ON m-ACCRETIVE SCHRÖDINGER OPERATORS IN L^1 -SPACES ON MANIFOLDS OF BOUNDED GEOMETRY

OGNJEN MILATOVIC

Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224, USA (omilatov@unf.edu)

(Received 9 January 2006)

Abstract Let (M, g) be a manifold of bounded geometry with metric g. We consider a Schrödinger-type differential expression $H = \Delta_M + V$, where Δ_M is the scalar Laplacian on M and V is a non-negative locally integrable function on M. We give a sufficient condition for H to have an m-accretive realization in the space $L^1(M)$.

Keywords: bounded geometry; L^1 -space; m-accretive; manifold; Schrödinger operator

2000 Mathematics subject classification: Primary 58J50; 35P05

1. Introduction and the main results

Let (M, g) be a C^{∞} Riemannian manifold without boundary, with metric $g = (g_{jk})$ and dim M = n. We will assume that M is connected and oriented. By $d\mu$ we will denote the Riemannian volume element of M. In any local coordinates x^1, \ldots, x^n , we have $d\mu = \sqrt{\det(g_{jk})} dx^1 dx^2 \cdots dx^n$.

In what follows, $C^{\infty}(M)$ denotes the space of complex-valued smooth functions on M and $C^{\infty}(\Lambda^1 T^*M)$ denotes the space of complex-valued smooth 1-forms on M. The notation $C_c^{\infty}(M)$ stands for the space of complex-valued smooth compactly supported functions on M, the notation $\|\cdot\|_p$ denotes the usual norm in $L^p(M)$, and $\mathcal{D}'(M)$ denotes the distributions on M. Throughout the paper, $d: C^{\infty}(M) \to C^{\infty}(\Lambda^1 T^*M)$ is the standard differential and d^* is the formal adjoint of d with respect to the inner product in $L^2(M)$. We denote by $\Delta_M := d^*d$ the scalar Laplacian on M.

We consider a Schrödinger-type differential expression

 $H = \Delta_M + V,$

where $V \in L^1_{loc}(M)$ is real valued.

1.1. Operators associated with H and Δ_M

Let $1 \leq p \leq +\infty$ and let $V \in L^1_{loc}(M)$. We define the maximal operator $H_{p,\max}$ in $L^p(M)$ by the formula $H_{p,\max}u = Hu$ with domain

$$Dom(H_{p,max}) = \{ u \in L^p(M) : Vu \in L^1_{loc}(M), \ \Delta_M u + Vu \in L^p(M) \}.$$
(1.1)

Here, the term $\Delta_M u$ in $\Delta_M u + V u$ is understood in a distributional sense.

In general, $\text{Dom}(H_{p,\max})$ does not contain $C_c^{\infty}(M)$, but it does if $V \in L_{\text{loc}}^p(M)$. In this case, we can define $H_{p,\min} := H_{p,\max}|_{C_c^{\infty}(M)}$. In particular, the operator $H_{1,\min}$ is always defined.

In the case when V = 0, the operator $H_{p,\max}$ will be denoted by $A_{p,\max}$. We define $A_{p,\min} := A_{p,\max}|_{C_c^{\infty}(M)}$.

We now make an assumption on (M, g).

Assumption 1.1. Assume that (M, g) has bounded geometry, i.e.

- (i) $r_{inj} > 0$ (here, r_{inj} denotes the injectivity radius of (M, g));
- (ii) $|\nabla^i R| \leq C_i$ for all i = 0, 1, 2, ..., where $C_i \geq 0$ are constants, and ∇^i denotes the *i*th covariant derivative of the Riemann curvature tensor R of M.

Throughout the paper, we will assume, unless specified otherwise, that Assumption 1.1 is satisfied.

Remark 1.2. The condition $r_{inj} > 0$ implies the completeness of (M, g) (see, for instance, [10, § A.1.1]). For more on manifolds (M, g) satisfying Assumption 1.1, see [10, § A.1.1] and [4].

In the following, we denote by \overline{A} the closure of a closable operator A. We now state the main results.

Theorem 1.3. Assume that (M, g) is a connected C^{∞} Riemannian manifold without boundary. Assume that Assumption 1.1 holds. Assume that $0 \leq V \in L^1_{loc}(M)$. Then the following properties hold:

- (i) the operator H_{1,max} generates a contraction semigroup on L¹(M) and, in particular, H_{1,max} is an m-accretive operator;
- (ii) the set $C_{\rm c}^{\infty}(M)$ is a core for $H_{1,\max}$ (i.e. $\bar{H}_{1,\min} = H_{1,\max}$).

Theorem 1.4. Under the same hypotheses as in Theorem 1.3, the following operator equality holds:

$$H_{1,\max} = A_{1,\max} + V,$$
 (1.2)

where V is understood to be the maximal multiplication operator in $L^{1}(M)$.

In the next theorem we will use the following notation.

Positivity

Suppose that B and C are bounded linear operators on $L^p(M)$. In what follows, the notation $B \leq C$ means that, for all $0 \leq f \in L^p(M)$, we have $(C - B)f \geq 0$.

Theorem 1.5. Under the same hypotheses as in Theorem 1.3, the following properties hold:

- (i) $0 \leq (\lambda + H_{1,\max})^{-1}$ for all $\lambda > 0$;
- (ii) $(\lambda + H_{1,\max})^{-1} \leq (\lambda + A_{1,\max})^{-1}$ for all $\lambda > 0$.

Remark 1.6. Kato [7, Part A] considered the differential expression $-\Delta + V$ in spaces $L^p(\mathbb{R}^n)$, where $1 \leq p \leq \infty$; the notation Δ denotes the standard Laplacian on \mathbb{R}^n with standard metric and measure and $0 \leq V \in L^1_{loc}(\mathbb{R}^n)$. Assuming $0 \leq V \in L^1_{loc}(\mathbb{R}^n)$, Kato [7, Part A] proved the *m*-accretivity of the operator $H_{p,\max}$ corresponding to $-\Delta + V$. In his proof, Kato used certain properties (specific to the \mathbb{R}^n setting) of $(-\Delta_{2,\max} + \gamma)^{-1}$, where $\gamma > 0$ and $-\Delta_{2,\max}$ is the self-adjoint closure of $-\Delta|_{C^\infty_c}(\mathbb{R}^n)$ in $L^2(\mathbb{R}^n)$, which enabled him to handle the cases when p = 1 and $p = \infty$. In the case of operators $H_{p,\max}$ on manifolds of bounded geometry, where 1 , Theorems 1.3 and 1.5 were proved in [8] using the theory of uniformly elliptic differential operators. However, the case when <math>p = 1 is more delicate and requires a different approach, which is the content of this current paper.

2. Preliminary lemmas

In what follows, we will use a version of Kato's inequality. For the proof of a more general version of this inequality, see [1, Theorem 5.7].

Lemma 2.1. Assume that (M, g) is an arbitrary Riemannian manifold. Assume that $u \in L^1_{loc}(M)$ and $\Delta_M u \in L^1_{loc}(M)$. Then the following distributional inequality holds:

$$\Delta_M |u| \leqslant \operatorname{Re}((\Delta_M u) \operatorname{sgn} \bar{u}), \tag{2.1}$$

where \bar{u} is the complex conjugate of u, and

$$\operatorname{sgn} u(x) = \begin{cases} \frac{u(x)}{|u(x)|} & \text{if } u(x) \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Remark 2.2. For the original version of Kato's inequality, see [5, Lemma A].

Lemma 2.3. Let (M,g) be a Riemannian manifold. Assume that $0 \leq V \in L^1_{loc}(M)$, $u \in Dom(H_{1,max})$ and $\lambda \in \mathbb{C}$. Let $f := (H_{1,max} + \lambda)u$. Then the following distributional inequality holds:

$$(\operatorname{Re} \lambda + \Delta_M + V)|u| \leqslant |f|. \tag{2.2}$$

Proof. Since $u \in \text{Dom}(H_{1,\max})$ it follows that $Vu \in L^1_{\text{loc}}(M)$ and $H_{1,\max}u \in L^1(M) \subset L^1_{\text{loc}}(M)$. Thus, $u \in L^1_{\text{loc}}(M)$ and $\Delta_M u \in L^1_{\text{loc}}(M)$. By Kato's inequality (2.1) we have

$$(\operatorname{Re} \lambda + \Delta_M + V)|u| \leqslant \operatorname{Re}[((\lambda + \Delta_M + V)u)\operatorname{sgn} \bar{u}] = \operatorname{Re}(f\operatorname{sgn} \bar{u}) \leqslant |f|$$

and the lemma is proved.

In the following, we will use a sequence of cut-off functions.

2.1. Cut-off functions

Let (M, g) be a manifold of bounded geometry. Then there exists a sequence of functions $\{\chi_k\}$ in $C_c^{\infty}(M)$ such that

- (i) $0 \leq \chi_k \leq 1$ for all $k = 1, 2, \ldots$,
- (ii) $\chi_k \leq \chi_{k+1}$ for all $k = 1, 2, \ldots$,
- (iii) for every compact set $G \subset M$, there exists k such that $\chi_k|_G = 1$,
- (iv) for all $k = 1, 2, \ldots$, the inequalities

$$\sup_{x \in M} |d\chi_k(x)| \leqslant \tilde{C} \quad \text{and} \quad \sup_{x \in M} |\Delta_M \chi_k(x)| \leqslant \tilde{C}$$
(2.3)

hold, where the constant $\tilde{C} > 0$ does not depend on k, and $|d\chi_k(x)|$ denotes the length of the cotangent vector $d\chi_k(x) \in T_x^*M$ (here, T_x^*M is the cotangent space at $x \in M$).

For the construction of χ_k satisfying the above properties, see [10, §1.4].

Lemma 2.4. Assume that $0 \leq V \in L^1_{loc}(M)$. Assume that $\lambda \in \mathbb{C}$ and $\gamma := \text{Re } \lambda > 0$. Then the following properties hold:

(i) for all $u \in \text{Dom}(H_{1,\max})$, we have

$$\gamma \|u\|_1 \leq \|(\lambda + H_{1,\max})u\|_1;$$
(2.4)

(ii) the operator $\lambda + H_{1,\max}$: Dom $(H_{1,\max}) \subset L^1(M) \to L^1(M)$ is injective.

Proof. We first prove property (i). Let $u \in \text{Dom}(H_{1,\max})$ and let $f := (\lambda + H_{1,\max})u$. By the definition of $\text{Dom}(H_{1,\max})$, we have $f \in L^1(M)$ and $Vu \in L^1_{\text{loc}}(M)$. Since $V \ge 0$, from (2.2) we get the following distributional inequality:

$$(\gamma + \Delta_M)|u| \leqslant |f|. \tag{2.5}$$

Thus, for all $0 \leq \psi \in C^{\infty}_{c}(M)$, we have

$$\gamma \int_{M} |u|\psi \,\mathrm{d}\mu \leqslant \int_{M} |f|\psi \,\mathrm{d}\mu - \int_{M} |u| (\Delta_{M}\psi) \,\mathrm{d}\mu.$$
(2.6)

Let $\chi_k \in C_c^{\infty}(M)$ be the cut-off functions defined above. Clearly, the functions χ_k satisfy the following properties as $k \to +\infty$:

$$\chi_k \to 1$$
 and $\Delta_M \chi_k \to 0$, almost everywhere. (2.7)

Since $f \in L^1(M)$ and $u \in L^1(M)$, using property (i) of $\{\chi_k\}$, the rightmost inequality in (2.3), the properties (2.7) and the dominated convergence theorem, we have

$$\chi_k|u| \to |u|, \quad \chi_k|f| \to |f| \quad \text{and} \quad |u|(\Delta_M \chi_k) \to 0 \quad \text{in } L^1(M).$$
 (2.8)

Substituting $\psi = \chi_k$ in (2.6), we get

$$\gamma \int_{M} |u|\chi_k \,\mathrm{d}\mu \leqslant \int_{M} |f|\chi_k \,\mathrm{d}\mu - \int_{M} |u|(\Delta_M \chi_k) \,\mathrm{d}\mu.$$
(2.9)

Taking the limit as $k \to +\infty$ in (2.9) and using (2.8), we obtain

$$\gamma \int_{M} |u| \,\mathrm{d}\mu \leqslant \int_{M} |f| \,\mathrm{d}\mu, \tag{2.10}$$

and (2.4) is proved.

We now prove property (ii). Assume that $u \in \text{Dom}(H_{1,\max})$ and $(\lambda + H_{1,\max})u = 0$. Using (2.4), we get $||u||_1 = 0$, and hence u = 0. This shows that $\lambda + H_{1,\max}$ is injective. \Box

2.2. Distributional inequality

Let $\lambda > 0$, and consider the following distributional inequality:

$$(\Delta_M + \lambda)u = \nu \ge 0, \quad u \in L^{\infty}(M), \tag{2.11}$$

where the inequality $\nu \ge 0$ means that ν is a positive distribution, i.e. $\langle \nu, \phi \rangle \ge 0$ for any $0 \le \phi \in C_c^{\infty}(M)$.

Lemma 2.5. Assume that (M, g) is a manifold of bounded geometry. Assume that $u \in L^{\infty}(M)$ satisfies (2.11). Then $u \ge 0$ (almost everywhere or, equivalently, as a distribution).

See $\S 6$ for the proof of Lemma 2.5.

In the following, we will adopt certain arguments of [7, Part A] to our setting.

Lemma 2.6. Assume that $0 \leq V \in L^1_{loc}(M)$. Then the following properties hold:

- (i) the operator $H_{1,\max}$ is closed;
- (ii) the operator $\lambda + H_{1,\max}$, where $\operatorname{Re} \lambda > 0$, has a closed range.

Proof. We first prove (i). Let $u_k \in \text{Dom}(H_{1,\max})$ be a sequence such that, as $k \to +\infty$,

$$u_k \to u, \quad f_k := H_{1,\max} u_k = \Delta_M u_k + V u_k \to f \quad \text{in } L^1(M).$$
 (2.12)

We need to show that $u \in \text{Dom}(H_{1,\max})$ and $H_{1,\max}u = f$.

By passing to subsequences, we may assume that the convergence in (2.12) is also pointwise almost everywhere.

The distributional inequality (2.2) holds if we replace u by $u_k - u_l$, f by $f_k - f_l$ and λ by 0. With these replacements, we apply a test function $0 \leq \phi \in C_c^{\infty}(M)$ to (2.2) and get

$$0 \leqslant \langle V|u_k - u_l|, \phi \rangle \leqslant \langle |f_k - f_l|, \phi \rangle - \langle \Delta_M |u_k - u_l|, \phi \rangle, \qquad (2.13)$$

where $\langle \cdot, \cdot \rangle$ denotes the anti-duality of the pair $(\mathcal{D}'(M), C^{\infty}_{c}(M))$.

Using integration by parts in the second term on the right-hand side of the second inequality in (2.13), we get

$$0 \leqslant \langle V|u_k - u_l|, \phi \rangle \leqslant \langle |f_k - f_l|, \phi \rangle - \langle |u_k - u_l|, \Delta_M \phi \rangle.$$
(2.14)

Letting $k, l \to +\infty$, the right-hand side of the second inequality in (2.14) tends to 0 by (2.12). Thus, $Vu_k\phi$ is a Cauchy sequence in $L^1(M)$, and its limit must be equal to $Vu\phi$. Since $\phi \in C_c^{\infty}(M)$ may have an arbitrarily large support, it follows that $Vu \in L^1_{loc}(M)$. Thus, $Vu_k \to Vu$ in $L^1_{loc}(M)$ and hence in $\mathcal{D}'(M)$. Since $u_k \to u$ in $L^1(M)$ (and, hence in $L^1_{loc}(M)$), we get $\Delta_M u_k \to \Delta_M u$ in $\mathcal{D}'(M)$. Thus, $f_k = \Delta_M u_k + Vu_k \to \Delta_M u + Vu$ in $\mathcal{D}'(M)$. Since $f_k \to f$ in $L^1(M) \subset \mathcal{D}'(M)$, we obtain $\Delta_M u + Vu = f \in L^1(M)$. This shows that $u \in \text{Dom}(H_{1,\max})$ and $H_{1,\max}u = f$. This proves that $H_{1,\max}$ is closed.

We now prove (ii). Since $H_{1,\max}$ is closed, it immediately follows from (2.4) that $\lambda + H_{1,\max}$ has a closed range for $\operatorname{Re} \lambda > 0$.

Lemma 2.7. Assume that $0 \leq V \in L^1_{loc}(M)$. Let $\lambda \in \mathbb{C}$ and let $\gamma := \operatorname{Re} \lambda > 0$. Then the following properties hold:

- (i) the operator $\lambda + H_{1,\max}$: Dom $(H_{1,\max}) \subset L^1(M) \to L^1(M)$ is surjective;
- (ii) the operator $(\lambda + H_{1,\max})^{-1} : L^1(M) \to L^1(M)$ is a bounded linear operator with the operator norm

$$\|(\lambda + H_{1,\max})^{-1}\|_{L^1(M) \to L^1(M)} \leqslant \frac{1}{\gamma}.$$
(2.15)

Proof. We first prove (i). Since $\lambda + H_{1,\max}$ has a closed range by Lemma 2.6, it is sufficient to show that $(\lambda + H_{1,\min})C_c^{\infty}(M)$ is dense in $L^1(M)$. Let $v \in (L^1(M))^* = L^{\infty}(M)$ be a continuous linear functional annihilating $(\lambda + H_{1,\min})C_c^{\infty}(M)$:

$$\langle (\lambda + H_{1,\min})\phi, v \rangle = 0 \quad \text{for all } \phi \in C^{\infty}_{c}(M),$$
(2.16)

where $\langle \cdot, \cdot \rangle$ denotes the anti-duality of the pair $(L^1(M), L^{\infty}(M))$.

From (2.16) we get the following distributional equality:

$$(\bar{\lambda} + \Delta_M + V)v = 0.$$

Since by hypothesis $V \in L^1_{loc}(M)$ and since $v \in L^{\infty}(M)$, by Hölder's inequality we have $Vv \in L^1_{loc}(M)$. Since $\Delta_M v = -Vv - \overline{\lambda}v$, we get $\Delta_M v \in L^1_{loc}(M)$. By Kato's inequality and since $V \ge 0$, we have

$$\Delta_M |v| \leqslant \operatorname{Re}((\Delta_M v) \operatorname{sgn} \bar{v}) = \operatorname{Re}((-\bar{\lambda}v - Vv) \operatorname{sgn} \bar{v}) \leqslant -(\operatorname{Re} \bar{\lambda})|v|,$$

and, hence,

$$(\Delta_M + \operatorname{Re}\bar{\lambda})|v| \leqslant 0.$$

Since $v \in L^{\infty}(M)$ and since $\operatorname{Re} \overline{\lambda} = \operatorname{Re} \lambda > 0$, by Lemma 2.5 we get $|v| \leq 0$. Thus, v = 0, and the surjectivity of $\lambda + H_{1,\max}$ is proved.

We now prove (ii). Assume that $\lambda \in \mathbb{C}$ satisfies $\gamma := \operatorname{Re} \lambda > 0$. Since $\lambda + H_{1,\max}$: $\operatorname{Dom}(H_{1,\max}) \subset L^1(M) \to L^1(M)$ is injective and surjective, the inverse $(\lambda + H_{1,\max})^{-1}$ is defined on the whole $L^1(M)$. The inequality (2.15) follows immediately from (2.4). This concludes the proof of the lemma.

3. Proof of Theorem 1.3

We first prove (ii). By Lemma 2.7 it follows that $(-\infty, 0) \subset \rho(H_{1,\max})$, the resolvent set of $H_{1,\max}$, and

$$\|(\lambda + H_{1,\max})^{-1}\|_{L^1(M) \to L^1(M)} \leq \frac{1}{\lambda}$$
 for all $\lambda > 0$.

Thus, by [9, Theorem X.47(a)] it follows that $H_{1,\max}$ generates a contraction semigroup on $L^1(M)$. In particular, by the remark preceding [9, Theorem X.49], the operator $H_{1,\max}$ is *m*-accretive.

We now prove (ii). By Theorem 1.3 (i), the operator $H_{1,\max}$ is *m*-accretive; hence, $H_{1,\min} = H_{1,\max}|_{C_c^{\infty}(M)}$ is accretive. Hence (see the remark preceding [9, Theorem X.48]), the operator $H_{1,\min}$ is closable and $\bar{H}_{1,\min}$ is accretive. Let $\lambda > 0$. By the proof of Lemma 2.7 (i) it follows that $\operatorname{Ran}(\lambda + H_{1,\min})$ is dense in $L^1(M)$. Using (2.4) and the definition of the closure of an operator, it follows that $\operatorname{Ran}(\lambda + \bar{H}_{1,\min}) = L^1(M)$. Now, by [9, Theorem X.48] the operator $\bar{H}_{1,\min}$ generates a contraction semigroup on $L^1(M)$. Thus, by the remark preceding [9, Theorem X.49], the operator $\bar{H}_{1,\min}$ is *m*-accretive. Since $\bar{H}_{1,\min} \subset H_{1,\max}$ and since $\bar{H}_{1,\min}$ and $H_{1,\max}$ are *m*-accretive, it follows that $\bar{H}_{1,\min} = H_{1,\max}$. This concludes the proof of the theorem.

4. Proof of Theorem 1.4

We begin with the following lemma.

Lemma 4.1. Assume that $u \in \text{Dom}(H_{1,\max})$. Assume that $\lambda \in \mathbb{C}$ with $\gamma := \text{Re } \lambda \ge 0$. Then

$$\|(\lambda + \Delta_M)u\|_1 \leq 2\|(\lambda + H_{1,\max})u\|_1 \quad and \quad \|Vu\|_1 \leq \|(\lambda + H_{1,\max})u\|_1.$$
(4.1)

Proof. Let $u \in \text{Dom}(H_{1,\max})$ and $f := (\lambda + H_{1,\max})u$. By the definition of $\text{Dom}(H_{1,\max})$, we have $f \in L^1(M)$ and $Vu \in L^1_{\text{loc}}(M)$. By (2.2) we have the following distributional inequality:

$$(\gamma + \Delta_M + V)|u| \leqslant |f|. \tag{4.2}$$

Since, by assumption, $\gamma \ge 0$ for all $0 \le \psi \in C_{c}^{\infty}(M)$, we have

$$\int_{M} V|u|\psi \,\mathrm{d}\mu \leqslant \int_{M} |f|\psi \,\mathrm{d}\mu - \int_{M} |u|(\Delta_{M}\psi) \,\mathrm{d}\mu.$$
(4.3)

Let $\chi_k \in C_c^{\infty}(M)$ be the cut-off functions defined before Lemma 2.4. Substituting $\psi = \chi_k$ into (4.3), we get

$$\int_{M} V|u|\chi_k \,\mathrm{d}\mu \leqslant \int_{M} |f|\chi_k \,\mathrm{d}\mu - \int_{M} |u|(\Delta_M \chi_k) \,\mathrm{d}\mu. \tag{4.4}$$

Since $V \ge 0$ and since $Vu \in L^1_{loc}(M)$, it follows that $V|u|\chi_k$ are non-negative integrable functions. By Fatou's lemma, (2.8) and (4.4), we have

$$\int_{M} V|u| d\mu = \int_{M} (\liminf_{k \to +\infty} V|u|\chi_{k}) d\mu$$

$$\leq \liminf_{k \to +\infty} \int_{M} V|u|\chi_{k} d\mu$$

$$\leq \liminf_{k \to +\infty} \left(\int_{M} \chi_{k}|f| d\mu - \int_{M} |u|(\Delta_{M}\chi_{k}) d\mu \right)$$

$$= \int_{M} |f| d\mu.$$

This shows that

$$\|Vu\|_{1} \leq \|f\|_{1} = \|(\lambda + H_{1,\max})u\|_{1}.$$
(4.5)

We now prove the remaining inequality in (4.1). Let $u \in \text{Dom}(H_{1,\max})$ be arbitrary. By (4.5), it follows that $Vu \in L^1(M)$. Since $(\lambda + \Delta_M)u = -Vu + (\lambda + H_{1,\max})u$, from (4.5) and the triangle inequality, we obtain

$$\|(\lambda + \Delta_M)u\|_1 \leq 2\|(\lambda + H_{1,\max})u\|_1.$$

This concludes the proof of the lemma.

Proof of Theorem 1.4. By the definition of $H_{1,\max}$ it follows that $\text{Dom}(A_{1,\max}) \cap \text{Dom}(V) \subset \text{Dom}(H_{1,\max})$. By Lemma 4.1 it follows that $\text{Dom}(H_{1,\max}) \subset \text{Dom}(V)$ and $\text{Dom}(H_{1,\max}) \subset \text{Dom}(A_{1,\max})$. Thus, $\text{Dom}(H_{1,\max}) = \text{Dom}(A_{1,\max}) \cap \text{Dom}(V)$. Now by the definitions of $H_{1,\max}$, $A_{1,\max}$ and the multiplication operator V, it follows that $H_{1,\max} = A_{1,\max} + V$. This concludes the proof of the theorem. \Box

5. Proof of Theorem 1.5

We begin with the following lemma.

Lemma 5.1. Assume that $0 \leq v \in L^1(M)$ satisfies the following distributional inequality:

$$(\Delta_M + \lambda)v \leqslant 0 \quad \text{for some } \lambda > 0. \tag{5.1}$$

Then v = 0 almost everywhere on M.

Proof. Let $\lambda > 0$ be as in the hypothesis. By (5.1), for all $0 \leq \psi \in C_{c}^{\infty}(M)$, we have

$$\lambda \int_{M} v\psi \,\mathrm{d}\mu \leqslant -\int_{M} v(\Delta_{M}\psi) \,\mathrm{d}\mu.$$
(5.2)

Let $\chi_k \in C_c^{\infty}(M)$ be the cut-off functions defined above Lemma 2.4. Substituting $\psi = \chi_k$ in (5.2), we get

$$\lambda \int_{M} v \chi_k \, \mathrm{d}\mu \leqslant -\int_{M} v(\Delta_M \chi_k) \, \mathrm{d}\mu.$$
(5.3)

Since $v \in L^1(M)$, using the properties of χ_k , as in the proof of (2.8), we have

$$v\chi_k \to v \quad \text{and} \quad v(\Delta_M \chi_k) \to 0 \quad \text{in } L^1(M).$$
 (5.4)

223

Taking the limit as $k \to \infty$ in (5.3) and using the hypothesis $v \ge 0$, we obtain

$$\lambda \|v\|_1 \leqslant 0.$$

Since $\lambda > 0$, we get $||v||_1 = 0$. Hence, v = 0 almost everywhere, and the lemma is proved.

Lemma 5.2. Assume that $u \in \text{Dom}(H_{1,\max})$ satisfies $(\lambda + H_{1,\max})u \ge 0$, where $\lambda > 0$. Then $u \ge 0$ almost everywhere on M.

Proof. Let $\lambda > 0$ be as in the hypothesis, and assume that $u \in \text{Dom}(H_{1,\max})$ satisfies

$$f := (H_{1,\max} + \lambda)u \ge 0.$$

We claim that u is real. Indeed, since $(H_{1,\max} + \lambda)\bar{u} = f$, we have $(H_{1,\max} + \lambda)(u - \bar{u}) = 0$. By property (ii) of Lemma 2.4 we have $u = \bar{u}$. Since $f \ge 0$ and $\lambda > 0$, by (2.2) we have

$$(\lambda + \Delta_M + V)|u| \leqslant f. \tag{5.5}$$

Subtracting $f = (\lambda + H_{1,\max})u$ from both sides of (5.5) we get

$$(\lambda + \Delta_M + V)v \leq 0$$
, where $v := |u| - u \ge 0$. (5.6)

Since $V \ge 0$, from (5.6) we get the following distributional inequality:

$$(\lambda + \Delta_M) v \leq 0$$
, where $v = |u| - u \geq 0$.

By Lemma 5.1 we get v = 0. Thus, $u = |u| \ge 0$. This concludes the proof.

Proof of Theorem 1.5. We first prove (i). Let $\lambda > 0$, let $0 \leq f \in L^1(M)$ be arbitrary, and let $u := (H_{1,\max} + \lambda)^{-1} f$. Then $(H_{1,\max} + \lambda)u = f \geq 0$, and, hence, by Lemma 5.2 we have $u \geq 0$. This proves the inequality $0 \leq (H_{1,\max} + \lambda)^{-1}$.

We now prove (ii). Let $\lambda > 0$ and let $0 \leq f \in L^1(M)$ be arbitrary. We will show that

$$(H_{1,\max} + \lambda)^{-1} f \leqslant (A_{1,\max} + \lambda)^{-1} f.$$
(5.7)

Define $u := (H_{1,\max} + \lambda)^{-1} f$. By (i) we have $0 \leq u \in \text{Dom}(H_{1,\max})$ and, hence, by Theorem 1.4 we get $u \in \text{Dom}(A_{1,\max})$. Thus, $(\Delta_M + \lambda)u \in L^1(M)$, and, hence, by (2.5) (with $u \geq 0$ and $f \geq 0$) we have the following inequality of functions:

$$(\Delta_M + \lambda)u \leqslant f$$
 almost everywhere on M . (5.8)

By (i), with V = 0, it follows that $(A_{1,\max} + \lambda)^{-1} \ge 0$ as an operator $L^1(M) \to L^1(M)$. Thus, from (5.8) we get

$$u \leqslant (A_{1,\max} + \lambda)^{-1} f.$$

But $u = (H_{1,\max} + \lambda)^{-1} f$, and (5.7) is proved. This concludes the proof of (ii).

6. Proof of Lemma 2.5

In this section, we will use the following terms and notation. Unless specified otherwise, (M, g) is an arbitrary Riemannian manifold (not necessarily complete).

Sobolev space $W^{1,2}(M)$

By $W^{1,2}(M)$ we will denote the completion of the space $C_c^{\infty}(M)$ with respect to the norm $\|\cdot\|_{W^{1,2}}$ defined by the scalar product

$$(u, v)_{W^{1,2}} := (u, v)_{L^2(M)} + (\mathrm{d}u, \mathrm{d}v)_{L^2(\Lambda^1 T^*M)}, \quad u, v \in C^\infty_{\mathrm{c}}(M).$$

Remark 6.1. If (M, g) is a complete Riemannian manifold, then by [4, Proposition 1.4] it follows that $W^{1,2}(M) = \{u \in L^2(M) : du \in L^2(\Lambda^1 T^*M)\}.$

In what follows, we will closely follow [2] and $[3, \S\S 1.3, 1.4 \text{ and } 5.2]$.

Semigroups $T_p(t)$

Let $A_{2,\min}$ and $A_{2,\max}$ be as in §1. It is well known that, for a complete Riemannian manifold (M, g), the operator $A_{2,\min}$ is essentially self-adjoint in $L^2(M)$ and $A_{2,\max} = \bar{A}_{2,\min}$ (see, for example, [4, Theorem 3.5]). Moreover, by [6, §VI.2.3], it follows that $A_{2,\max}$ (as the Friedrichs extension of $A_{2,\min}$) is the self-adjoint operator associated with the closure \bar{h} in $L^2(M)$ of the quadratic form

$$h(u) := \int_M |\mathrm{d} u|^2 \,\mathrm{d} \mu, \quad u \in C^\infty_\mathrm{c}(M).$$

Thus, for a complete Riemannian manifold (M, g), the operator $A_{2,\max}$ generates a strongly continuous contraction semigroup $e^{-tA_{2,\max}}$, $t \ge 0$, on $L^2(M)$ (see, for instance, [9, §X.8, Example 1]). It is well known that the semigroup $e^{-tA_{2,\max}}$ is positivity preserving (see, for instance, the proof of [11, Theorem 3.6]). Moreover, for every $0 \le f \in \text{Dom}(\bar{h}) = W^{1,2}(M)$ we have $g := \min\{f, 1\} \in \text{Dom}(\bar{h})$, and

$$\int_M |\mathrm{d}g|^2 \,\mathrm{d}\mu \leqslant \int_M |\mathrm{d}f|^2 \,\mathrm{d}\mu$$

Hence, the semigroup $e^{-tA_{2,\max}}$ satisfies the conditions of [3, Theorems 1.3.2 and 1.3.3]. Thus, by [3, Theorem 1.4.1] it follows that the semigroup $e^{-tA_{2,\max}}$ can be extended from $L^1(M) \cap L^{\infty}(M)$ to a contraction semigroup $T_p(t), t \ge 0$, on $L^p(M)$ for all $1 \le p \le +\infty$. Moreover, by [3, Theorem 1.4.1], the semigroup $T_p(t)$ is strongly continuous for $1 \le p < +\infty$. By A_p we will denote the generator of $T_p(t)$. The operator A_p is an extension of $\Delta_M|_{C_c^{\infty}(M)}$ in the corresponding space $L^p(M)$; see [2, § 1]. By [9, Theorem X.47(a)] it follows that $(-\infty, 0) \subset \rho(A_p)$, where $\rho(A_p)$ denotes the resolvent set of A_p , and

$$\|(A_p + \lambda)^{-1}\| \leqslant \frac{1}{\lambda} \quad \text{for all } \lambda > 0, \tag{6.2}$$

(

where $\|\cdot\|$ denotes the operator norm of the bounded linear operator $(A_p + \lambda)^{-1}$: $L^p(M) \to L^p(M)$. Since the semigroup $T_{\infty}(t)$ on $L^{\infty}(M)$ is not generally strongly continuous, its generator A_{∞} can be defined by

$$(A_{\infty} + \lambda)^{-1} = ((A_1 + \lambda)^{-1})^* \text{ for all } \lambda > 0,$$

but A_{∞} is not necessarily densely defined; see the remark above the formulation of [3, Theorem 1.4.2].

Semigroup S(t)

As in $[\mathbf{2}, \S 1]$, we denote by S(t) the positivity preserving semigroup on $L^1(M) + L^{\infty}(M)$ which coincides with $T_p(t)$ on $L^p(M)$ for all $1 \le p \le \infty$. For an arbitrary Riemannian manifold (M, g), it is well known (see $[\mathbf{2}, \text{Proposition 1.1}]$) that there exists a strictly positive C^{∞} kernel K on $(0, \infty) \times M \times M$ such that

$$(S(t)f)(x) = \int_M K(t, x, y)f(y) \,\mathrm{d}\mu(y) \quad \text{for all } f \in L^1(M) + L^\infty(M) \text{ and all } t > 0.$$

As in [2, §1], for $\lambda > 0$, we will denote by R_{λ} the positivity preserving operator on $L^{1}(M) + L^{\infty}(M)$ which coincides with $(A_{p} + \lambda)^{-1}$ on $L^{p}(M)$ for all $1 \leq p \leq +\infty$. By [2, (1.2)] we have

$$R_{\lambda}f = \int_{0}^{+\infty} e^{-\lambda t} S(t) f \, \mathrm{d}t \quad \text{for all } f \in L^{p}(M), \ \lambda > 0,$$
(6.3)

where the equation is interpreted in the strong sense for $1 \leq p < \infty$ and in the weak-* sense for $p = \infty$.

We begin with the following lemma.

Lemma 6.2. Assume that (M, g) is a Riemannian manifold (not necessarily complete). Assume that $0 \leq f \in L^{\infty}(M)$. Assume that $0 \leq h \in L^{\infty}(M)$ satisfies the following distributional inequality:

$$(\lambda + \Delta_M)h \ge f$$
 for some $\lambda > 0$.

Let R_{λ} be as in (6.3) above. Then $h \ge R_{\lambda} f$ almost everywhere on M.

Remark 6.3. Lemma 6.2 is essentially the same as [3, Lemma 5.2.4] (or [2, Lemma 2.3]). The only difference is that [3, Lemma 5.2.4] assumes that $0 \le h$ is a continuous function on M and concludes that $h \ge R_{\lambda}f$ everywhere. The proof of Lemma 6.2, which we give below, is the same as the proof of [3, Lemma 5.2.4].

Proof of Lemma 6.2. Let $\lambda > 0$ be as in the hypothesis. Let U_k be an increasing sequence of relatively compact open subsets of M with smooth boundaries and union equal to M. Let K_k be the self-adjoint operators on $L^2(U_k)$ given by $K_k = \Delta_M$ with Dirichlet boundary conditions. By the proof of [3, Lemma 5.2.4], we have $K_k \downarrow A_2$ in the

sense of quadratic forms, where A_2 is as in (6.2). Thus, by the abstract Theorem 1.2.3 in [3], we have

$$(K_k + \lambda)^{-1} \uparrow (A_2 + \lambda)^{-1}$$
 as $k \to \infty$,

in the strong operator topology.

Let χ_{U_k} denote the characteristic function of the set U_k . Define

$$g_k := (K_k + \lambda)^{-1} (f \chi_{U_k}).$$

By the definition of g_k we have

$$(\lambda + \Delta_M)g_k = f \text{ on } U_k \text{ and } g_k = 0 \text{ on } \partial U_k.$$
 (6.4)

By hypotheses and by (6.4) we get

$$(\lambda + \Delta_M)(h - g_k) \ge 0$$
 on U_k , with $(h - g_k) \ge 0$ on ∂U_k .

The maximum principle implies that $h \ge g_k$ almost everywhere on U_k .

If $j \leq k$, we obtain

$$h \ge (K_k + \lambda)^{-1} (f\chi_{U_k}) \ge (K_k + \lambda)^{-1} (f\chi_{U_j}).$$

$$(6.5)$$

Letting $k \to \infty$ in (6.5), we get

$$h \ge (A_2 + \lambda)^{-1} (f \chi_{U_j}) = R_\lambda (f \chi_{U_j}).$$

Finally, letting $j \to \infty$, we obtain

 $h \ge R_{\lambda} f$ almost everywhere on M,

and the lemma is proved.

Proof of Lemma 2.5. Let $\lambda > 0$ and $v \in L^{\infty}(M)$ be as in the hypothesis. By normalization, we may assume that $||v||_{\infty} = \lambda^{-1}$. Define $h := \lambda^{-1} + v$. Then $h \in L^{\infty}(M)$ and $h \ge 0$.

By hypothesis we know that

$$\langle (\lambda + \Delta_M) v, \phi \rangle \ge 0$$
 for all $0 \le \phi \in C^\infty_{\mathrm{c}}(M)$.

Thus, for all $0 \leq \phi \in C^{\infty}_{c}(M)$, we have

$$\langle (\lambda + \Delta_M)h, \phi \rangle = \langle (\lambda + \Delta_M)\lambda^{-1}, \phi \rangle + \langle (\lambda + \Delta_M)v, \phi \rangle = \langle 1, \phi \rangle + \langle (\lambda + \Delta_M)v, \phi \rangle \geqslant \langle 1, \phi \rangle.$$

Hence, we get the following distributional inequality:

$$(\lambda + \Delta_M)h \ge 1.$$

Define f := 1. Since (M, g) has bounded geometry, by [3, Theorem 5.2.6] it follows that $R_{\lambda} 1 = \lambda^{-1}$.

By Lemma 6.2 with f = 1, it follows that $h \ge \lambda^{-1}$ almost everywhere, i.e.

 $\lambda^{-1} + v \ge \lambda^{-1}$ almost everywhere on M.

Therefore, $v \ge 0$ almost everywhere on M, and the lemma is proved.

226

References

- M. BRAVERMAN, O. MILATOVIC AND M. SHUBIN, Essential self-adjointness of Schrödinger type operators on manifolds, *Russ. Math. Surv.* 57 (2002), 641–692.
- E. B. DAVIES, L¹-properties of second order elliptic operators, Bull. Lond. Math. Soc. 17 (1985), 417–436.
- 3. E. B. DAVIES, *Heat kernels and spectral theory* (Cambridge University Press, 1989).
- J. EICHHORN, Elliptic differential operators on noncompact manifolds, in Proc. Sem. Analysis of the Karl-Weierstrass-Institute of Mathematics, Berlin, 1986/87, Teubner-Texte zur Mathematik, Volume 106, pp. 4–169 (Teubner, Leipzig, 1988).
- 5. T. KATO, Schrödinger operators with singular potentials, *Israel J. Math.* **13** (1972), 135–148.
- 6. T. KATO, Perturbation theory for linear operators (Springer, 1980).
- T. KATO, L^p-theory of Schrödinger operators with a singular potential, in Aspects of positivity in functional analysis (ed. R. Nagel, U. Schlotterbeck and M. P. H. Wolff), pp. 63–78 (North-Holland, Amsterdam, 1986).
- 8. O. MILATOVIC, On *m*-accretive Schrödinger operators in L^p-spaces on manifolds of bounded geometry, J. Math. Analysis Applic. **324** (2006), 762–772.
- 9. M. REED AND B. SIMON, Methods of modern mathematical physics. Volume I: Functional analysis. Volume II: Fourier analysis, self-adjointness (Academic Press, 1975).
- M. A. SHUBIN, Spectral theory of elliptic operators on noncompact manifolds, Astérisque 207 (1992), 35–108.
- R. S. STRICHARTZ, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Analysis 52 (1983), 48–79.