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Some results on weighing matrices

Jennifer Seberry Wallis and Albert Leon Whiteman

It is shown that if g is a prime power then there exists a

circulant weighing matrix of order q2 + g+ 1 with q2 non-

zero elements per row and column.

This result allows the bound N to be lowered in the theorem of
Geramita and Wallis that "given a square integer k there exists
an integer N dependent on k such that weighing matrices of

weight k and order »n and orthogonal designs (1, k) of order

2n exist for every n > N ".

1. Introduction
An orthogonal design of order n and type (sl, 8y tees SZ)
(3i > 0) on the commuting variables xl, Loy soos xl is an 7 x n matrix

A with entries from {0, txl, vens txz} such that

A
AAt = [ Z six%]lh .
i=1 ¢ *

Alternatively, the rows of A are formally orthogonal and each row has

precisely si entries of the type ixi .

In [2], where this was first defined and many examples and properties

of such designs were investigated, it is mentioned that

1
AtA = [ 37;:1:72;]I
i=1 "

and so the alternative description of 4 applies equally well to the
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columns of A . It is also shown in [2] that 1 < p(n) , where p(n)
(Radon's function) is defined by
p(n) = 8e + 2
when
n=2%b, b odd, a=be+d, 0sd<bh.
Also in [2] it is shown that if there is an orthogonal design of order
n and type Laa, b) , then

c2 for some integer ¢ ,

(i) n =2 (mod k) = b

(ii) n =4t , t o0dd ® b is the sum of three integer squares;

while in [5] it is shown that if #n = L4 (mod 8) and if there exists an
orthogonal design of order n and type

(i) (a, a, a, b) , then g- is a rational square;

(ii) (a, a, b) , then is the sum of two rational squares;

Qo

(iii) (a, b) , then Z- is the sum of three rational squares.

A weighing matrix of weight k and order n is a square {0, 1, -1}

matrix, W = W(n, k) , of order n satisfying
t_
WW~ = klh .

In [2] it is shown that the existence of an orthogonal design of order

n and type (sl, ceey SZ) is equivalent to the existence of weighing

matrices A ey AZ , of order n , where Ai has weight s; and the

1°
l

matrices, {Ai}z

-1 satisfy the matrix equation

b o+ vt =0

in pairs. 1In particular, the existence of an orthogonal design of order =
and type (1, k) is equivalent to the existence of a skew-symmetric

weighing matrix of weight k and order =n .

It is conjectured that:
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(i) for n = 2 (mod 4) there is a weighing matrix of weight
k and order n for every kK <n -1 which is the sum of

two integer squares;

(ii) for 7n = 0 (mod 4) +there is a weighing matrix of weight

k and order n for every k =n ;

(iii) for 7n = 4 (mod 8) there is a skew-symmetric weighing
matrix of order n for every k <n , where k is the
sum of at most three squares of integers (equivalently,
there is an orthogonal design of type (1, k) in order n
for every k < n vwhich is the sum of at most three squares
of integers. In other words, the necessary condition for
the existence of an orthogonal design of type (1, k) in

order n , n =L (mod 8) 1is also sufficient);

0 (mod 8) there is a skew-symmetric weighing

(iv) for =n
matrix of order n for every k <=n (equivalently there
is an orthogonal design of type (1, k) in order »n for

every k <n );

(v) for »n =2 (mod 4) there is an orthogonal design of type
(1, ¥) in order n for every k < n -1 such that k

is an integer square.

Conjecture (ii) above is an extension of the Hadamard conjecture (that

is, for every n = 0 (mod 4) there is a {1, -1} matrix, H , of order =

satisfying Hi® = nIn ) while (iv) and (iii) generalize the conjecture that

for every n = 0 (mod 4) there is a Hadamard matrix, H , of order n ,

with the property that H = Ih + S where S = -St .

Conjecture (ii) was established in [10] for

2t . Conjecture (iii) was

n€{h, 8,12, ..., 32, 40} and in [6] for n

established in [3, Theorem 17] for n = 2t (t = 3)

Conjectures {iv) and (iii) (and as a consequence conjecture (ii)) were

t+l
2 3,

+
established for n = n= 2t l°5 s t a positive integer, in [4]

2.9 . Also in [3] it was shown that only

and in [171] for =
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k = 46, 47 in order 56 remain to be found and the conjectures will be

settled for n = 2t"%e7 |

It has been established [5] that given a square k there exists an
N(k) such that W(n, k) exists for every »n > N . Consequently an

orthogonal design (1, k) exists in every order 2n , n > N .

Here we give some results which allow N(k) to be lowered when k

has a factor of L .

Let R ©be the back diagonal matrix. Then an orthogonal design or
weighing matrix is said to be constructed from two circulant matrices A

and B if it is of the form
A BR
BR -A

and to be of Goethals-Seidel type if it is of the form

A BR CR DR

BR 4 D' =ctr
<r -D'R 4 B'r

R C'r -B'R &

where A, B, C, D are circulant matrices.

Let Sl, S

» s+s5 S Dbe subsets of V , a finite abelian group,
2 n

containing kl’ k2, cees kn elements respectively. Write Ti for the
totality of all differences between elements of Si (with repetitions),
and I for the totality of elements of all the Ti . If T contains each
non-zero element of V a fixed number of times, A say, then the sets

Sl’ 52, cevs

difference sets.

Sn will be called n -~ {v; kl, k2, cees kn; )\} supplementary

2. MWeighing matrices of odd order

If 4 isa Wn, k) , then (det 4)° = k* . Thus if = is odd and a

W(n, k) exists, then k must be a perfect square.

In [2] where they are first discussed it is shown that
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(n-k)% - (n-k) + 2 > n

must also hold. It is noted there that the "boundary" values of this
condition are of special interest; that is, if
2 -
(nk)Y -(nk)y+1=n,

for in this case the zeros of A occur such that the incidence between any
pair of rows is exactly one. So if we let B =J - A*4 , B satisfies

BB = (n-k-1)I_ +J_, BJ = (n-k)J_ ;

n n® n’?

that is, B 1is the incidence matrix of the projective plane of order
n-k-1.

Thus, the Bruck-Ryser Theorem on the non-existence of projective

planes of various orders implied the non-existence of the appropriate
Win, k) .

We shall prove in this paper that if q 1is a prime power, then a
circulant weighing matrix of the form
2 2
W(q=+q+1, ¢%)
can be constructed. Our method makes use of near difference sets.

In [8] Ryser has given the following definition of a near difference

set.

Let m=> 4 ©be an even integer, and let % and A be positive

integers. A near difference set

R R R
is a set of k residues modulo m with the property that, for any residue

aZo, g-(mod m) , the congruence

d. - d. = a (mod m)
1 J

has exactly X solution pairs (di’ dj) with di and 4j in D eand no

solution pairs for a = g-(mod m) .

A necessary condition for the existence of a near difference set with
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parameters m, k, A 1is that
k(k-1) = A(m-2) .
Let us put
m=2v .
Then the necessary condition becomes
k(k-1) = 2A(v-1) .

Examples of near difference sets are:-

(i) v=T, k=4, X=1, m=14 ,
o1 |st6f.
(ii) v=13, k=9, A=3, m=26,

(iii) v=2l, k=16, A=6, m=k42,

O0l1 (1011|218 |20|23|25(26|29 |30 |3 {36137]|38]Lo

In [1] Elliott and Butson proved that if q is an odd prime power,

then we can construct a near difference set with parameters

m=2(1+q+q°) , k=q°, A=i(q-1) .

Spence [9] showed that the construction of Elliott and Butson is also
valid when q 1is a power of 2 .

The three examples of near difference sets that we have given
illustrate the cases ¢ = 2, 3, 4 of the Elliott-Butson-Spence result.

Suppose that we are given a near difference set
D={d, dys ..., d.}

with parameters m, kK, A . Then the polynomial
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alz) = § o9
den

is the Hall polynomial associated with D . Since D is a near difference

set we have

2 v-1 v+l 2v-1
=)

a(x)a(x'l)'5k+)\[:c+x Yoot AT+ L+ (mod xev—l) .

If we write Tr(:c) =1+x+2°+ ... +x — this takes the form

a(x)a(z™) = &k + A[Tgv(x)—Tz[xv)] (mod z°0-1)

In the rest of this discussion let D denote the near difference set

of Elliott-Butson-Spence. The parameters of D are given by

m=2(q>+q) , k=q°, A = 2g-1)

2
If a(z) = Z .'cd , then we have
dep
a(z)a(z ™) = 4% + 9(—‘72—'& (x+a2®+ .o+ s 2

(mod zzv-l) .

vhere v =1+ g + q2 . Let kl be the number of odd integers in D , and

k2 the number of even integers in D . Since a translate of D 1is also a

near difference set with fhe same parameters we may assume without loss of

generality that

For x = -1 we have

2
a(-1) = ky -k, a%(-1) = ¢° .

Hence
a(-1) =q .
The two equations

_kl+k2=q,

https://doi.org/10.1017/50004972700024096 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024096

440 Jennifer Seberry Wallis and Albert Leon Whiteman

yield

Let us now put

Flx) = e > Gx) =} 2 .
deD deD
d odd d even
Then we have
a(x) = Flx) + G(z) ,

az™) = Fa™) + 6= ,
so that
a(z)a(zl) = Pz)F(zY) + G(x)6(z™) + F(x)6(z™) + Pz 6() .

It is clear that

(1) Fz)Flz™) + 6(z)6(z™Y)
= ¢ +§zL92-L) @+ 2 o ... + 222 (moa «201) ,

(2) Flz)e(z™t) + Pz 6(x) =

z 9(g-1) 2'1) (x+ 23+ ...+ P xzv'l) (moa xzu-l) .
We next put
o) = § M2 o m= ] 2.
dep dep
d odd d even

Then the reduction of (1) mod V-1 yields
(3) al(x)al(a;l) + o (x)a, () = 4° + 2(g-1) (z+2°+ ... + 2"
2 2 2
(mod :cv-l] .

The reduction of (2) mod z°-1 yields
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1) o (@oy(e™) + ay(@la (¢) = UL @+ P+ L+ 7Y

(mod xv-l) .

We shall prove the following theorem.
/

THEOREM 1. Let q be a prime power. Then a circulant weighing
matrixz of the form

2 2
W(q+q+1, %)
can be constructed.

Proof. Let D = {dl, d2, cees

difference set with parameters

dk} be an Elliott-Butson-Spence near

m=2(q2+q+]_) R k=q2, x:ﬂt}l

) .

We again put v = q2 +gqg+1. Let S§ be the set of v integers:

0, 1, 2, ..., V=1 . We partition S into three subsets as follows:
S = Tl V] T2 v] T3
where
T = {-d—;’ﬁ (mod v), d € D, d odd} ,
7, = {4 ( d
» = {3 (mod v), d €D, d even} ,
T =

3 {sES,szl,szz}.

There are kl integers in Tl » k. integers in T2 , and v - kl -k

2
integers in T3 .
The sets Tl and T2 are disjoint. TFor if
A
—5—: > (mod v)
then

d--djEv(modzv) . (di,djeD) s

in violation of the definition of a near difference set.
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The initial row

Qys Gys cees @y

of the circulant W(q2+q+1, q2) is now constructed as follows:
-1 if 1 € Tl >
1 if € € T2 N

0 if 2 €T .
if < €7,

U=l .
Define Y(x) = } aixt . Then we have
1=0

) = ay(x) - oy (x) ,
WD) = o) - o )
so that
YY) = al(:c)al(x'l) + a2(x)a2(x'l) - al(x)az(x'l) - al(ac'l)az(x)

q2+g—(—%'ﬂ(x+x2+. +xv-l)-g(—q2_i)-[x+x2+...+xv_l)

)

(moa «”-1)

q° (mod z”-1) .

Replacing x by ( (where Cv =1 ) we obtain

W™ = 4° .

The last relation is valid for each wvth 1root of unity € including

g =1. For ¢ =1 we have

- - qlg+t)  qlg-1) _
¥(1) =k, - k) === - =q

We next apply the finite Parseval relation:
v=1

a.a.
1 1+r

v=1 . .
, =17 E)IET.
1=0 J=0

For r» = 0 we have
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v=1
2_1 2 2
L G =y =q4 -
=0
For 1 = r =v-1 we get
v-1
—£. 2. -
L @, =5a 0=0.
1=0

This completes the proof of the orthogonality of the circulant

W(aP+qr, %) .

3. Other observations

We next note that the sets Tl’ T2 constitute

] . v-1
2‘{”’k1’k2’k1+k2' 2}

- +
supplementary difference sets. Since kl = gi%?ll-, k2 = 91%?ll , We have

The result follows at once from
al(x)al(x'l) + ae(x)azﬂx'l] zq%+ gi%fll-(x P e P ey

(moa z”-1) .
We are now in the position to construct the Hadamard matrix, H292 5
of Spence. We use the following well-known result.

Let p=2n+1 be a prime. Let U be the set of quadratic residues
of p, and V the set of quadratic non-residues of p . Then U and V

constitute

v+l
2 - {v, k3, kh’ k3 + kh - '2—}
supplementary difference sets. Here we have

v=p=2n+1; k,= kh =n; A=n-1.

Combining our results we find that if v = q2 +q+1 is a prime,

then we construct
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) . v=1
2‘{””‘1’7‘2’7‘1“”‘2‘ 2}

supplementary difference sets, and also

. . Al
2-{v’k3’kh’k3+kh—2}

supplementary difference sets. It follows that we have

h-{v;k,k,ks,kh;kl+k2+k3+kh-v}

supplementary difference sets, which may be used to construct an Hadamard

matrix Hhv of Williamson type.

In particular for ¢ = 8 we have v = 73 ., Therefore we can
construct H292 .

Our next objective is to show that the kl + k2 numbers in Tl u T2
constitute an ordinary difference set with parameters

v=qgt+q+1, k=q¢°, A=4°-q.

For this purpose we form the polynomial
Ax) = otl(x) + a2(x)
so that
-1y _ -1 -1
Alx™) = otl(.'z: ) +a2(x )
Then we have
Alz)a(z™r) = a, (z)ay =) + ozz(x)az(x_l) + al(x)aa(x_l) + al(:c'l]az(a:)

q2+ﬁ92_i)-(x+x2+ +zv_l)+ﬂ92'—ll(x+m2+.. +:z:v-l)

(mod xv-l)
z2q% +qlqg-1)(m + a® + ... +2°1) (mod z°-1)
The set T3 is the complement of Tl v T2 . Therefore the integers
in T3 constitute a difference set with parameters

vi=v, kK=v-k=qgq+1l, M=p-2k+Ar=1.
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4, Applications to weighing matrices and orthogonal designs

The existence of the W(21, 16) allows us to make the following

statements.
THEOREM 2. Theére exists a W(n, 16) for every
n € {16, 18, 20, 21, 22, 24, 26, ..., 36 , and all orders = 36} .

Proof. In [5] it was noted that a W(n, 16) exists for
n € {16, 18, 20, ..., 64 , and all orders > 64} . Thus the existence of a
W(21, 16) allows this set to be replaced by that of the emunciation.

THEOREM 3. There exist orthogonal designe (1, 9) and (1, 16) 1in

every order 2n , n= 2l .

Proof. These results follow using the W(2l, 16) to obtain a
(1, 16) in order L2 and then noting from Tables 1 and 2 of [4] that each
order 2n , n =21 can be written as om + 2m2 where (1, 9) and

(1, 16) exist for both orders 2ml and 2m2 .

THEOREM 4. There exists a W(k2, a2+b2) for integers a, b except
possibly for a® + b2 € {18, 25, 29, 36, 37} .
Proof. Since a W(22, k) and W(20, k) exist for

k € {a2+b2 : a2+b2 < 20, a2+b2 # 18} [4; Table 2] we have
w2, k) = W(22, k) ® W(20, k) for the same k .

There is a W(L2, k) for k € {26, 32, 40} by [4; Proposition 13].

Writing A = W(21, 16) we see
A+T A-I
ator -4t

is a W(42, 34) . Finally since U1 is a prime the construction of
Goethals and Seidel [7] gives a W(L2, 41) and we have the result.

THEOREM 5. Since there exists a W = W(q2+q+l, q2) for every prime
power q there exist orthogonal designs

(i) (1, ¢ and (¢°, q°) in order 2(q°+q+1) ;
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' 2
(it) (l; i, 1, qg), (l’ 1, q s 42), (19 42:, q25 42),
2 2 2 2 2
(qu,q,Q), (l’ h:q), (l, 1, 2(q2+l)),
2 2
2. 45, 2()), (&, 4% 2(P4)), (2(d®4), 2(¢PH))
in every order h[q2+q+lj ;
. os 2 2 4 .
(iii) (1, 1, 2, ¢°, 4%, q ) (at least) in every order
8(¢%+q+1) ;
. 2 2 . 2 . 2
(iv) (2q°, 2(q¢"+2q+2)) in order U4(q"+q+l) with q~ +q +1
a prime.
Proof. Use I, W in various combinations in the Geothals-Seidel
array for (i), (ii), (iii).
For (Zv) we note that W*4 = 0 where A is the incidence matrix of
the (q2+q+l, qtl, 1) configuration satisfying

AAt=qI+J

and * 1is the Hadamard product. For every prime order, p , there exist

circulant matrices X, Y satisfying

t

XXt + YY = 2(p+1)I - 27 .

Then

aW+bA, aW-bA, bX, bY

may be used in the Goethals-Seidel array to give the required result.

THEOREM 6. Since there exists a W(q2+q+l, q2) for every prime

power q there exist
. 2 2
(2) W(2(q%*+q+1), 2(¢"+1)) ;

(i) W(gP+gn), L(%+2)) .
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