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Some results on weighing matrices

Jennifer Seberry Wallis and Albert Leon Whiteman

It is shown that if q is a prime power then there exists a

2 2

circulant weighing matrix of order q + q + 1 with q non-

zero elements per row and column.

This result allows the bound N to be lowered in the theorem of

Geramita and Wai I is that "given a square integer k there exists

an integer N dependent on k such that weighing matrices of

weight k and order n and orthogonal designs (l, k) of order

2n exist for every n > N ".

1 . Introduction

An orthogonal design of order n and type [s , s , — , s7)

\8 . > OJ on the commuting variables x, xo, ..., x, is an n x n matrix

A with entries from {o, ±x, ..., ±x7} such that

-I- L

Alternatively, the rows of A are formally orthogonal and each row has

precisely 8. entries of the type ±x. .

In [2], where this vas first defined and many examples and properties

of such designs were investigated, it is mentioned that

A = (\ sAi

and so the alternative description of A applies equally well to the
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columns of A . I t i s also shown in [2] that I S p(w) , where p(n)

(Radon's function) i s defined by

p(n) = 8e + 2d

when

n = 2a'b , b odd, a = Ue + d , 0 < d < k .

Also in [23 it is shown that if there is an orthogonal design of order

n and type [a , b) , then

p
(i) n E 2 (mod k) °* b = a for some integer a ,

(ii) n = ht , t odd "* i> is the sum of three integer squares;

while in [5] it is shown that if n = h (mod 8) and if there exists an

orthogonal design of order n and type

(i) (a, a, a, b) , then — is a rational square;

(ii) (a, a, b) , then — is the sum of two rational squares;

(iii) (a, b) , then — is the sum of three rational squares.

A weighing matrix of weight k and order n is a square {0, 1, -l}

matrix, W = W(n, k) , of order n satisfying

W/* = kl .

In [2] it is shown that the existence of an orthogonal design of order

n and type (s , . . . , sS) is equivalent to the existence of weighing

matrices A An , of order n , where A. has weight s. and the
1 6 If u

matrices, {A-}._. > satisfy the matrix equation

XT* + YXt = 0

in pairs. In particular, the existence of an orthogonal design of order n

and type (1, k) is equivalent to the existence of a skew-symmetric

weighing matrix of weight k and order n .

It is conjectured that:
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( i ) for n = 2 (mod 1*) there i s a weighing matrix of weight

k and order n for every k < n - 1 which is the sum of

two integer squares;

( i i ) for n = 0 (mod k) there i s a weighing matrix of weight

k and order n for every k 5 n ;

( i i i ) for n = k (mod 8) there is a skew-symmetric weighing

matrix of order n for every k < n , where k i s the

sum of at most three squares of integers (e qui val ent ly,

there i s an orthogonal design of type ( l , k) in order n

for every k < n which i s the sum of at most three squares

of integers . In other words, the necessary condition for

the existence of an orthogonal design of type ( l , k) in

order n , n = h (mod 8) i s also suff ic ient) ;

(iv) for n i 0 (mod 8) there i s a skew-symmetric weighing

matrix of order n for every k < n (equivalently there

i s an orthogonal design of type ( l , k) in order n for

every k < n ) ;

(v) for n = 2 (mod h) there i s an orthogonal design of type

( 1 , k) in order n for every k < n - 1 such that k

i s an integer square.

Conjecture ( i i ) above is an extension of the Hadamard conjecture (that

i s , for every n = 0 (mod h) there i s a { l , - l } matrix, H , of order n

satisfying BE = nl ) while (iv) and ( i i i ) generalize the conjecture that

for every n = 0 (mod h) there is a Hadamard matrix, H , of order n ,

with the property that H = I + S where S = -S* .

Conjecture ( i i ) was established in [70] for

n € {h, 8, 12, . . . , 32, 1*0} and in [6] for n = 2t . Conjecture ( i i i ) was

established in [3 , Theorem 17] for n = 2 ( t > 3) .

Conjectures (iv) and ( i i i ) (and as a consequence conjecture ( i i ) ) were

established for n = 2 ' 3 , n = 2 « 5 , t a posit ive integer, in [4]

and in [ JJ ] for n = 2 '9 . Also in [3] i t was shown that only
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k = U6, U7 in order 56 remain to be found and the conjectures will be

settled for n = 2*+1'7 .

It has been established [5] that given a square k there exists an

N(k) such that W{n, k) exists for every n > N . Consequently an

orthogonal design ( l , k) exists in every order 2n , n > N .

Here we give some results which allow N(k) to be lowered when k

has a factor of 1* .

Let R be the back diagonal matrix. Then an orthogonal design or

weighing matrix is said to be eonetruoted from two circulant matrices A

and B i f i t is of the form

'A BR

BR -A

and to be of Goethals-Seidel type if i t is of the form

A BR CR DR

-BR A DtR -C*i?

-CR -£*/? A BtR

rDR C*/? -BH A

where A, B, C, D are circulant matrices.

Let 5 , S2> . . . , 5 be subsets of V , a finite abelian group,

containing k , ko, •••, k elements respectively. Write T. for the

to ta l i ty of a l l differences between elements of S. (with repetitions),

and T for the totali ty of elements of all the T. . If T contains each

non-zero element of P a fixed number of times, X say, then the sets

S., S S will be called n - {v; k , fe k ; \} supplementary

difference sets.

2. Weighing matrices of odd order

If A is a W(n, k) , then (det A)2 = kn . Thus if n is odd and a

W{n, k) exists, then k must be a perfect square.

In [2] where they are first discussed it is shown that
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in-k)2 - in-k) + 2 > n

must also hold. It is noted there that the "boundary" values of this
condition are of special interest; that i s , if

in-k)2 - in-k) + 1 = n ,

for in this case the zeros of A occur such that the incidence between any

pair of rows is exactly one. So if we let B = J - A*A , B satisfies

BBt = in-k-l)I + J , BJ = in-k)J ;
n n n

that i s , B is the incidence matrix of the protective plane of order
n - k - 1 .

Thus, the Bruck-Ryser Theorem on the non-existence of projective
planes of various orders implied the non-existence of the appropriate
Win, k) .

We shall prove in this paper that if q i s a prime power, then a
circulant weighing matrix of the form

W[q2
+q+l, q2)

can be constructed. Our method makes use of near difference sets.

In [S] Ryser has given the following definition of a near difference
set.

Let m > h be an even integer, and let k and X be positive

integers. A near difference set

is a set of k residues modulo m with the property that, for any residue

a % 0 , — (mod m) , the congruence

d. - d. = a (mod m)
i- 3

has exactly X solution pairs [d., d.) with d. and d. in D and no
i' 3 i- 3

solution pairs for a = — (mod m) .

A necessary condition for the existence of a near difference set with
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parameters m, k, X is that

fc(fc-l) = Hm-2) .

Let us put

m = 2v .

Then the necessary condition becomes

Hk-1) = 2X(y-l) .

Examples of near difference sets are:-

(i) v = 7 , k = h , \ = l , m = l k ,

0 1 1* 6

( i i ) , k = 9 , X = 3 , m = 26 ,

0 1 6 8 10 11 12 15 18

(iii) u = 2 1 , k = 1 6 , X = 6 , m = h 2 ,

0 1 10 11 18 20 23 25 26 29 30 3>» 36 37 38 Uo

In [/] Elliott and Butson proved that if q is an odd prime power,

then we can construct a near difference set with parameters

m = 2{l+q+q2) , k = q2 , X = %q(q-l) .

Spence [9] showed that the construction of E l l io t t and Butson i s also

val id when q i s a power of 2 .

The three examples of near difference sets that we have given

i l l u s t r a t e the cases q = 2, 3, h of the Elliott-Butson-Spence r e su l t .

Suppose that we are given a near difference set

D = {dx, d2, ..., < y

with parameters m, k, X . Then the polynomial
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o(x) = I xd

diD

i s the Hall polynomial associated with D . Since D i s a near difference

set we have

c t U K * - 1 ) - = * + X(x + x2 + . . . + x""1 + xU+1 + . . . + X2""1) (mod x 2 u - l ) .

If we write 2 " ( x ) = l + x + x + . . . + x ~ t h i s takes the form

a(x)a(x"1) E k + x[r2y(x)-r2(xU)j (mod x2U-l) .

In the rest of this discussion let D denote the near difference set

of ELliott-Butson-Spenee. The parameters of D are given by

m = 2[q2+q+l) , k = q2 , X = SlS^L .

If a(x) = £ x , then we have
d

(mod x - l ) ,

B q
2

where U = 1 + q + q . Let k be the number of odd integers in D , and

fep the number of even integers in D . Since a t rans la te of D i s also a

near difference set with the same parameters we may assume without loss of

generality that

For x = -1 we have

Hence

a(-l) = q .

The two equations

-K. T KO q .

= q2
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yield

2

Let us nov put

• - k = 2-J&
2 ' 2 2

*•(*) = I xd ,

d odd

Then we have

a(x) = F(x)

so that

aCxJafx"1) = F(x)F{x~1) +

It is clear that

(1) F(x)F[x~1) + G(x)G[x~1) =

(2) t 1 )

= , 2 + 2 t o i (x2
 + xU

 + . . . + x2U"2) (mod * 2 U - l ) ,

tol (x + x 3
 + . . . + xU~2

 + xU+2
 + . . . + x2""1) (mod x 2 u - l )

We next put

«Ax) - I x^ + y ) / 2 . «2(x) = I xd/2
X dZD dW

d odd d even

Then the reduction of ( l ) mod x -1 yields

(3) a1(x)a1(x~1) + ̂ ( x j a ^ x " 1 ) = q2 * ^ ^ - (x + x2 + . . . + x""1)

(mod x -l)

The reduction of (2) mod x^-1 yields
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(1+) ailx)az{x-1) + ajx^ix-1) i ^ l [x + x2 * ... * x^1)

(mod x - l ) .

We sha.11 prove the following theorem.
I

THEOREM 1. Let q he a prime power. Then a oiroulant weighing

matrix of the form

W{q2+q+l, q2)

can be constructed.

Proof. Let D = {d , d , ..., <£,} be an Elliott-Butson-Spence near

difference set with parameters

m = 2 ( , V ) . * = <? . X = Si^l .

p
We again put v = q + q + 1 . Let 5 be the set of v integers:

0, 1, 2, ..., v-1 . We partition 5 into three subsets as follows:

S = T u T u T

where

Tl = { ? (mod u)' d € D' d o d d } '

= \2 ^mOd ")> d € °> d e v e n f >T2

There are k^ integers in T , k integers in T , and v - k1 - k

integers in T .

The sets T and T are d i s jo in t . For i f

d.+u d.
—5— - ^ (mod v)

then

d. - d. = V (mod 2u) , fd., d . € O) ,
1 - 3 t. «7

in violation of the definition of a near difference set.
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The initial row

V al Vl

) iof the circulant w[fl +q+l, q ) is now constructed as follows:

-1 if i i T± ,

1 i f t J f , ,ai = 1

0 if i. € T .

v-l i

Define ty(.x) = T a.x . Then we have
^=0

x"1) =«2(x-1) - a j x " 1 ) ,

so that

^̂ x̂"1) + a2(x)a2(x"1) -

(x + x2

2 c U ^
= q (mod x -1J .

Replacing x by £ (where T, = 1 ) we obtain

(mod x -l)

The last relation is valid for each Vth root of unity
£ = 1 . For 5 = 1 we have

including

We next apply the finite Parseval relation:

,7=0

For r = 0 we have
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For 1 £ r 5 v-1 we get

T a.a. =i..,2.0 = 0

This completes the proof of the orthogonality of the circulant

3. Other observations

We next note that the sets T, T constitute

- [v; h, k2;

supplementary difference sets. Since fe = ^ 1~ , &2 = ^ - i , we havefe = , & 2 =

The result follows at once from

x J - q + g \x + x + . . . + x J

(mod x -l) .

We are now in the position to construct the Hadamard matrix, #092 '

of Spence. We use the following well-known result .

Let p = 2w + 1 be a prime. Let U be the set of quadratic residues

of p , and V the set of quadratic non-residues of p . Then U and V

constitute

2 -

supplementary difference sets. Here we have

v = p = 2n + 1 ; k- = k, = n ; X = n - 1 .

2
Combining our results we find that if v = q + q + 1 is a prime,

then we construct
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supplementary difference sets, and also

supplementary difference sets. It follows that ve have

h - {v; fc1, k2, k3, kh; \ + \ + *3 + \ - v)

supplementary difference sets, which may t>e used to construct an Hadamard

matrix ft of Williamson type.

In particular for q - 8 we have v = 73 . Therefore we can

construct H^ .

Our next objective is to show that the k + k numbers in T u T

constitute an ordinary difference set with parameters

V = q2 + q + 1 , k = q2 , \ = q2 - q .

For t h i s purpose we form the polynomial

A{x) = ax(x) + <*2(x)

so that

^ x - 1 ) =a1(aT1) ^ ( x - 1 ) .

Then we have

~1A(x)A{x~X) = a±(

(mod xU-l)

= q + q(q-l)[x + x + . . . + xV~ ) (mod xV-l) .

The set T is the complement of T, u T . Therefore the integers

in T- constitute a difference set with parameters

v * = v , k* = v - k = a + l , X* = v - 2 k + \ = l .
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4. Applications to weighing matrices and orthogonal designs

The existence of the 1/(21, 16) allows us to make the following

statements.

THEOREM 2. There exists a W(n, 16) for every

n € {16, 18, 20, 21, 22, 2k, 26, . . . , 36 , and all orders 2. 36} .

Proof. In [5] i t was noted that a J/(n, 16) exis ts for

n € {16, 18, 20 6k , and a l l orders 2. 6k) . Thus the existence of a

1/(21, 16) allows th i s set to be replaced by that of the enunciation.

THEOREM 3. There exist orthogonal designs ( l , 9) and ( l , 16) in

every order 2n , n 2 21 •

Proof. These resu l t s follow using the 1/(21, 16) to obtain a

(1 , 16) in order k2 and then noting from Tables 1 and 2 of [4] that each

order 2n , n > 21 can be written as 2m. + 2m^ where ( l , 9) and

( 1 , 16) exist for both orders 2m and 2m .

THEOREM 4. There exists a 1/(1*2, a +b ) for integers a, b except

possibly for a2 + b2 € {l8, 25, 29, 36, 37} •

Proof. Since a 1/(22, k) and J/(20, k) exist for

k € {a2+2>2 : a2+b2 £ 20, a2+b2 * 18} [4; Table 2] we have

1/(1*2, k) = J/(22, k) © W(20, k) for the same k .

There i s a 1/(1*2, k) for k € {26, 32, 1*0} by [4; Proposition 13] .

Writing A = P/(21, 16) we see

A+I A-I

i s a i/(l*2, 3*0 • Finally since Ul is a prime the construction of

Goethals and Seidel [7] gives a 1/(1+2, Ul) and we have the r e su l t .

THEOREM 5. Since there exists a W = w{q +<7+l, q ) for every prime

power q there exist orthogonal designs

(i) ( l , q2) and [q2, q2) in order 2{q2+q+l) ;
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(ii) (l, 1, 1, q2), (l, 1, q2, q2), (l, q\ q2, q2) ,

[q2, q2, q2, q2) , ( l , 1*, q2) , ( l , 1, 2 fo 2
+ l ) ) ,

(1 , q2, 2(q2
+l)), [q2, q2, 2{q2

+l)) , ( 2 ( « 2
+ l ) , 2(^+1))

in every order k[q +q+l) ;

(iii) [l,l, 2, q , q , q ) (at least) in every order

8 fo^l) ;

(iv) [2q2, 2(q2+2q+2)) in order h[q2+q+l] with q2 + q + 1

a prime.

Proof. Use I, W in various combinations in the Geothals-Seidel

array for (i) , (ii) , (Hi) .

For (iv) we note that W*A = 0 where A is the incidence matrix of

the [q +q+l, q+1, l) configuration satisfying

AA* = ql + J

and * is the Hadamard product. For every prime order, p , there exist

circulant matrices X, Y satisfying

XXt + JT* = 2(p+l)J - 2J .

Then

aff+bA, aW-bA, bX, bY

may be used in the Goethals-Seidel array to give the required result.

THEOREM 6. Since there exists a w[q +q+l, q ) for every prime

power q there exist

(i) W(2{q2+q+l), 2{q2+l)) ;

(ii) W(k{q2+q+l), h{q2+2)) .
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