OF . Let N = N+N−. Suppose that

N− is the squarefree product of a number of primes congruent to d mod 2. Fix a

prime divisor q of N−. Let v be a finite prime of F that does not divide N. Let B, B ′,

and D be the quaternion algebras over F with ramification sets given by

Ram(B) = {τ2, . . . τd} ∪ {w : w | N−/q},

Ram(B ′) = Ram(B) ∪ {v, q},

Ram(D) = Ram(B) ∪ {τ1, q}.

Hence, B is indefinite with disc(B) = N−/q, B ′ is indefinite with disc(B ′) = vN−,

and D totally definite with disc(D) = N−. Note that we have isomorphisms B̂vq ∼=
B̂ ′vq ∼= D̂vq. Let us fix compatible isomorphisms B̂vq ∼= B̂ ′vq, B̂q ∼= D̂q, B̂ ′v ∼= D̂v.
In particular, let us fix an isomorphism ϕ : D̂v ∼= B̂ ′v. Fix a compact open subgroup

U ⊂ D̂× of level N+. Let us assume that

U v
= US

∏
w /∈S∪{v}

Uw,

where S ⊃ Ram(D) is any finite set of places of F. Let us then define

H ′
= ϕ (U v)× O

×
B ′v
.

Theorem 8.7 (Cerednik–Varshavsky) Let MH ′ be a Shimura curve as defined above.

Suppose that H ′ admits the factorization H ′
= H ′

v × H
′v, with H ′

v maximal. Then

there exists an integral model MH ′ of MH ′ over O(v) whose completion along its closed

fibre is canonically isomorphic to

VH ′ = GL2(Fv)\Ω̂unr × D×\D̂×/U v.(8.2)

This canonical isomorphism is B̂ ′×v-equivariant, where B̂ ′×v acts on MH ′ in the natural

way, and on VH ′ via its action on the finite set D×\D̂×/U v.

Proof See [51, §3.1]. Existence of the integral model MH ′ follows from Varshavsky

[65, Theorem 5.3], taking r = 1, v1 = v, D = D, Dint
= B ′, and G ′

= D̂×v. Note that

the conditions of [65, Theorem 5.3] are satisfied by [64, 1.5.2]. Identification of the

completion of MH ′ along its closed fibre with VH ′ is then a consequence of Cerednik

[11, Theorem 2.2].
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By Theorem 8.6, MH ′ is easily seen to be an admissible (hence semistable) curve

over OFv
, with dual graph G(MH ′) given canonically by

G(MH ′) = GL2(Fv)+\∆× D×\D̂×/U v.(8.3)

Here, GL2(Fv)+ ⊂ GL2(Fv) denotes the subset of matrices whose determinants have

even v-adic valuation, and ∆ = (V(∆),E(∆)) is the Bruhat–Tits tree of SL2(Fv).

Corollary 8.8 Let G(MH ′) = (V(MH ′),E(MH ′)) denote the dual graph of the special

fibre of MH ′ . We have the following identifications:

V(MH ′) ∼= D×\D̂×/U × Z/2Z, E(MH ′) ∼= D×\D̂×/U (v).

Here, U = Uv ×U v with Uv
∼= GL2(OFv

), and

U (v) =
{

u ∈ U : uv
∼=

(
∗ ∗
0 ∗

)
mod ̟v

}
.

Proof See [51, 3.2]. The result is easy to deduce from the standard identifications

V(∆) ∼= PGL2(Fv)/PGL2(OFv
) and E(∆) ∼= GL2(Fv)+/V0(v)F×, where V0(v) ⊂

GL2(OFv
) denotes the matrices congruent to 0 mod v.

Orientation of the dual graph. Let us from now on fix the following orientation of

the dual graph G(MH ′) = (V(MH ′),E(MH ′)) via (8.3). That is, let us call a vertex

in V(∆) even or odd according to its distance from the origin vertex corresponding

to the local maximal order M2(OFv
) (see [66, § II.2]). Since GL2(Fv)+ consists of

matrices having even v-adic valuation, its action by conjugation on maximal orders

is seen to send even vertices to even vertices, and odd vertices to odd vertices. In

particular, the notions of even and odd vertices on the quotient graph GL2(Fv)+\∆
are well defined. Hence, the notions are also well defined on the dual graph G(MH ′).

We then chose an orientation s, t : E(MH ′) → V(MH ′) such that for any edge e ∈
E(MH ′), the source s(e) is even, and the target t(e) is odd.

9 Character Groups and Connected Components

Fix a Shimura curve M = MH associated with an indefinite quaternion algebra B, as

above. Fix a prime v ⊂ OF . Let Fv2 denote the quadratic unramified extension of

Fv. Assume that the level H factorizes as H = Hv × Hv, with Hv ⊂ B×
v maximal.

Let M = MH denote the integral model of M over OFv
basechanged to OFv2 . Hence,

M is the basechange of the integral model of Theorem 8.1 if v does not divide the

discriminant of B, or else the basechange of the integral model of Theorem 8.2 if v

does divide the discriminant of B. Write

• J for the Jacobian of M,
• J for the Néron model of J ⊗F Fv2 over OFv2 ,
• Jv for the special fibre J⊗ κv2 ,
• J0

v for the component of the identity of Jv,
• Φv for the group of geometric connected components Jv/J0

v.
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Definition 9.1 Let Tor(J0
v) denote the maximal subtorus of J0

v . The group Xv =

Hom(Tor(J0
v),Gm) is the character group associated with Jv.

We have two different descriptions of the character group Xv and the group of

connected components Φv: a combinatorial one due to Raynaud [52], and a coho-

mological one due to Grothendieck [27]. Following Edixhoven [22], we combine

these to obtain a third description, which we shall use later to describe the specializa-

tion of divisors in the group of connected components Φv.

Dual graph description. Let Gv = (V(Gv),E(Gv)) be the dual graph associated with

the special fibre M ⊗ κv2 . (In the case where v does not divide the discriminant of

B, the dual graph of M is defined in the same way as for admissible curves). Let

Z[V(Gv)] denote the module of formal divisors supported on V(Gv) with coefficients

in Z, and Z[V(Gv)]0 the submodule of divisors having degree zero on each connected

component of V(Gv). Let Z[E(Gv)] denote the module of formal divisors supported

on E(Gv) with coefficients in Z. Fixing an orientation s, t : E(Gv) → V(Gv), we then

define boundary and coboundary maps respectively by

d∗ = t∗ − s∗ : Z[E(Gv)] −→ Z[V(Gv)],

d∗
= t∗ − s∗ : Z[V(Gv)] −→ Z[E(Gv)].

Theorem 9.2 (Raynaud) There is a canonical short exact sequence

0 −−−−→ Xv −−−−→ Z[E(Gv)]
d∗

−−−−→ Z[V(Gv)]0 −−−−→ 0,(9.1)

as well as a canonical isomorphism Xv
∼= H1(Gv,Z). In particular, there is an isomor-

phism Xv
∼= ker(d∗).

Proof See [52, Proposition 8.1.2] or [5, Theorem 9.6/1] with the discussion in [35].

The result is also described in [22, §1].

Corollary 9.3 Assume that v does not divide the discriminant of B and that H has the

factorization Hv ×Hv with Hv maximal. Then, Xv
∼= Z[E(Gv)]0.

Proof The result follows from Carayol’s description of singular (= supersingular)

points of M0,Hv , cf. [3, Proposition 5.3].

Corollary 9.4 Assume that v does not divide the discriminant of B, and that H has the

factorization Hv × Hv with Hv maximal. Choose an orientation s, t : E(Gv) → V(Gv)

such that for any edge e ∈ E(Gv), the source s(e) is even, and the target t(e) is odd.

Then, writing δ∗ to denote the restriction of the coboundary map d∗ to Z[E(Gv)]0, the

character group Xv fits into the short exact sequence

0 −−−−→ Xv −−−−→ Z[E(Gv)]0
δ∗

−−−−→ Z[V(Gv)]0 −−−−→ 0.

Proof We claim that with this choice of orientation, the elements of H1(Gv,Z) be-

long to Z[E(Gv)]0, cf. [3, Proposition 5.5].
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Vanishing cycles description. The character group Xv can also be described in lan-

guage of vanishing cycles of [27, § XIII and XV] to give the following main result.

Theorem 9.5 (Grothendieck) There is a canonical short exact sequence

0 −−−−→ Xv

λ
−−−−→ X̂v −−−−→ Φv −−−−→ 0.

Here, X̂v denotes the Z-dual of Xv, and λ denotes the canonical injection induced by

the monodromy pairing of [27, §9]. In particular, there is a canonical isomorphism

coker(λ) ∼= Φv.

Proof See [27, Théorème 11.5]. The result is also described in [22, §1].

Comparison description (Edixhoven). Following [22, (1.6)], we may then compare

the descriptions of Raynaud and Grothendieck via the following commutative dia-

gram, whose rows and columns are exact:

0 0
y

y

Xv

id
−−−−→ Xvy

yλ

0 −−−−→ Z[V(Gv)]
d∗

−−−−→ Z[E(Gv)] −−−−→ X̂v −−−−→ 0
y− id

y d∗

y

0 −−−−→ Z[V(Gv)]
µ0

−−−−→ Z[V(Gv)]0 −−−−→ Φv −−−−→ 0
y

y

0 0

Here, the composition of µ0 with the natural inclusion Z[V(Gv)]0 → Z[V(Gv)] is

given by the map

µ : Z[V(Gv)] −→ Z[V(Gv)], µ(C) =
∑

C ′

(C ·C ′)C ′,

where C,C ′ ∈ V(Gv) are irreducible components of the special fibre M ⊗ κv2 , and

(C ·C ′) ∈ Z is their intersection product on M⊗OFv2 . We refer the reader to [22, §1]

or [49, 1.6.5] for more details.

Specialization to connected components. Fix a Shimura curve M = MH as above,

associated with an indefinite quaternion algebra B over F. Fix a prime v ⊂ OF that

divides the discriminant of B.

Proposition 9.6 There is a natural map ωv : Z[V(Gv)]0 → Φv.
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Proof See the argument of [3, Corollary 5.12] (or that of [43, § 4.4], where it is

applied to each connected component of Gv). Let us write the short exact sequence

(9.1) as

0 −−−−→ Xv

γ
−−−−→ Z[E(Gv)]

d∗
−−−−→ Z[V(Gv)]

deg

−−−−→ Z −−−−→ 0,

where deg denotes the degree map. Taking distinguished bases for Z[E(Gv)] and

Z[V(Gv)], we can then consider the dual exact sequence

0 −−−−→ Z
diag

−−−−→ Z[V(Gv)]
d∗

−−−−→ Z[E(Gv)]
γ̂

−−−−→ X̂v −−−−→ 0,

where diag denotes the diagonal map. Let λ0 : Z[E(Gv)]→ Z[E(Gv)] denote the map

induced by the monodromy pairing of [27, § 9]. We then deduce that the map λ in

the short exact sequence

0 −−−−→ Xv

λ
−−−−→ X̂v

cv

−−−−→ Φv −−−−→ 0,

of Theorem 9.5 must be given by the composition γ̂ ◦ λ0 ◦ γ. The sought after map

ωv can then be defined as follows:

ωv : Z[V(Gv)]0 −→ Φv

x 7−→ (cv ◦ γ̂ ◦ λ0) (y),

where y is chosen such that d∗(y) = x.

Specialization of divisors. Let Div(M) denote the group of divisors on M ⊗F F hav-

ing coeffients in Z. Let Div0(M) denote subgroup of divisors having degree 0 on

each connected component of M ⊗F F. Hence, the class of a divisor D ∈ Div0(M)

under linear equivalence corresponds to an element [D] of J(F). Given a divisor

D ∈ Div(M), let Supp(D) denote its support. Let

redv : M ⊗F F −→ V(Gv) ∪ E(Gv)

denote the map that sends a point P to either the connected component containing

its image in M ⊗ κv2 if P does not reduce to a singular point, or else to its image in

M⊗ κv2 (a singular point). We consider divisors

D =

∑

P

nPP ∈ Div0(M)

for which the following conditions hold:

(i) Each P ∈ Supp(D) is defined over Fv2 .

(ii) The image of each P ∈ Supp(D) under redv goes to a vertex in V(Gv), i.e., the

image of each P in M⊗ κv2 is a nonsingular point.
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Let us for future reference call any such divisor Fv2 -nonsingular. The reduction mod

v of such a divisor D then takes the form

redv(D) =
∑

P

nP · redv(D) ∈ Z[V(Gv)]0.

Now, consider the specialization map ∂v : J(Fv2 )→ Φv.

Proposition 9.7 Let D ∈ Div0(M) be an Fv2 -nonsingular divisor, with [D] its class in

J(Fv2 ). Then, ∂v([D]) = ωv(redv(D)).

Proof The image ∂v ([D]) can be described in terms of intersection numbers via

Raynaud’s description of Φv, following the argument of [22, § 2] (cf. [3, Proposi-

tion 5.14], [49, 1.6.6]). The result is then simple to deduce.

10 Hecke Module Correspondences

Let us return to the setup of Theorem 8.7, keeping all of the notations and hypotheses

as above. We must first introduce some more precise notations. To this end, suppose

we are given coprime ideals M+ and M− of OF , where M− is the squarefree prod-

uct of a number of primes congruent to d − 1 mod 2. We shall henceforth write

M(M+,M−) to denote the Shimura curve of level M+ associated with the indefinite

quaternion algebra of discriminant M−. (Here “indefinite” means that the under-

lying quaternion algebra is ramified at all but one of the real places of F, hence the

condition on M−). Fix a prime v ⊂ OF that does not divide M+M−. We assume that

the level of M(M+,M−) is maximal at v, in which case there exists an integral model

M(M+,M−) of M(M+,M−) over OFv
(due to Carayol in the case where v ∤ M−, or

Cerednik–Varshavsky in the case where v | M−). Let J(M+,M−) denote the Jaco-

bian of M(M+,M−), with J(M+,M−) its Néron model over OFv
, and J0

v(M+,M−)

the component of the identity of its special fibre. Let Xv(M+,M−) denote the char-

acter group of the maximal torus of J0
v(M+,M−). Given an ideal m ⊂ OF that does

not divide M+M−, let M(m; M+,M−) denote the Shimura curve M(M+,M−) with

maximal level structure at primes dividing m inserted. Hence, M(mM+,M−) is the

Shimura curve of mM+-level structure associated with the indefinite Shimura curve

of discriminant M−, with the extra condition that the level be maximal at primes

dividing m.

Suppose now that we are given two coprime ideals N+ and N− of OF such that

N− is the squarefree product of a number of primes congruent to d mod 2. Given

a ring O, recall that we let S2(N+,N−;O) denote the space of O-valued automorphic

forms of weight 2 and level N+ on the totally definite quaternion algebra of discrim-

inant N− over F. Let T(N+,N−) denote the associated algebra of Hecke operators.

Given an ideal n ⊂ OF that does not divide the product N+N−, let S2(n; N+,N−; Z)

denote the space of forms of level nN+, with the level being maximal at primes di-

viding n. Fix a prime v ⊂ OF that does not divide the product N+N−. Let us now

take M+
= N+ and M−

= vN− in the setup above. In particular, we consider the

Shimura curve M(N+, vN−), with Xv(N+, vN−) the associated character group, and

Gv = (V(Gv),E(Gv)) the associated dual graph. Putting things together, we obtain the
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following diagram à la Ribet [54], where the rows are exact, and the vertical arrows

are isomorphisms:

Xq(vq; N+, N−/q) −→ Xq(q; N+, N−/q)2

x
x

Div0
(

M(vq; N+, N−/q)ss ⊗ κq

)
−→ Div0

(
M(q; N+, N−/q)ss ⊗ κq

)2

x
x

Xv(N+, vN−) −→ Z[E(Gv)]
d∗
−→ Z[V(Gv)]0

y
y

y

Xv(N+, vN−) −→ Z[D×\D̂×/U (v)] −→ Z[D×\D̂×/U ]0 × Z/2Z
y

y
y

S2(U (v),D; Z)v-new −→ S2(U (v),D; Z)
α∗,β∗
−−−→ S2(U ,D; Z)⊕2

(10.1)

Here, we start with the exact sequence of Theorem 9.2. The identifications

Z[E(Gv)] ∼= Z[D×\D̂×/U (v)], Z[V(Gv)]0 ∼= Z[D×\D̂×/U ]0 × Z/2Z

come from Corollary 8.8, making the bottom exact sequence a direct consequence of

definitions. The identification

Z[D×\D̂×/U ]0 ∼= Div0
(

M(q; N+,N−/q)ss ⊗ κq

)

comes from Proposition 8.3. The identification

Z[E(Gv)] ∼= Div0
(

M(vq; N+,N−/q)ss ⊗ κq

)

is deduced from Corollary 9.4. The identifications

Div0
(

M(vq; N+,N−/q)ss ⊗ κq

)
∼= Xq(vq; N+,N−/q),

Div0
(

M(q; N+,N−/q)ss ⊗ κq

)
∼= Xq(q; N+,N−/q)

come from Corollary 9.3. In particular, we use (10.1) deduce the following result.

Recall that we write ηv =
(

0 1
0 ̟v

)
, where ̟v is a fixed uniformizer of v. Let us write

the associated monodromy exact sequences of Theorem 9.5 as

Xv(N+, vN−)
λ

−−−−→ X̂v(N+, vN−) −−−−→ Φv(N+, vN−),

Xq(vq; N+,N−/q)
λ(vq)
−−−−→ X̂q(vq; N+,N−/q) −−−−→ Φq(vq; N+,N−/q),

Xq(q; N+,N−/q)
λ(q)
−−−−→ X̂q(q; N+,N−/q) −−−−→ Φq(q; N+,N−/q).

https://doi.org/10.4153/CJM-2012-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-002-x


On the Dihedral Main Conjectures for Hilbert Modular Eigenforms 449

Theorem 10.1 We have the following diagram of T(vq; N+,N−/q)-modules, where

the rows are exact:

X̂v(N+, vN−) ←−−−− X̂q(vq; N+,N−/q)
1∗⊕ηv∗

←−−−− X̂q(q; N+,N−/q)2

xλ

xλ(vq)

xλ(q)

Xv(N+, vN−) −−−−→ Xq(vq; N+,N−/q) −−−−→ Xq(q; N+,N−/q)2.

Proof We extract the bottom exact sequence from that of the top of (10.1). The top

exact sequence is then induced by duality.

Corollary 10.2 (Jacquet–Langlands)

(i) We have the following diagram of T(N+,N−)-modules, where the rows are exact:

X̂v(N+, vN−) ←−−−− X̂q(vq; N+,N−/q)
1∗⊕ηv∗

←−−−− X̂q(q; N+,N−/q)2

xλ

xλ(vq)

xλ(q)

Xv(N+, vN−) −−−−→ Xq(vq; N+,N−/q) −−−−→ Xq(q; N+,N−/q)2.

(ii) The subring of of End( J(N+, vN−)) generated by Hecke correspondences on

M(N+, vN−) is isomorphic to the Hecke algebra T(N+,N−).

Proof To show (i), we simply take into account the identifications induced by the

vertical arrows of (10.1) to obtain a diagram of T(N+,N−)-modules. The result

then follows from the Jacquet–Langlands correspondence. Since M(N+, vN−) ⊗ Fv

has a semistable model over OFv
, the general theory of Néron models (see [5, §9],

[49, 1.6.2]) shows that J(N+, vN−) has purely toric reduction at v. Hence, the Hecke

algebra T(N+, vN−) acting faithfully on Xv(N+, vN−) can be identified with the sub-

algebra of End( J(N+, vN−)) generated by Hecke correspondences. The result then

also follows from the Jacquet–Langlands correspondence.

11 Weak Level Raising

Recall that given a quaternion algebra B and a level H ⊂ B̂×, we let T = T(H,B)

denote the Z-algebra generated by the standard Hecke operators Tw and Sw for all

primes w ⊂ OF (where they are defined). Let us adopt the convention of writing Uw

for the operators Tw if w ⊂ OF is a prime that divides the level.

Definition 11.1 A maximal ideal m ⊂ T is said to be Eisenstein if there exists an

ideal f ⊂ OF such that for all but finitely many primes w ⊂ OF that split completely

in the ray class field of f mod F, Tw − 2 ∈ m and Sw − 1 ∈ m.

Proposition 11.2 (Jarvis) A maximal ideal m ⊂ T associated with an eigenform f

is Eisenstein if and only if the associated Galois representation ρf : GF → GL2(O) is

reducible.
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Proof See [34, § 3], which extends to totally real fields [18, Proposition 2].

Level raising at one prime.

Theorem 11.3 (Rajaei) Let m ⊂ T(vq; N+,N−/q) be any non-Eisenstein maximal

ideal.

(i) We have the following diagram of T(vq; N+,N−/q)-modules, where the rows are

exact:

X̂v(N+, vN−)m ←−−−− X̂q(vq; N+,N−/q)m

1∗⊕ηv∗

←−−−− X̂q(q; N+,N−/q)2
mxλ

xλ(vq)

xλ(q)

Xv(N+, vN−)m −−−−→ Xq(vq; N+,N−/q)m −−−−→ Xq(q; N+,N−/q)2
m.

(ii) We have an isomorphism of T(vq; N+,N−/q)-modules

Xq(q; N+,N−/q)2
m/

(
U 2

v − Sv

)
∼= Φv(N+, vN−)m.

Proof For (i), see [51, Theorem 3], which is a generalization to totally real fields of

the method of Ribet [54]. For (ii), see [51, Corollary 4], which shows that there is an

isomorphism of T(vq; N+,N−/q)-modules

X̂q(q; N+,N−/q)2
m/

(
U 2

v − Sv

)
∼= X̂v(N+, vN−)m/Xv(N+, vN−)m.

By [51, Proposition 5], there is an isomorphism

X̂q(q; N+,N−/q)m
∼= Xq(q; N+,N−/q)m.

The result then follows from the identification of Theorem 9.5.

Corollary 11.4 (Jacquet–Langlands) Let m ⊂ T(N+,N−) be any non-Eisenstein

maximal ideal.

(i) We have the following diagram of T(N+,N−)-modules, where the rows are exact:

X̂v(N+, vN−)m ←−−−− X̂q(vq; N+,N−/q)m

1∗⊕ηv∗

←−−−− X̂q(q; N+,N−/q)2
mxλ

xλ(vq)

xλ(q)

Xv(N+, vN−)m −−−−→ Xq(vq; N+,N−/q)m −−−−→ Xq(q; N+,N−/q)2
m.

(ii) We have an isomorphism of T(N+,N−)-modules

Xq(q; N+,N−/q)2
m/

(
U 2

v − Sv

)
∼= Φv(N+, vN−)m.

Proof The result follows directly from Theorem 11.3 with Corollary 10.2.
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Theorem 11.5 Fix f ∈ S2(N+,N−) an eigenform, v ⊂ OF a prime, and n ≥ 1

an integer. Assume that the associated Galois representation ρf is residually irreducible,

and that the prime v ⊂ OF is n-admissible with respect to f. Then there exists a mod Pn

eigenform fv associated with surjective homomorphism

T0(N+, vN−) −→ O0/Pn

such that the following properties hold:

(i) Tw (fv) ≡ Tw (f) mod Pn for all primes w ∤ vN of OF ;

(ii) Uw (fv) ≡ Uw (f) mod Pn for all primes w | N of OF ;

(iii) Uv (fv) ≡ ε · fv mod Pn.

Here, ε ∈ {±1} is the integer for which Pn divides N(v) + 1− ε · av(f).

We describe two proofs of this result.

Proof 1: Rajaei, Ribet, Taylor Ribet first proved the result for d = 1 and n = 1 in

[54], where the n > 1 case follows by a simple inductive argument. The general

case of d ≥ 1 and n = 1 is shown in Rajaei [51, Main Theorem 3 and Corollary 4],

granted certain technical hypotheses on F that always hold in our setting. (That is,

if Q(ζp)+ ⊂ F, then it is assumed that ρf is not induced from a character. If d ≡ 0

mod 2, then it is assumed that the associated automorphic representation πf is either

special or supercuspidal at some finite prime w ∤ pv ⊂ OF). The result is also proved

by Taylor [60, Theorem 1] for d even with N−
= OF . The general case with n > 1 can

be deduced from the methods of Ribet [54, §7] developed by Rajaei [51, §4]. That is,

in the setup above, one looks at the Hecke module structure(s) of

Xq(q; N+,N−/q)2
m/

(
U 2

v − Sv

)
∼= Φv(N+, vN−)m

to deduce the result.

Proof 2: Kisin If f is associated via Jacquet–Langlands with an eigenform on a totally

definite quaternion algebra over F, then Kisin [38, §3.1] gives a different proof for

arbitrary totally real fields with minor hypotheses on the level structure [38, (3.1.1)

and (3.1.2)]. Note that by our hypotheses imposed on the integer factorization of N,

the eigenform f is always associated via Jacquet–Langlands with an eigenform on a

totally definite quaternion algebra. So, the results of [38, §3.1] apply.

We now impose the following crucial hypothesis on the Galois representation ρf

associated with f, following the approach of Pollack-Weston [50].

Hypothesis 11.6 (Multiplicity one for character groups.) Given m ⊂ T(N+,N−) a

non-Eisenstein maximal ideal, the completed character group

Xq(q; N+,N−/q)mf
⊗ O

is free of rank one over completed Hecke algebra T0(N+,N−).

https://doi.org/10.4153/CJM-2012-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-002-x


452 J. Van Order

Remark The result is well known for F = Q, see for instance the explanation given

in [50, Theorem 6.2]. The general case is treated in Cheng [13], granted suitable

technical hypotheses. Rather than state these here explicitly, we shall just assume

Hypothesis 11.6 in what follows to reveal the mechanism of the proof.

Let If denote the kernel of the natural homomorphism T0(N+,N−)→ O0/Pn asso-

ciated to f, and Ifv
to denote that of T0(N+, vN−) → O0/Pn associated with fv. We

obtain the following crucial result.

Corollary 11.7 If Xq(q; N+,N−/q)mf
⊗ O is free of rank 1 over T0(N+,N−), then

(i) there is an isomorphism of groups Φv(N+, vN−)/Ifv
∼= O0/Pn;

(ii) there is an isomorphism of GF-modules Tap( J(N+, vN−))/Ifv
∼= Tf,n.

Proof For (i), see [3, Theorem 5.15 (2)], or the generalization to totally real fields

given in [42, Theorem 3.3] (neither of which requires P-isolatedness). The idea in

either case is to observe that the freeness condition implies that

Xq(q; N+,N−/q)/If
∼= O0/Pn.

It can then be deduced via the Ribet exact sequence (Theorem 10.1) that we have

isomorphisms

Xq(q; N+,N−/q)2/ (If,Uv − ε) ∼= Xq(q; N+,N−/q)2/
(
If,U

2
v − 1

)
∼= O0/Pn.

The result then follows from the isomorphism of Theorem 11.3(ii). For (ii), we use

the argument of Pollack–Weston [50, Proposition 4.4]. That is, a straightforward

generalization of the second part of the proof [3, Lemma 5.16] shows that the fol-

lowing property is satisfied: for each element z ∈ Φv(N+, vN−)/Ifv
, there exists an

element t ∈ J(N+, vN−)[pn ′](Fv2 )/Ifv
for some integer n ′ ≥ 1 that maps to z under

the natural map

J(N+, vN−)[pn ′](Fv2 )/Ifv
−→ Φ(N+, vN−)/Ifv

.

We may then use the same argument as given in [50, Proposition 4.4] to show the

result.

Recall that given an integer m ≥ 1, we write Kpm to denote the m-th layer of the

dihedral Zδ
p-extension of K. Let us define the corresponding m-th level component

group to be the direct sum of component groups

Φv,m(N+, vN−) =
⊕
v|v

Φv(N+, vN−).

Here, the sum ranges over all primes v above v in Kpm , and Φv(N+, vN−) denotes the

component group associated with the Jacobian J(N+, vN−) at v. Let us then write

Φ̂v(N+, vN−) = lim
←−

m

Φv,m(N+, vN−)
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to denote the inverse limit with respect to norm maps. Recall that v must be inert in

K by hypothesis (ii) of n-admissibility, and hence splits completely in Kp∞ by class

field theory. It follows that we have an isomorphism

Φ̂v(N+, vN−) ∼= Φv(N+, vN−)⊗ Λ.

Here, as before, we let Λ denote the O-Iwasawa algebra O[[Gp∞]]. The isomorphism

Φv(N+, vN−)/Ifv
∼= O0/Pn of Corollary 11.7(ii) then allows us to make the identifi-

cation

Φ̂v(N+, vN−)/Ifv
∼= Λ/Pn.

Now, write

Ĵ(N+, vN−)(Kp∞)/Ifv
= lim
←−

m

J(N+, vN−)(Kpm )/Ifv

to denote the inverse limit with respect to norm maps. Taking the inverse limit of the

associated specialization maps to groups of connected components, we then obtain a

completed specialization map

∂̂v : Ĵ(N+, vN−)(Kp∞)/Ifv
−→ Φ̂v(N+, vN−)/Ifv

∼= Λ/Pn.(11.1)

Corollary 11.8 If Xq(q; N+,N−/q)mf
⊗ O is free of rank 1 over T0(N+,N−), then

(i) we have isomorphisms

Φv(N+, vN−)/Ifv
∼= H1

sing(Kv,Tf,n),

Φ̂v(N+, vN−)/Ifv
∼= Ĥ1

sing(Kp∞,v,Tf,n),(11.2)

both of which are canonical up to choice of isomorphism

Tap

(
J(N+, vN−)

)
/Ifv
∼= Tf,n;

(ii) we have a commutative diagram

Ĵ(N+, vN−)(Kp∞)/Ifv

K

−−−−→ Ĥ1(Kp∞ ,Tf,n)

∂̂v

y ∂v

y

Φ̂v(N+, vN−)/Ifv
−−−−→ Ĥ1

sing(Kp∞,v,Tf,n).

Here, K denotes the Kummer map, ∂v the residue map, and ∂̂v the induced special-

ization map of (11.1).

Proof See [3, Corollary 5.18]; the same argument applies granted the results of

Corollary 11.7.
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Level raising at two primes. Keep all of the notations of the section above. Let us

now fix two n-admissible primes v1, v2 ⊂ OF with respect to f such that

N(vi) + 1− εi · av1
(f) ≡ 0 mod Pn

for each of i = 1, 2. As before, we keep all of the setup and hypotheses of Theo-

rem 8.7, taking v = v1 so that the indefinite quaternion algebra B has discriminant

v1N−. Consider the composition of maps

J(N+, v1N−)/Ifv1

K

−−−−→ H1
(
Kv2

,Tap

(
J(N+, v1N−)

)
/Ifv1

)

φ
−−−−→ H1(Kv2

,Tf,n).

Here, K denotes the Kummer map, and φ is induced from a fixed isomorphism

Tap( J(N+, v1N−))/Ifv1

∼= Tf,n. Now, since the representation Tf,n is unramified at

v2, we have isomorphisms

H1(Kv2
,Tf,n) ∼= H1

unr(Kv2
,Tf,n) ∼= O0/Pn,

where the latter isomorphism comes from Lemma 5.7. Since J(N+, v1N−) has good

reduction at v2, reduction mod v2 gives the isomorphism

redv2
: J(N+, v1N−)(Kv2

)/Ifv1

∼= J(N+, v1N−)⊗ κv2
2
/Ifv1

.

Here (as before), J(N+, v1N−) denotes the Néron model over OFv2
of the Jacobian

J(N+, v1N−). Since Ifv
is not Eisenstein, the natural inclusion

Div0
(

M(N+, v1N−)
)
⊂ Div

(
M(N+, v1N−)

)

induces an isomorphism

Div0
(

(N+, v1N−)
)
/Ifv
∼= Div

(
M(N+, v1N−)

)
/Ifv

.

We thus obtain an injective map

Div
(

M(N+, v1N−)ss ⊗ κv2
2

)
−→ J(N+, v1N−)⊗ κv2

2
/Ifv1

.

Hence, we obtain via the composition γ = φ ◦ K ◦ red−1
v2

a map

γ : Div
(

M(N+, v1N−)ss ⊗ κv2
2

)
−→ O0/Pn.(11.3)

Recall that J(N+, v1N−) has the structure of a T(N+, v1N−)-module, as explained

above. Let Tw ∈ T(N+, v1N−) denote the Hecke operator at a prime w ∤ v1N+N−,

and Uw ∈ T(N+, v1N−) the operator at a prime w | v1N+N−. For each such operator

Tw, let us write Tw to denote the image of Tw in T(N+, v1N−)/Ifv1
. Similarly, for each

such operator Uw, let us write U w to denote the image of Uw in T(N+, v1N−)/Ifv1
.

Observe that by definition of the homomorphism fv1
, we have the relations Tw ≡

aw(f) mod Pn, U w ≡ aw(f) mod Pn, and Tv1
≡ ε1 mod Pn.
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Lemma 11.9 The following relations hold for x ∈ Div(M(N+, v1N−)ss ⊗ κv2
2
):

(i) γ(Tw · x) = Tw · γ(x) for all primes w ∤ v1v2N+N− of OF ;

(ii) γ(Uw · x) = U w · γ(x) for all primes w | v1N+N− of OF ;

(iii) γ(Tv2
· x) = Tv2

· γ(x);

(iv) γ(Frobv2
· x) = ε2 · γ(x).

Proof See [3, Lemma 9.1], the same proof carries over to this setting. That is, by

Lemma 5.7, we can identify H1
unr(Kv2

,Tf,n) with the module Tf,n/(Frob2
v2
−1) of GKv2

-

coinvariants of Tf,n. We deduce from this that γ sends a point x to the image of

((Frob2
v2
− 1)/Pn)x in Tf,n/(Frob2

v2
− 1). This implies the first two relations. The

second two relations then follow from the Eichler–Shimura relations (as given for

instance in [9, §10.3]), by the same argument used in [3, Lemma 9.1].

Recall that in the setup above, we let D denote the totally definite quaternion al-

gebra over F obtained from B by switching invariants at τ1 and v1. Hence, disc(D) =

N−. Let D ′ denote the totally definite quaternion algebra over F obtained from D by

switching invariants at v1 and v2. Hence, disc(D ′) = v1v2N−. Let U ′ ⊂ D̂
′× be the

compact open subgroup defined by U ′
= H ′v2 ×O

×
D ′v2

. Note that we have an isomor-

phism U
′v2 ∼= H ′v2 . Note as well that by Proposition 8.3, we have isomorphisms

(11.4) Div
(

M(N+, v1N−)ss ⊗ κv2
2

)
∼= Z[D ′×\D̂

′×/U ′] ∼= S2(N+, v1v2N−; Z).

Proposition 11.10 Keep the hypotheses of Theorem 11.5 and Corollary 11.7. Assume

that F is linearly disjoint from the cyclotomic field Q(ζp).The map

γ : Div
(

M(N+, v1N−)ss ⊗ κv2
2

)
−→ O0/Pn

constructed in (11.3) is surjective, hence can be identified with a quaternionic eigenform

in the space S2(N+, v1v2N−;O0/Pn). In particular, associated with γ by the Jacquet–

Langlands correspondence is a surjective homomorphism

g : T0(N+, v1v2N−) −→ O0/Pn

such that

(i) Tw(g) ≡ aw(f) mod Pn for all primes w ∤ v1v2N+N− of OF ;

(ii) Uw(g) ≡ aw(f) · g mod Pn for all primes w | N+N− of OF ;

(iii) Uvi
(g) ≡ εi · g mod Pn for each of i = 1, 2.

Proof Granted that γ is surjective, the result follows from Lemma 11.9, along with

the identifications of (11.4). The surjectivity of γ is shown by Lemma 11.11 and

Proposition 11.12.

Lemma 11.11 If F is linearly disjoint from the cyclotomic field Q(ζp), then the sub-

group of unipotent matrices mod p in M2(F) is torsionfree.

Proof The following proof was suggested to the author by Vladimir Dokchitser. We

first show that M2(F) has no nontrivial matrices of order p. That is, suppose other-

wise that we had a matrix A 6= 1 of order p in M2(F). The eigenvalues of A would
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then be p-th roots of 1. Hence, the trace of A would lie in Q(ζp), contradicting our

hypotheses on F. Now to prove the claim, we show that any matrix B ∈ M2(F) that

is unipotent mod p must have p-power order. That is, suppose otherwise that such

a matrix B did not have p-power order. Then its eigenvalues would be m-th roots of

unity for some integer m prime to p. But these eigenvalues cannot be congruent to 1

mod p, as the polynomial Xm − 1 is coprime to its own derivative mod p, hence has

distinct roots over Fp.

Proposition 11.12 Assume Condition C of Theorem 1.2. If F is linearly disjoint from

the cyclotomic field Q(ζp), then the map γ constructed in (11.3) is surjective.

Proof We generalize the argument of [3, Theorem 9.2], using the version of Ihara’s

lemma for Shimura curves shown in the main result of [13]. Hence, keep the setup

of Theorem 8.7, with v = v1. Let us write

M(N+, v1N−)(C) = B ′×\B̂ ′× × X/H ′
=

∐
i

Γi\H,

where the subgroups Γi ⊂ B ′× are the associated arithmetic subgroups (see for in-

stance the definition given in [16, §3]). By embedding B ′ → B×
p , we view these

arithmetic subgroups Γi as (discrete) subgroups of GL2(Fp). Let J(N+, v1N−)ss⊗κv2
2

denote the subgroup of J(N+, v1N−) ⊗ κv2
2

generated by divisors supported on su-

persingular points. Since the composition of maps defining the homomorphism

J(N+, v1N−)⊗ κv2
2
/Ifv1

−→ O0/Pn

is surjective, it suffices to show that the image of J(N+, v1N−)ss⊗κv2
2

in J(N+, v1N−)⊗
κv2

2
/Ifv1

fills the whole group. To this end, let us define subgroups

Γi(v2) =

(
Γi

[ 1

v2

]×

/O×
F

[ 1

v2

]) 1

, Γ(v2) =
∏

i

Γi(v2),

where the superscript 1 denotes elements of reduced norm 1. Let M̃(N+, v1N−) de-

note the Shimura curve obtained from M(N+.v1N−) by imposing extra H ′1
p -level

structure, with J̃(N+, v1N−) its Jacobian. Let us then write the corresponding arith-

metic subgroups that are congruent modulo p to unipotent matrices as:

Γ̃i(v2) ⊂ Γi(v2), Γ̃(v2) =
∏

i

Γ̃i(v2).

Since the subgroups Γ̃i(v2) are torsionfree by Lemma 11.11, a general theorem of

Ihara ([31, Theorem G]) implies that there is a canonical isomorphism

J̃(N+, v1N−)⊗ κv2
2
/ J̃(N+, v1N−)ss ⊗ κv2

2

∼= Γ̃(v2)ab.(11.5)

Here, Γ̃(v2)ab denotes the abelianization of Γ̃(v2). Since v2 splits the quaternion alge-

bra B ′ associated with M(N+, v1N−), we can fix an embedding

ι : B ′ −→ B ′
v2

∼= M2(Fv2
),
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to obtain an induced action of B ′ on the Bruhat–Tits tree Tv2
= (V(Tv2

),E(Tv2
)) of

B ′×
v2
/F×

v2

∼= PGL2(Fv2
). Let us then fix a vector of vertices v0 = {vi

0}
h
i=1 in V(Tv2

) such

that the stabilizer

Γ̃vi
0
(v2) := Stabvi

0

(
Γ̃i(v2)

)

for each index i can be identified with the image of Γi(v2) in Γ̃i(v2) via ι, so that we

have an identification of Riemann surfaces

M̃(N+, v1N−)(C) =
h∐
i

Γ̃vi
0
(v2)\H.

Fix a vector of oriented edges e0 = {ei
0}

h
i=1 in E∗(Tv2

) such that the stabilizer

Γ̃ei
0
(v2) := Stabei

0

(
Γ̃i(v2)

)

for each index i can be identified with the subgroup of upper triangular matrices mod

v2 via ι, so that we have an identification of Riemann surfaces

M̃(v2; N+, v1N−)(C) =
h∐
i

Γ̃ei
0
(v2)\H.

Let v1 denote the vector of vertices {vi
1}

h
i=1 in V(Tv2

) such that vi
1 = t(ei

0) for each

index i. Let us, for ease of notation, write the products as

Γ̃v0
(v2) =

h∏
i=1

Γ̃vi
0
(v2), Γ̃e0

(v2) =
h∏

i=1

Γ̃ei
0
(v2), Γ̃v1

(v2) =
h∏

i=1

Γ̃vi
1
(v2).

Hence we obtain from Serre [55, Proposition 1.3 § II.2.8] (with i = 1, M = κp, and

G = Γ̃(v2)) the exact sequence

Hom(Γ̃(v2), κp) −→ Hom(Γ̃v0
(v2), κp)⊕Hom(Γ̃v1

(v2), κp)(11.6)

d
−→ Hom(Γ̃e0

(v2), κp).

Now, via duality we see that the map d in (11.6) is the degeneracy map of Ihara’s

lemma for Shimura curves, as described for instance in [13] (cf. [18, Theorem 2,

p. 451] with [3, Proposition 9.2]). Roughly, Ihara’s lemma is the assertion that for

any non-Eisenstein maximal ideal m ⊂ T(v2; N+, v1N−), the natural degeneracy map

H1
(

M(v2; N+, v1N−), κp

)⊕2 1∗⊕ηp

−−−−→ H1
(

M(pv2; N+, v1N−), κp

)

is injective after localization at m. This conjecture is proved in certain cases in the

unpublished manuscript [13]. We shall invoke this result in the following way. Recall

that we let mfv1
⊃ Ifv1

denote the maximal ideal of the Hecke algebra T(N+, v1N−)

corresponding to the mod Pn eigenform fv1
of Theorem 11.5. Let us write m̃fv1

⊃

https://doi.org/10.4153/CJM-2012-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-002-x


458 J. Van Order

Ĩfv1
to denote the corresponding maximal ideal in the Hecke algebra T̃(N+, v1N−)

associated with M̃(N+, v1N−). Since m̃fv1
is associated with an irreducible Galois

representation, we know by Proposition 11.2 that m̃fv1
is not Eisenstein. Hence, by

Ihara’s lemma, the degeneracy map d is injective after localization at m̃fv1
. We can

then argue following [3, Theorem 9.2, p. 59] that Hom(Γ̃(v2), κp)[m̃fv1
] = 0. Hence,

Γ̃(v2)ab/m̃fv1
= 0, in which case it follows from Nakayama’s lemma that

Γ̃(v2)ab/Ĩfv1
= 0.

Hence, by (11.5), the image of J̃(N+, v1N−)ss⊗κv2
2

in J̃(N+, v1N−)⊗κv2
2
/Ĩfv1

fills the

whole group. To complete the argument, consider the natural map

J̃(N+, v1N−)⊗ κv2
2
−→ J(N+, v1N−)⊗ κv2

2
.(11.7)

A standard argument with Shimura subgroups shows that the cokernel of this map

(11.7) has order prime to p (see [40] with [42, Lemma 7.20]). Roughly, the idea is the

following. Let Π denote the kernel of this natural map. The criterion of [40] applied

to each connected component of M(N+, v1N−) shows that there is an injective map

Π −→ Hom(Γ(v2)/Γv0
(v2), S),

where S denotes the complex numbers of modulus 1. It is then easy to see that the

order of Π must be prime to p. Hence by duality, the cokernel must have over prime

to p. Hence, the composition of (11.7) with the projection

J(N+, v1N−)⊗ κv2
2
−→ J(N+, v1N−)⊗ κv2

2
/Pn

is surjective. Now, since we have already shown that the natural map

J̃(N+, v1N−)ss ⊗ κv2
2
−→ J̃(N+, v1N−)⊗ κv2

2
/Ĩfv1

is surjective, we see that the natural map

J(N+, v1N−)ss ⊗ κv2
2
−→ J(N+, v1N−)⊗ κv2

2
/Ifv1

is surjective, as required.

Let us for the record state the version of Ihara’s lemma for Shimura curves over

totally real fields used in the proof of Propostion 11.12.

Hypothesis 11.13 (Ihara’s lemma for Shimura curves.) For any non-Eisenstein max-

imal ideal m ⊂ T(v2; N+, v1N−), the natural degeneracy map

H1(M(v2; N+, v1N−), κp)⊕2
1∗⊕ηp

−−−−→ H1(M(pv2; N+, v1N−), κp)

is injective after localization at m.
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12 Construction of the Euler System

We first review the theory of CM points on Shimura curves over totally real fields,

giving a characterization of the images of these points under reduction modulo a

ramified prime for the underlying quaternion algebra. We then review the notion of

the Hodge embedding, then use this to define suitable classes from the images of CM

points in the v-adic uniformization.

Setup. Fix a finite prime v ⊂ OF . Recall that we fixed a totally imaginary quadratic

extension K of F. Let us suppose that v remains inert in K. Writing Kv to denote the

completion of K at the prime above v in K, and Fv2 to denote the quadratic unrami-

fied extension of Fv, we have isomorphism of fields Kv
∼= Fv2 . Let us then fix such an

isomorphism Kv
∼= Fv2 .

Complex points. Suppose in general that we have any Shimura curve MH , as defined

above. Given elements b ∈ B̂× and z ∈ X, we write [b, z]H to denote the point of

MH(C) represented by the pair (b, z).

Embeddings. Let us return to the setup of Theorem 8.7. Hence, no prime divid-

ing disc(D) is split in K. Under this assumption, there exists an injective F-algebra

homomorphism ι : K → D (see [66]). Let us fix such a homomorphism ι, writing

ιv : K ⊗F Fv → Dv to denote its component at a prime v of F, and ι̂ : K̂ → D̂ to

denote its adelization. Let us assume that for our fixed prime v, we have the identi-

fication ι−1
v (Uv) = O

×
Kv

. Under this assumption, there exists an F-algebra injection

ι ′ : K → B ′ such that ι ′v
−1

(OB ′v
) = OKv

. Let us fix such an embedding ι ′. Since the

Skolem–Noether theorem implies that any two local embeddings ιv, ι ′v are conjugate

by an element of B
′×
v , we can an will assume that the homomorphisms ϕ, ι, and ι ′

are compatible outside of v in the sense that ι ′
v

is given by the composition

K̂v
ιv

−−−−→ D̂v
ϕ

−−−−→ B̂ ′v.

CM points. Fix an embedding K → C that extends τ1 : F → R ⊂ C. The action of

ι ′τ1
(K×) ⊂ ι ′τ1

(K×
τ1

) ⊂ B ′×
τ1

∼= GL2(R) on X = H±
= C− R fixes exactly two points,

one of which lies in the complex upper half plane H+. Let us write z ′ = z ′ι ′ to denote

this point. We then define the set of points with complex multiplication (CM) by K

on MH ′(C) to be:

CM(MH ′ ,K) =
{

[b ′, z ′]H ′ : b ′ ∈ B̂ ′×
}
⊂ MH ′(C).

By Shimura’s reciprocity law, the set CM(MH ′ ,K) is contained in MH ′(Kab), with Gab
K

acting on CM(MH ′ ,K) by the rule

∀a ∈ K̂×, recK (a)
[
b ′, z ′

]
H ′

=
[
ι̂ ′(a)b ′, z ′

]
H ′

.

Here, recK : A×
K /K× ∼= Gab

K denotes the reciprocity map of class field theory, nor-

malized to send uniformizers to their corresponding geometric Frobenius elements.
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CM points of a given conductor. Recall that given an ideal c ⊂ OF , we let Oc =

OF + cOK denote the OF-order of conductor c in K. Given a maximal order R ′ ⊂ B ′,

we call an embedding ι : K → B ′ an optimal embedding of conductor c into R ′ if

ι(Oc) = ι(K) ∩ R ′.

Given a maximal order R ′ ⊂ B ′ and an element b ′ ∈ B̂ ′×, let R ′
b ′ ⊂ B ′ denote the

maximal order defined by b ′−1
R ′b ′ ∩ B ′. We say that a point [b ′, z ′]H ′ = [b ′, z ′ι ′]H ′

in CM(MH ′ ,K) has conductor c if the associated embedding ι ′ : K → B ′ is an optimal

embedding of conductor c (see [66, Ch. III]). It is then simple to see from class field

theory that a CM point of conductor c in CM(MH ′ ,K) is defined over the ring class

field K[c] of conductor c over K.

CM points in the v-adic uniformization. We have the following description of CM

points by K on MH ′(C) in the v-adic uniformization. Let

CM(MH ′ ,K)v-unr = {
[
b ′, z ′

]
H ′

: b ′ ∈ B̂ ′×, b ′
v = 1} ⊂ CM(MH ′ ,K)

to be the subset of CM points by K on MH ′(C) that are unramified outside of v. The

the action of Gab
K on this set of points is given by the rule

∀a ∈ K̂×, recK (a)
[
b ′, z ′

]
H ′

=
[
ι̂ ′(av)b ′, z ′

]
H ′

.

Here, av denotes the projection of a to K̂v×
= {x ∈ K̂× : xv = 1}. From this action,

we deduce (cf., [49, 1.8.2]) that a point x =
[
b ′, z ′

]
H ′
∈ CM(MH ′ ,K) v−unr is defined

over the finite abelian extension K(x) of K characterized by the isomorphism

recK : K̂×/K×ι̂ ′−1(b ′H ′b ′) ∼= Gal(K(x)/K).

Moreover, as observed in [49, 1.8.2], the prime v splits completely in K(x) because

ι ′v(O×
Kv

) ⊂ H ′
v = b ′

vHvb−1
v . Fix an embedding Kv → Funr

v , equivalently an isomor-

phism Kv
∼= Fv2 over Fv. This choice determines one of two fixed points for the action

of ιv(K×) ⊂ ιv(K×
v ) ⊂ GL2(Fv) on P1(Kv) − P1(Fv), call it z (= zι). The image of

CM(MH ′ ,K)v-unr in MH ′(Kv) according to Theorem 8.2 is then given by

CM(MH ′ ,K)v-unr = {[d, z]U v : d ∈ D̂×, dv = 1} ⊂ MH ′(Kv).

Let us now write Gv = (V(Gv),E(Gv)) to denote the dual graph of the special fibre

MH ′ ⊗ κv2 , which is just the special fibre of the basechange to OFv2 of the integral

model MH ′ over OFv
. Let

redv : MH ′ ⊗F Fv2 −→ V(Gv) ∪ E(Gv)

denote the map that sends a point x to either the connected component containing

its image in MH ′ ⊗ κv2 , or else to its image in MH ′ ⊗ κv2 (a singular point).

Proposition 12.1 We have that redv(CM(MH ′ ,K)v-unr) ⊂ V(Gv).
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Proof The result seems to be well known (see [3, § 5] or [43, 5.2]). That is, fix a point

x ∈ CM(MH ′ ,K)v-unr. We saw above that x is rational over the abelian extension

K(x), where v splits completely. Hence, writing K(x)v to denote the localization of

K(x) at any fixed prime above v in K(x), we have the identification K(x)v
∼= Kv. In

particular, we may view x as a point in MH ′(Kv) ∼= MH ′(Fv2 ). It therefore makes

sense to compute the image of x in MH ′ ⊗ κv2 .

Now, recall that the image of x in the v-adic uniformization MH ′⊗κv2 is paramet-

rized by the class of a pair (d, ι), where d ∈ D̂×v, and ι : K → D is a suitably chosen

F-algebra injection. The action of ι(K×) ⊂ ιv(K×
v ) ⊂ D×

v
∼= GL2(Fv) on Ω(Cv)

fixes two distinct points, z1 = z1,ι and z2 = z2,ι say. These points are contained in

P1(Kv)− P1(Fv) ∼= P1(Fv2 )− P1(Fv). Let z3 denote the point at infinity in P1(Kv) ∼=
P1(Fv2 ). As explained in Mumford [48, § 1], any triple of distinct points z1, z2, z3 in

P1(Fv2 ) corresponds canonically to a unique vertex vz1,z2,z3
in the Bruhat–Tits tree of

SL2(Fv2 ). The inclusion redv(CM(MH ′ ,K)v-unr) ⊂ V(Gv) can then be deduced from

the Mumford–Kurihara uniformization of MH ′ ⊗ κv2 (Theorem 8.6) with (8.2).

Note that since any n-admissible prime v ⊂ OF with respect to f splits completely

in Kp∞ , the argument of Propostion 12.1 shows that the CM points in M(Kp∞) also

satisfy this property under reduction mod v.

Hodge classes. Let us now explain how divisors on MH ′(F) give rise to classes in the

associated Jacobian JH ′(F), following [43, §5] and [42, §3]. Recall that JH ′ has the

structure of a T0(N+, vN−)-module, as explained above. Following Zhang [72, 4.1],

we make the following definition.

Definition 12.2 The Hodge class of MH ′ is the unique class ξ ∈ Pic(MH ′) such that:

(i) the degree on ξ on each connected component of MH ′ is one;

(ii) the action of the operator Tq ∈ T0(N+, vN−) for each prime q ∤ N is given by

mutliplication by N(q) + 1.

The existence and uniqueness of such a class are shown by Zhang in [72, 4.1]. Let

PicEis(MH ′) denote the subgroup of Pic(MH ′) generated by divisors whose restriction

to each connected component of MH ′ is given by a multiple of the Hodge class ξ.

Zhang [71, 6.1] shows that there is a decomposition

Pic(MH ′) = Pic0(MH ′)⊕ PicEis(MH ′).

Using an argument of Ribet [54, Theorem 5.2(c)], or its subsequent generalization

by Jarvis in [34, § 3], it can then be shown that the T0(N+, vN−)-module PicEis(MH ′)

is Eisenstein. Since Ifv
⊂ T0(N+, vN−) is not Eisenstein, it can then be deduced by

a standard argument that the natural inclusion Pic0(MH ′) ⊂ Pic(MH ′) induces an

isomorphism

Pic0(MH ′)/Ifv
∼= Pic(MH ′)/Ifv

.

See for instance [42, 2.5].1

1where there is a typo on line 21 of p. 15.
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Construction of classes. Let us now assume that MH ′ = M(N+, vN−) as above,

where v ⊂ OF is an n-admissible prime with respect to f. Fix a sequence of points

{Pm}m≥1, where each Pm is a CM point of conductor pm in CM(MH ′ ,K). Let us as-

sume that this sequence is compatible in the following sense. Each point Pm is given

by the class of some pair (g ′
m, z ′) = (g ′

m, z ′ι ′), where ι ′ is an optimal embedding of

Opm ⊂ OK into Rg ′m
= g ′

m
−1

Rg ′
m ⊂ B ′. By assumptions made above and throughout,

we can fix an isomorphism ιp : B ′
p
∼= M2(Fp). Following the explanation of [41, 3.3],

we can then associate with the the local (Eichler) order (Rg ′m
)p ⊂ B ′

p a directed edge

eg ′m
= (s(eg ′m

), t(eg ′m
)) in the Bruhat–Tits tree of B

′×
p /F×

p
∼= PGL2(Fp). We then say

that the sequence {Pm}m≥1 is compatible if t(eg ′m
) = s(eg ′m+1

) for all m ≥ 1. Let us now

fix such an oriented sequence {Pm}m≥1. For each point Pm in the sequence, let us

write P∗
m to denote the image of α−m

p Pm in JH ′(K[pm])/Ifv
. The points P∗

m are norm

compatible, and their images under the Kummer maps

JH ′(K[pm])/Ifv

K

−−−−→ H1(K[pm],Tap( JH ′)/Ifv
)

give rise to a sequence of classes ζm[v] that are compatible under corestriction maps.

Under the isomorphism of Corollary 11.7(ii), these classes give rise to an element ζ[v]

in the cohomology group Ĥ1(K[p∞],Tf,n). Let ζ(v) denote image of this class under

corestriction from K[p∞] to Kp∞ . Hence, we have constructed from our compatible

system of CM points {Pm}m≥1 in CM(MH ′ ,K) a class

ζ(v) ∈ Ĥ1(Kp∞ ,Tf,n).(12.1)

13 Explicit Reciprocity Laws

Putting everything together, we may now at last deduce the first and second explicit

reciprocity laws introduced above.

The first explicit reciprocity law. Keep all of the notations and hypotheses above.

Hence, f ∈ S2(N+,N−) is a p-ordinary eigenform, and ζ(v) is the class of

Ĥ1(Kp∞ ,Tf,n) constructed above.

Theorem 13.1 (The first explicit reciprocity law) Keep all of the hypotheses of Theo-

rem 11.5 and Corollary 11.7. Then, ϑv(ζ(v)) = 0. Moreover, the equality ∂v(ζ(v)) =

Lf holds in Ĥ1
sing(Kp∞,v,Tf,n) ∼= Λ/Pn, up to multiplication by elements of O× or Gp∞ .

Proof See [3, §8]. By the commutative diagram of Corollary 11.8(ii), it suffices to

show that

∂̂v

(
{P∗

m}
)
≡ Lf mod Pn.

Let us write Qm to denote the image of the class P∗
m under the norm map from K[pm]

to Kpm . By Proposition 12.1, the image of each class Qm in the special fibre M(v)⊗κv2

is a nonsingular point, hence given by a vertex vQm
in the dual graph Gv under the

map redv : J(v)(Kpm )/If,v → V(Gv) ∪ E(Gv). On the other hand, recall the natural
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map ωv : Z[V(Gv)]0 → Φv constructed in Proposition 9.6. We know by Proposition

9.7 that

ωv ◦ redv(Qm) = ∂v(Qm) ∈ Φv/Ifv
∼= O0/Pn,

where the isomorphism comes from Corollary 11.7(i). The result can now be de-

duced from the adelic description of the vertex set V(Gv) above, which (via Jacquet–

Langlands) allows us to view the specialization map as a map

D×\D̂×/U −→ O0/Pn

having the same eigenvalues as f. That is, it can be deduced from the description

above of the induced action of Gp∞ on this vertex set, along with the canonical bijec-

tion ηp coming from strong approximation at p, that

∂vm (σQm) ≡ α−m
p [σ, e j]Φ mod Pn.

Here, we have fixed a prime v∞ above v in Kp∞ and let vm = v∞ ∩Kpm . The result is

now clear via the construction of Lf from these elements.

The second explicit reciprocity law. Fix two n-admissible primes v1, v2 ⊂ OF with

respect to f such that

N(vi) + 1− εi · av1
(f) ≡ 0 mod Pn

for each of i = 1, 2. As usual, we keep all of the setup and hypotheses of Theorem 8.7,

taking v = v1 so that the indefinite quaternion algebra B ′ has discriminant v1N−.

Theorem 13.2 (The second explicit reciprocity law) Keep the hypotheses of Theorem

11.5 and Corollary 11.7. Assume additionally that F is linearly disjoint from the cyclo-

tomic field Q(ζp). Then the relation ϑv1
(ζ(v2)) = Lg holds in Ĥ1

unr(Kp∞,vn
,Tf,n) ∼=

Λ/Pn, up to multiplication by elements of O× or Gp∞ .

Proof The proof is the same as that for Theorem 13.1, replacing f with the mod Pn

eigenform g of Proposition 11.10.
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[66] M.-F. Vignéras, Arithmétique des algèbres des quaternions. Lecture Notes in Mathematics, 800,
Springer, Berlin, 1980.

[67] J.-P. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie.
Compositio Math. 54(1985), no. 2, 173–242.

[68] X. Wan, Ph.D. Thesis, Princeton University, in progress.
[69] , On ordinary λ-adic representations associated to modular forms. Invent. Math. 94(1988),

no. 3, 529–573. http://dx.doi.org/10.1007/BF01394275

[70] X. Yuan, S.-W. Zhang, and W. Zhang, Heights of CM points I: Gross-Zagier formula.
http://www.math.columbia.edu/∼szhang/papers/HCMI.pdf.

[71] S.-W. Zhang, Gross-Zagier formular for GL2. Asian J. Math. 5(2001), no. 2, 183–290.
[72] , Heights of Heegner points on Shimura curves. Ann. of Math. 153(2001), no. 1, 27–147.

http://dx.doi.org/10.2307/2661372

Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
e-mail: jeanine.vanorder@epfl.ch

https://doi.org/10.4153/CJM-2012-002-x Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF01394275
http://www.math.columbia.edu/~szhang/papers/HCMI.pdf
http://dx.doi.org/10.2307/2661372
https://doi.org/10.4153/CJM-2012-002-x

