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Abstract Let (M, g) be a manifold of bounded geometry with metric g. We consider a Schrödinger-type
differential expression H = ∆M + V , where ∆M is the scalar Laplacian on M and V is a non-negative
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1. Introduction and the main results

Let (M, g) be a C∞ Riemannian manifold without boundary, with metric g = (gjk) and
dim M = n. We will assume that M is connected and oriented. By dµ we will denote
the Riemannian volume element of M . In any local coordinates x1, . . . , xn, we have
dµ =

√
det(gjk) dx1 dx2 · · ·dxn.

In what follows, C∞(M) denotes the space of complex-valued smooth functions on
M and C∞(Λ1T ∗M) denotes the space of complex-valued smooth 1-forms on M . The
notation C∞

c (M) stands for the space of complex-valued smooth compactly supported
functions on M , the notation ‖ · ‖p denotes the usual norm in Lp(M), and D′(M) denotes
the distributions on M . Throughout the paper, d : C∞(M) → C∞(Λ1T ∗M) is the stan-
dard differential and d∗ is the formal adjoint of d with respect to the inner product in
L2(M). We denote by ∆M := d∗d the scalar Laplacian on M .

We consider a Schrödinger-type differential expression

H = ∆M + V,

where V ∈ L1
loc(M) is real valued.

1.1. Operators associated with H and ∆M

Let 1 � p � +∞ and let V ∈ L1
loc(M). We define the maximal operator Hp,max in

Lp(M) by the formula Hp,maxu = Hu with domain

Dom(Hp,max) = {u ∈ Lp(M) : V u ∈ L1
loc(M), ∆Mu + V u ∈ Lp(M)}. (1.1)

Here, the term ∆Mu in ∆Mu + V u is understood in a distributional sense.
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In general, Dom(Hp,max) does not contain C∞
c (M), but it does if V ∈ Lp

loc(M). In this
case, we can define Hp,min := Hp,max|C∞

c (M). In particular, the operator H1,min is always
defined.

In the case when V = 0, the operator Hp,max will be denoted by Ap,max. We define
Ap,min := Ap,max|C∞

c (M).
We now make an assumption on (M, g).

Assumption 1.1. Assume that (M, g) has bounded geometry, i.e.

(i) rinj > 0 (here, rinj denotes the injectivity radius of (M, g));

(ii) |∇iR| � Ci for all i = 0, 1, 2, . . . , where Ci � 0 are constants, and ∇i denotes the
ith covariant derivative of the Riemann curvature tensor R of M .

Throughout the paper, we will assume, unless specified otherwise, that Assumption 1.1
is satisfied.

Remark 1.2. The condition rinj > 0 implies the completeness of (M, g) (see, for
instance, [10, § A.1.1]). For more on manifolds (M, g) satisfying Assumption 1.1, see [10,
§ A.1.1] and [4].

In the following, we denote by Ā the closure of a closable operator A.
We now state the main results.

Theorem 1.3. Assume that (M, g) is a connected C∞ Riemannian manifold without
boundary. Assume that Assumption 1.1 holds. Assume that 0 � V ∈ L1

loc(M). Then the
following properties hold:

(i) the operator H1,max generates a contraction semigroup on L1(M) and, in particular,
H1,max is an m-accretive operator;

(ii) the set C∞
c (M) is a core for H1,max (i.e. H̄1,min = H1,max).

Theorem 1.4. Under the same hypotheses as in Theorem 1.3, the following operator
equality holds:

H1,max = A1,max + V, (1.2)

where V is understood to be the maximal multiplication operator in L1(M).

In the next theorem we will use the following notation.

Positivity

Suppose that B and C are bounded linear operators on Lp(M). In what follows, the
notation B � C means that, for all 0 � f ∈ Lp(M), we have (C − B)f � 0.

Theorem 1.5. Under the same hypotheses as in Theorem 1.3, the following properties
hold:

(i) 0 � (λ + H1,max)−1 for all λ > 0;

(ii) (λ + H1,max)−1 � (λ + A1,max)−1 for all λ > 0.
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Remark 1.6. Kato [7, Part A] considered the differential expression −∆+V in spaces
Lp(Rn), where 1 � p � ∞; the notation ∆ denotes the standard Laplacian on R

n with
standard metric and measure and 0 � V ∈ L1

loc(R
n). Assuming 0 � V ∈ L1

loc(R
n), Kato

[7, Part A] proved the m-accretivity of the operator Hp,max corresponding to −∆+V . In
his proof, Kato used certain properties (specific to the R

n setting) of (−∆2,max + γ)−1,
where γ > 0 and −∆2,max is the self-adjoint closure of −∆|C∞

c (Rn) in L2(Rn), which
enabled him to handle the cases when p = 1 and p = ∞. In the case of operators
Hp,max on manifolds of bounded geometry, where 1 < p < ∞, Theorems 1.3 and 1.5 were
proved in [8] using the theory of uniformly elliptic differential operators. However, the
case when p = 1 is more delicate and requires a different approach, which is the content
of this current paper.

2. Preliminary lemmas

In what follows, we will use a version of Kato’s inequality. For the proof of a more general
version of this inequality, see [1, Theorem 5.7].

Lemma 2.1. Assume that (M, g) is an arbitrary Riemannian manifold. Assume that
u ∈ L1

loc(M) and ∆Mu ∈ L1
loc(M). Then the following distributional inequality holds:

∆M |u| � Re((∆Mu) sgn ū), (2.1)

where ū is the complex conjugate of u, and

sgn u(x) =

⎧⎪⎨
⎪⎩

u(x)
|u(x)| if u(x) �= 0,

0 otherwise.

Remark 2.2. For the original version of Kato’s inequality, see [5, Lemma A].

Lemma 2.3. Let (M, g) be a Riemannian manifold. Assume that 0 � V ∈ L1
loc(M),

u ∈ Dom(H1,max) and λ ∈ C. Let f := (H1,max + λ)u. Then the following distributional
inequality holds:

(Re λ + ∆M + V )|u| � |f |. (2.2)

Proof. Since u ∈ Dom(H1,max) it follows that V u ∈ L1
loc(M) and H1,maxu ∈ L1(M) ⊂

L1
loc(M). Thus, u ∈ L1

loc(M) and ∆Mu ∈ L1
loc(M). By Kato’s inequality (2.1) we have

(Re λ + ∆M + V )|u| � Re[((λ + ∆M + V )u) sgn ū] = Re(f sgn ū) � |f |,

and the lemma is proved. �

In the following, we will use a sequence of cut-off functions.
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2.1. Cut-off functions

Let (M, g) be a manifold of bounded geometry. Then there exists a sequence of func-
tions {χk} in C∞

c (M) such that

(i) 0 � χk � 1 for all k = 1, 2, . . . ,

(ii) χk � χk+1 for all k = 1, 2, . . . ,

(iii) for every compact set G ⊂ M , there exists k such that χk|G = 1,

(iv) for all k = 1, 2, . . . , the inequalities

sup
x∈M

|dχk(x)| � C̃ and sup
x∈M

|∆Mχk(x)| � C̃ (2.3)

hold, where the constant C̃ > 0 does not depend on k, and |dχk(x)| denotes the
length of the cotangent vector dχk(x) ∈ T ∗

x M (here, T ∗
x M is the cotangent space

at x ∈ M).

For the construction of χk satisfying the above properties, see [10, § 1.4].

Lemma 2.4. Assume that 0 � V ∈ L1
loc(M). Assume that λ ∈ C and γ := Re λ > 0.

Then the following properties hold:

(i) for all u ∈ Dom(H1,max), we have

γ‖u‖1 � ‖(λ + H1,max)u‖1; (2.4)

(ii) the operator λ + H1,max : Dom(H1,max) ⊂ L1(M) → L1(M) is injective.

Proof. We first prove property (i). Let u ∈ Dom(H1,max) and let f := (λ+H1,max)u.
By the definition of Dom(H1,max), we have f ∈ L1(M) and V u ∈ L1

loc(M). Since V � 0,
from (2.2) we get the following distributional inequality:

(γ + ∆M )|u| � |f |. (2.5)

Thus, for all 0 � ψ ∈ C∞
c (M), we have

γ

∫
M

|u|ψ dµ �
∫

M

|f |ψ dµ −
∫

M

|u|(∆Mψ) dµ. (2.6)

Let χk ∈ C∞
c (M) be the cut-off functions defined above. Clearly, the functions χk satisfy

the following properties as k → +∞:

χk → 1 and ∆Mχk → 0, almost everywhere. (2.7)

Since f ∈ L1(M) and u ∈ L1(M), using property (i) of {χk}, the rightmost inequality
in (2.3), the properties (2.7) and the dominated convergence theorem, we have

χk|u| → |u|, χk|f | → |f | and |u|(∆Mχk) → 0 in L1(M). (2.8)
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Substituting ψ = χk in (2.6), we get

γ

∫
M

|u|χk dµ �
∫

M

|f |χk dµ −
∫

M

|u|(∆Mχk) dµ. (2.9)

Taking the limit as k → +∞ in (2.9) and using (2.8), we obtain

γ

∫
M

|u| dµ �
∫

M

|f | dµ, (2.10)

and (2.4) is proved.

We now prove property (ii). Assume that u ∈ Dom(H1,max) and (λ + H1,max)u = 0.
Using (2.4), we get ‖u‖1 = 0, and hence u = 0. This shows that λ+H1,max is injective. �

2.2. Distributional inequality

Let λ > 0, and consider the following distributional inequality:

(∆M + λ)u = ν � 0, u ∈ L∞(M), (2.11)

where the inequality ν � 0 means that ν is a positive distribution, i.e. 〈ν, φ〉 � 0 for any
0 � φ ∈ C∞

c (M).

Lemma 2.5. Assume that (M, g) is a manifold of bounded geometry. Assume that
u ∈ L∞(M) satisfies (2.11). Then u � 0 (almost everywhere or, equivalently, as a distri-
bution).

See § 6 for the proof of Lemma 2.5.
In the following, we will adopt certain arguments of [7, Part A] to our setting.

Lemma 2.6. Assume that 0 � V ∈ L1
loc(M). Then the following properties hold:

(i) the operator H1,max is closed;

(ii) the operator λ + H1,max, where Re λ > 0, has a closed range.

Proof. We first prove (i). Let uk ∈ Dom(H1,max) be a sequence such that, as k → +∞,

uk → u, fk := H1,maxuk = ∆Muk + V uk → f in L1(M). (2.12)

We need to show that u ∈ Dom(H1,max) and H1,maxu = f .
By passing to subsequences, we may assume that the convergence in (2.12) is also

pointwise almost everywhere.
The distributional inequality (2.2) holds if we replace u by uk − ul, f by fk − fl and

λ by 0. With these replacements, we apply a test function 0 � φ ∈ C∞
c (M) to (2.2) and

get
0 � 〈V |uk − ul|, φ〉 � 〈|fk − fl|, φ〉 − 〈∆M |uk − ul|, φ〉, (2.13)

where 〈·, ·〉 denotes the anti-duality of the pair (D′(M), C∞
c (M)).
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Using integration by parts in the second term on the right-hand side of the second
inequality in (2.13), we get

0 � 〈V |uk − ul|, φ〉 � 〈|fk − fl|, φ〉 − 〈|uk − ul|, ∆Mφ〉. (2.14)

Letting k, l → +∞, the right-hand side of the second inequality in (2.14) tends to 0
by (2.12). Thus, V ukφ is a Cauchy sequence in L1(M), and its limit must be equal to V uφ.
Since φ ∈ C∞

c (M) may have an arbitrarily large support, it follows that V u ∈ L1
loc(M).

Thus, V uk → V u in L1
loc(M) and hence in D′(M). Since uk → u in L1(M) (and, hence

in L1
loc(M)), we get ∆Muk → ∆Mu in D′(M). Thus, fk = ∆Muk + V uk → ∆Mu + V u

in D′(M). Since fk → f in L1(M) ⊂ D′(M), we obtain ∆Mu + V u = f ∈ L1(M). This
shows that u ∈ Dom(H1,max) and H1,maxu = f . This proves that H1,max is closed.

We now prove (ii). Since H1,max is closed, it immediately follows from (2.4) that λ +
H1,max has a closed range for Re λ > 0. �

Lemma 2.7. Assume that 0 � V ∈ L1
loc(M). Let λ ∈ C and let γ := Re λ > 0. Then

the following properties hold:

(i) the operator λ + H1,max : Dom(H1,max) ⊂ L1(M) → L1(M) is surjective;

(ii) the operator (λ + H1,max)−1 : L1(M) → L1(M) is a bounded linear operator with
the operator norm

‖(λ + H1,max)−1‖L1(M)→L1(M) � 1
γ

. (2.15)

Proof. We first prove (i). Since λ+H1,max has a closed range by Lemma 2.6, it is suf-
ficient to show that (λ+H1,min)C∞

c (M) is dense in L1(M). Let v ∈ (L1(M))∗ = L∞(M)
be a continuous linear functional annihilating (λ + H1,min)C∞

c (M):

〈(λ + H1,min)φ, v〉 = 0 for all φ ∈ C∞
c (M), (2.16)

where 〈·, ·〉 denotes the anti-duality of the pair (L1(M), L∞(M)).
From (2.16) we get the following distributional equality:

(λ̄ + ∆M + V )v = 0.

Since by hypothesis V ∈ L1
loc(M) and since v ∈ L∞(M), by Hölder’s inequality we have

V v ∈ L1
loc(M). Since ∆Mv = −V v − λ̄v, we get ∆Mv ∈ L1

loc(M). By Kato’s inequality
and since V � 0, we have

∆M |v| � Re((∆Mv) sgn v̄) = Re((−λ̄v − V v) sgn v̄) � −(Re λ̄)|v|,

and, hence,
(∆M + Re λ̄)|v| � 0.

Since v ∈ L∞(M) and since Re λ̄ = Re λ > 0, by Lemma 2.5 we get |v| � 0. Thus, v = 0,
and the surjectivity of λ + H1,max is proved.

We now prove (ii). Assume that λ ∈ C satisfies γ := Re λ > 0. Since λ + H1,max :
Dom(H1,max) ⊂ L1(M) → L1(M) is injective and surjective, the inverse (λ + H1,max)−1

is defined on the whole L1(M). The inequality (2.15) follows immediately from (2.4).
This concludes the proof of the lemma. �
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3. Proof of Theorem 1.3

We first prove (ii). By Lemma 2.7 it follows that (−∞, 0) ⊂ ρ(H1,max), the resolvent set
of H1,max, and

‖(λ + H1,max)−1‖L1(M)→L1(M) � 1
λ

for all λ > 0.

Thus, by [9, Theorem X.47(a)] it follows that H1,max generates a contraction semigroup
on L1(M). In particular, by the remark preceding [9, Theorem X.49], the operator H1,max

is m-accretive.

We now prove (ii). By Theorem 1.3 (i), the operator H1,max is m-accretive; hence,
H1,min = H1,max|C∞

c (M) is accretive. Hence (see the remark preceding [9, Theorem X.48]),
the operator H1,min is closable and H̄1,min is accretive. Let λ > 0. By the proof of
Lemma 2.7 (i) it follows that Ran(λ + H1,min) is dense in L1(M). Using (2.4) and the
definition of the closure of an operator, it follows that Ran(λ + H̄1,min) = L1(M). Now,
by [9, Theorem X.48] the operator H̄1,min generates a contraction semigroup on L1(M).
Thus, by the remark preceding [9, Theorem X.49], the operator H̄1,min is m-accretive.
Since H̄1,min ⊂ H1,max and since H̄1,min and H1,max are m-accretive, it follows that
H̄1,min = H1,max. This concludes the proof of the theorem.

4. Proof of Theorem 1.4

We begin with the following lemma.

Lemma 4.1. Assume that u ∈ Dom(H1,max). Assume that λ ∈ C with γ := Re λ � 0.
Then

‖(λ + ∆M )u‖1 � 2‖(λ + H1,max)u‖1 and ‖V u‖1 � ‖(λ + H1,max)u‖1. (4.1)

Proof. Let u ∈ Dom(H1,max) and f := (λ + H1,max)u. By the definition of
Dom(H1,max), we have f ∈ L1(M) and V u ∈ L1

loc(M). By (2.2) we have the follow-
ing distributional inequality:

(γ + ∆M + V )|u| � |f |. (4.2)

Since, by assumption, γ � 0 for all 0 � ψ ∈ C∞
c (M), we have

∫
M

V |u|ψ dµ �
∫

M

|f |ψ dµ −
∫

M

|u|(∆Mψ) dµ. (4.3)

Let χk ∈ C∞
c (M) be the cut-off functions defined before Lemma 2.4. Substituting ψ = χk

into (4.3), we get
∫

M

V |u|χk dµ �
∫

M

|f |χk dµ −
∫

M

|u|(∆Mχk) dµ. (4.4)
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Since V � 0 and since V u ∈ L1
loc(M), it follows that V |u|χk are non-negative integrable

functions. By Fatou’s lemma, (2.8) and (4.4), we have
∫

M

V |u| dµ =
∫

M

(lim inf
k→+∞

V |u|χk) dµ

� lim inf
k→+∞

∫
M

V |u|χk dµ

� lim inf
k→+∞

( ∫
M

χk|f | dµ −
∫

M

|u|(∆Mχk) dµ

)

=
∫

M

|f | dµ.

This shows that
‖V u‖1 � ‖f‖1 = ‖(λ + H1,max)u‖1. (4.5)

We now prove the remaining inequality in (4.1). Let u ∈ Dom(H1,max) be arbitrary.
By (4.5), it follows that V u ∈ L1(M). Since (λ+∆M )u = −V u+(λ+H1,max)u, from (4.5)
and the triangle inequality, we obtain

‖(λ + ∆M )u‖1 � 2‖(λ + H1,max)u‖1.

This concludes the proof of the lemma. �

Proof of Theorem 1.4. By the definition of H1,max it follows that Dom(A1,max) ∩
Dom(V ) ⊂ Dom(H1,max). By Lemma 4.1 it follows that Dom(H1,max) ⊂ Dom(V ) and
Dom(H1,max) ⊂ Dom(A1,max). Thus, Dom(H1,max) = Dom(A1,max) ∩ Dom(V ). Now
by the definitions of H1,max, A1,max and the multiplication operator V , it follows that
H1,max = A1,max + V . This concludes the proof of the theorem. �

5. Proof of Theorem 1.5

We begin with the following lemma.

Lemma 5.1. Assume that 0 � v ∈ L1(M) satisfies the following distributional in-
equality:

(∆M + λ)v � 0 for some λ > 0. (5.1)

Then v = 0 almost everywhere on M .

Proof. Let λ > 0 be as in the hypothesis. By (5.1), for all 0 � ψ ∈ C∞
c (M), we have

λ

∫
M

vψ dµ � −
∫

M

v(∆Mψ) dµ. (5.2)

Let χk ∈ C∞
c (M) be the cut-off functions defined above Lemma 2.4. Substituting ψ = χk

in (5.2), we get

λ

∫
M

vχk dµ � −
∫

M

v(∆Mχk) dµ. (5.3)
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Since v ∈ L1(M), using the properties of χk, as in the proof of (2.8), we have

vχk → v and v(∆Mχk) → 0 in L1(M). (5.4)

Taking the limit as k → ∞ in (5.3) and using the hypothesis v � 0, we obtain

λ‖v‖1 � 0.

Since λ > 0, we get ‖v‖1 = 0. Hence, v = 0 almost everywhere, and the lemma is
proved. �

Lemma 5.2. Assume that u ∈ Dom(H1,max) satisfies (λ+H1,max)u � 0, where λ > 0.
Then u � 0 almost everywhere on M .

Proof. Let λ > 0 be as in the hypothesis, and assume that u ∈ Dom(H1,max) satisfies

f := (H1,max + λ)u � 0.

We claim that u is real. Indeed, since (H1,max+λ)ū = f , we have (H1,max+λ)(u−ū) = 0.
By property (ii) of Lemma 2.4 we have u = ū. Since f � 0 and λ > 0, by (2.2) we have

(λ + ∆M + V )|u| � f. (5.5)

Subtracting f = (λ + H1,max)u from both sides of (5.5) we get

(λ + ∆M + V )v � 0, where v := |u| − u � 0. (5.6)

Since V � 0, from (5.6) we get the following distributional inequality:

(λ + ∆M )v � 0, where v = |u| − u � 0.

By Lemma 5.1 we get v = 0. Thus, u = |u| � 0. This concludes the proof. �

Proof of Theorem 1.5. We first prove (i). Let λ > 0, let 0 � f ∈ L1(M) be arbitrary,
and let u := (H1,max + λ)−1f . Then (H1,max + λ)u = f � 0, and, hence, by Lemma 5.2
we have u � 0. This proves the inequality 0 � (H1,max + λ)−1.

We now prove (ii). Let λ > 0 and let 0 � f ∈ L1(M) be arbitrary. We will show that

(H1,max + λ)−1f � (A1,max + λ)−1f. (5.7)

Define u := (H1,max + λ)−1f . By (i) we have 0 � u ∈ Dom(H1,max) and, hence, by
Theorem 1.4 we get u ∈ Dom(A1,max). Thus, (∆M + λ)u ∈ L1(M), and, hence, by (2.5)
(with u � 0 and f � 0) we have the following inequality of functions:

(∆M + λ)u � f almost everywhere on M. (5.8)

By (i), with V = 0, it follows that (A1,max + λ)−1 � 0 as an operator L1(M) → L1(M).
Thus, from (5.8) we get

u � (A1,max + λ)−1f.

But u = (H1,max + λ)−1f , and (5.7) is proved. This concludes the proof of (ii). �
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6. Proof of Lemma 2.5

In this section, we will use the following terms and notation. Unless specified otherwise,
(M, g) is an arbitrary Riemannian manifold (not necessarily complete).

Sobolev space W 1,2(M)

By W 1,2(M) we will denote the completion of the space C∞
c (M) with respect to the

norm ‖ · ‖W 1,2 defined by the scalar product

(u, v)W 1,2 := (u, v)L2(M) + (du, dv)L2(Λ1T ∗M), u, v ∈ C∞
c (M).

Remark 6.1. If (M, g) is a complete Riemannian manifold, then by [4, Proposi-
tion 1.4] it follows that W 1,2(M) = {u ∈ L2(M) : du ∈ L2(Λ1T ∗M)}.

In what follows, we will closely follow [2] and [3, §§ 1.3, 1.4 and 5.2].

Semigroups Tp(t)

Let A2,min and A2,max be as in § 1. It is well known that, for a complete Riemannian
manifold (M, g), the operator A2,min is essentially self-adjoint in L2(M) and A2,max =
Ā2,min (see, for example, [4, Theorem 3.5]). Moreover, by [6, § VI.2.3], it follows that
A2,max (as the Friedrichs extension of A2,min) is the self-adjoint operator associated with
the closure h̄ in L2(M) of the quadratic form

h(u) :=
∫

M

|du|2 dµ, u ∈ C∞
c (M).

Thus, for a complete Riemannian manifold (M, g), the operator A2,max generates a
strongly continuous contraction semigroup e−tA2,max , t � 0, on L2(M) (see, for instance,
[9, § X.8, Example 1]). It is well known that the semigroup e−tA2,max is positivity
preserving (see, for instance, the proof of [11, Theorem 3.6]). Moreover, for every
0 � f ∈ Dom(h̄) = W 1,2(M) we have g := min{f, 1} ∈ Dom(h̄), and

∫
M

|dg|2 dµ �
∫

M

|df |2 dµ.

Hence, the semigroup e−tA2,max satisfies the conditions of [3, Theorems 1.3.2 and 1.3.3].
Thus, by [3, Theorem 1.4.1] it follows that the semigroup e−tA2,max can be extended from
L1(M)∩L∞(M) to a contraction semigroup Tp(t), t � 0, on Lp(M) for all 1 � p � +∞.
Moreover, by [3, Theorem 1.4.1], the semigroup Tp(t) is strongly continuous for 1 � p <

+∞. By Ap we will denote the generator of Tp(t). The operator Ap is an extension of
∆M |C∞

c (M) in the corresponding space Lp(M); see [2, § 1]. By [9, Theorem X.47(a)] it
follows that (−∞, 0) ⊂ ρ(Ap), where ρ(Ap) denotes the resolvent set of Ap, and

‖(Ap + λ)−1‖ � 1
λ

for all λ > 0, (6.2)
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where ‖ · ‖ denotes the operator norm of the bounded linear operator (Ap + λ)−1 :
Lp(M) → Lp(M). Since the semigroup T∞(t) on L∞(M) is not generally strongly con-
tinuous, its generator A∞ can be defined by

(A∞ + λ)−1 = ((A1 + λ)−1)∗ for all λ > 0,

but A∞ is not necessarily densely defined; see the remark above the formulation of [3,
Theorem 1.4.2].

Semigroup S(t)

As in [2, § 1], we denote by S(t) the positivity preserving semigroup on L1(M)+L∞(M)
which coincides with Tp(t) on Lp(M) for all 1 � p � ∞. For an arbitrary Riemannian
manifold (M, g), it is well known (see [2, Proposition 1.1]) that there exists a strictly
positive C∞ kernel K on (0,∞) × M × M such that

(S(t)f)(x) =
∫

M

K(t, x, y)f(y) dµ(y) for all f ∈ L1(M) + L∞(M) and all t > 0.

As in [2, § 1], for λ > 0, we will denote by Rλ the positivity preserving operator on
L1(M) + L∞(M) which coincides with (Ap + λ)−1 on Lp(M) for all 1 � p � +∞.
By [2, (1.2)] we have

Rλf =
∫ +∞

0
e−λtS(t)f dt for all f ∈ Lp(M), λ > 0, (6.3)

where the equation is interpreted in the strong sense for 1 � p < ∞ and in the weak-∗
sense for p = ∞.

We begin with the following lemma.

Lemma 6.2. Assume that (M, g) is a Riemannian manifold (not necessarily complete).
Assume that 0 � f ∈ L∞(M). Assume that 0 � h ∈ L∞(M) satisfies the following
distributional inequality:

(λ + ∆M )h � f for some λ > 0.

Let Rλ be as in (6.3) above. Then h � Rλf almost everywhere on M .

Remark 6.3. Lemma 6.2 is essentially the same as [3, Lemma 5.2.4] (or [2,
Lemma 2.3]). The only difference is that [3, Lemma 5.2.4] assumes that 0 � h is a contin-
uous function on M and concludes that h � Rλf everywhere. The proof of Lemma 6.2,
which we give below, is the same as the proof of [3, Lemma 5.2.4].

Proof of Lemma 6.2. Let λ > 0 be as in the hypothesis. Let Uk be an increasing
sequence of relatively compact open subsets of M with smooth boundaries and union
equal to M . Let Kk be the self-adjoint operators on L2(Uk) given by Kk = ∆M with
Dirichlet boundary conditions. By the proof of [3, Lemma 5.2.4], we have Kk ↓ A2 in the
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sense of quadratic forms, where A2 is as in (6.2). Thus, by the abstract Theorem 1.2.3
in [3], we have

(Kk + λ)−1 ↑ (A2 + λ)−1 as k → ∞,

in the strong operator topology.
Let χUk

denote the characteristic function of the set Uk. Define

gk := (Kk + λ)−1(fχUk
).

By the definition of gk we have

(λ + ∆M )gk = f on Uk and gk = 0 on ∂Uk. (6.4)

By hypotheses and by (6.4) we get

(λ + ∆M )(h − gk) � 0 on Uk, with (h − gk) � 0 on ∂Uk.

The maximum principle implies that h � gk almost everywhere on Uk.
If j � k, we obtain

h � (Kk + λ)−1(fχUk
) � (Kk + λ)−1(fχUj ). (6.5)

Letting k → ∞ in (6.5), we get

h � (A2 + λ)−1(fχUj ) = Rλ(fχUj ).

Finally, letting j → ∞, we obtain

h � Rλf almost everywhere on M,

and the lemma is proved. �

Proof of Lemma 2.5. Let λ > 0 and v ∈ L∞(M) be as in the hypothesis. By
normalization, we may assume that ‖v‖∞ = λ−1. Define h := λ−1 +v. Then h ∈ L∞(M)
and h � 0.

By hypothesis we know that

〈(λ + ∆M )v, φ〉 � 0 for all 0 � φ ∈ C∞
c (M).

Thus, for all 0 � φ ∈ C∞
c (M), we have

〈(λ+∆M )h, φ〉 = 〈(λ+∆M )λ−1, φ〉+ 〈(λ+∆M )v, φ〉 = 〈1, φ〉+ 〈(λ+∆M )v, φ〉 � 〈1, φ〉.

Hence, we get the following distributional inequality:

(λ + ∆M )h � 1.

Define f := 1. Since (M, g) has bounded geometry, by [3, Theorem 5.2.6] it follows that
Rλ1 = λ−1.

By Lemma 6.2 with f = 1, it follows that h � λ−1 almost everywhere, i.e.

λ−1 + v � λ−1 almost everywhere on M.

Therefore, v � 0 almost everywhere on M , and the lemma is proved. �
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