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Rational Hodge isometries of hyper-Kähler varieties
of K3[n] type are algebraic

Eyal Markman

Abstract

Let X and Y be compact hyper-Kähler manifolds deformation equivalent to the Hilbert
scheme of length n subschemes of a K3 surface. A class in Hp,p(X × Y,Q) is an
analytic correspondence, if it belongs to the subring generated by Chern classes of
coherent analytic sheaves. Let f : H2(X,Q)→ H2(Y,Q) be a rational Hodge isometry
with respect to the Beauville–Bogomolov–Fujiki pairings. We prove that f is induced
by an analytic correspondence. We furthermore lift f to an analytic correspondence
f̃ : H∗(X,Q)[2n]→ H∗(Y,Q)[2n], which is a Hodge isometry with respect to the Mukai
pairings and which preserves the gradings up to sign. When X and Y are projective,
the correspondences f and f̃ are algebraic.

Contents

1 Introduction 1262
1.1 Algebraicity of rational Hodge isometries . . . . . . . . . . . . . . . . . . . . . . . 1262
1.2 Fourier–Mukai kernels of positive rank and the Lefschetz standard

conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
1.3 The Pontryagin product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266
1.4 Outline of the proof of Theorem 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267

2 Generators for the rational isometry group 1269
3 The LLV Lie algebra 1271

3.1 The subring generated by H2(X,Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
3.2 The functor H̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272

4 The degree-reversing Hodge isometry of a Fourier–Mukai kernel
of non-zero rank 1275

5 Hyperholomorphic vector bundles deforming a Fourier–Mukai
kernel 1276
5.1 Twistor lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
5.2 Moduli spaces of rational Hodge isometries . . . . . . . . . . . . . . . . . . . . . . 1279
5.3 Diagonal twistor lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1280
5.4 Diagonal twistor paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281
5.5 Deforming vector bundles along diagonal twistor paths . . . . . . . . . . . . 1282

Received 31 May 2022, accepted in final form 11 October 2023, published online 7 May 2024.
2020 Mathematics Subject Classification 14C25, 14D15, 14D20 (primary).
Keywords: K3 surfaces, hyper-Kähler varieties, hyperholomorphic sheaves, derived categories, Lefschetz standard
conjecture.
© 2024 The Author(s). This is an Open Access article, distributed under the terms of the Creative Com-
mons Attribution-NonCommercial licence (https://creativecommons.org/licenses/by-nc/4.0), which permits non-
commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
The written permission of Cambridge University Press must be obtained for commercial re-use. Compositio
Mathematica is © Foundation Compositio Mathematica.

https://doi.org/10.1112/S0010437X24007048 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1112/S0010437X24007048


E. Markman

5.6 The rational Hodge isometry of a Fourier–Mukai kernel of non-zero rank 1283
5.7 Deforming the Fourier–Mukai kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285

6 The BKR equivalence 1287
7 A universal bundle over M [n] × S[n] from a universal bundle over

M × S 1288
7.1 A universal bundle over M [n] × S[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
7.2 The functor Θ̃n : G[1] → G[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
7.3 The functor Θn : G[1] → G[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290

8 Deforming the universal vector bundle over M [n] × S[n] 1292
9 Algebraicity of a rational Hodge isometry 1295
10 The Pontryagin product on the cohomology of IHSMs of K3[n]

type 1296
10.1 The Pontryagin product for an IHSM with vanishing odd cohomology 1297
10.2 The Pontryagin product for an IHSM of K3[n] type . . . . . . . . . . . . . . . 1299

Acknowledgements 1301
Conflicts of Interest 1301
References 1301

1. Introduction

1.1 Algebraicity of rational Hodge isometries
An irreducible holomorphic symplectic manifold (IHSM) is a simply connected compact Kähler
manifold X such that H0(X,Ω2

X) is spanned by a nowhere degenerate holomorphic 2-form. Such
manifolds admit hyper-Kähler structures and are examples of compact hyper-Kähler manifolds.
When two-dimensional, such a manifold is a K3 surface. If X is a Kähler manifold which is
deformation equivalent to the Hilbert scheme S[n] of length n subschemes of a K3 surface S, then
X is an IHSM [Bea83]. The latter are said to be of K3[n] type. The second integral cohomology
H2(X,Z) of an IHSM X is endowed with a symmetric integral primitive non-degenerate bilinear
pairing of signature (3, b2(X)− 3) known as the Beauville–Bogomolov–Fujiky (BBF) pairing,
where b2(X) is the second Betti number [Bea83]. A homomorphism f : H2(X,Z)→ H2(Y,Z)
between the second cohomologies of two IHSMs is said to be an integral Hodge isometry, if it is
an isometry with respect to the BBF pairings as well as an isomorphism of Hodge structures. If
f : H2(X,Q)→ H2(Y,Q) has these properties it is said to be a rational Hodge isometry.

Let X be an IHSM. Given a class α in the even cohomology Hev(X,Q) of X, denote by αi
its graded summand in H2i(X,Q). Let α∨ ∈ Hev(X,Q) be the class satisfying (α∨)i = (−1)iαi.
The Mukai pairing on the even cohomology Hev(X,Q) is defined by

(α, β) :=
∫
X
α∨ ∪ β.

The Mukai vector of an object F in the bounded derived category Db(X) of coherent sheaves
on X is v(F ) := ch(F )

√
tdX ∈ Hev(X,Q). Grothendieck–Riemann–Roch yields

(v(E), v(F )) := χ(E∨ ⊗ F )

for objects E and F in Db(X), where E∨ := RHom(E,OX) is the derived dual object. When X
is of K3[n] type the odd cohomology vanishes and Hev(X,Z) = H∗(X,Z) (see [Mar07]).

Let X be a 2n-dimensional IHSM. Denote by H∗(X,Q)[2n] the shifted coho-
mology of X, where Hk(X,Q)[2n] = Hk+2n(X,Q). We say that a homomorphism
f : H∗(X,Q)[2n]→ H∗(Y,Q)[2n] is degree reversing, if it maps Hk(X,Q)[2n] to H−k(Y,Q)[2n],
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for all k. The homomorphism is degree preserving up to sign, if it is either degree preserving or
degree reversing.

Let X and Y be IHSMs of K3[n] type and f : H2(X,Q)→ H2(Y,Q) a Hodge isometry.

Theorem 1.1. There exists an analytic correspondence f̃ : H∗(X,Q)→ H∗(Y,Q), which is an
isometry with respect to the Mukai pairings and satisfies one of the following:

(1) f̃ is degree preserving and it restricts to H2(X,Q) as f ;
(2) f̃ is degree reversing and the composition

H∗(X,Q)
c2(X)n−1∪−→ H∗(X,Q)

f̃−→ H∗(X,Q)

of f̃ with cup product with c2(X)n−1 restricts to H2(X,Q) as a non-zero rational multiple
of f .

In particular, f is algebraic whenever X and Y are projective.

The theorem is proved in § 9. When n = 1 and X and Y are K3 surfaces Theorem 1.1 was
proved by Mukai for projective surfaces with Picard number ≥ 11 (see [Muk87]), by Nikulin for
projective surfaces with Picard number ≥ 5 (see [Nik87]), announced by Mukai in [Muk02], and
proved by Buskin in complete generality [Bus19]. Another proof for projective K3 surfaces X
and Y , without further restrictions on their Picard numbers, is due to Huybrechts [Huy19].

A more direct relationship between the Hodge isometries f and f̃ in Theorem 1.1 is described
in terms of Taelman’s Looijenga–Lunts–Verbitsky (LLV) lattice in Theorem 1.4 below.

Definition 1.2. Let X1 and X2 be deformation equivalent compact Kähler manifolds. An
isomorphism f : H∗(X1,Z)→ H∗(X2,Z) is said to be a parallel-transport operator, if it arises as
follows. There exist a smooth and proper family of compact Kähler manifolds π : X → B over
an analytic space B, points b1, b2 in B, isomorphisms gi : Xi → Xbi with the fibers Xbi of π
over bi, i = 1, 2, and a continuous path γ from b1 to b2, such that parallel transport along the
path γ in the local system Rπ∗Z induces g2,∗ ◦ f ◦ g∗1 : H∗(Xb1 ,Z)→ H∗(Xb2 ,Z). When X1 = X2

the parallel-transport operator f is also called a monodromy operator. The monodromy group
Mon(X) of a compact Kähler manifold X is the subgroup of GL(H∗(X,Z)) consisting of all
monodromy operators.

Recall that a groupoid is a category all of whose morphisms are isomorphisms. Let

G (1.1)

be the groupoid, whose objects are pairs (X, ε) consisting of an IHSM X and an orienta-
tion1 ε of H2(X,Q). If dim(X) is divisible by 4, assume2 that b2(X) is odd. Morphisms in
HomG((X, ε), (Y, ε′)) are compositions of three types of rational isometries from H∗(X,Q) to
H∗(Y,Q) with respect to the Mukai pairing.

(1) A parallel-transport operator f : H∗(X,Q)→ H∗(Y,Q).
(2) The isometry H∗(X,Q)→ H∗(Y,Q) induced by the correspondence ch(P)

√
tdX×Y , where

P ∈ Db(X × Y ) is the Fourier–Mukai kernel of an equivalence Db(X)→ Db(Y ) of derived
categories between two deformation equivalent IHSMs X and Y .

(3) An isometry of H∗(X,Q) induced by cup product with exp(λ) :=
∑dim(X)

k=0 λk/k! for some
λ ∈ H2(X,Q).

1 The morphisms of G do not depend on the orientation. The orientation is not needed if n := dim(X)/2 is odd.

If n is even, the orientation is used in [Tae23] in the definition of the functor H̃ introduced in (1.4).
2 The assumption holds for all known IHSMs.
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The set of morphisms HomG((X, ε), (Y, ε′)) is independent of the orientations and is also denoted
by HomG(X,Y ). Note that the latter is empty, by definition, if X and Y are not deformation
equivalent.

Definition 1.3. Given an object F of positive rank r in the derived category of coher-
ent sheaves, set κ(F ) := ch(F ) exp

(−c1(F )/r
)
, where exp(x) =

∑∞
j=0 x

j/j!. Then κ(F )r =
ch(F⊗r ⊗ det(F )−1), where the tensor power is taken in the derived category. If F is an object of
positive rank r in the derived category of twisted coherent sheaves with respect to some Brauer
class, then F⊗r ⊗ det(F )−1 is an untwisted object and we define κ(F ) as the rth root of the
Chern character of the latter with degree-0 summand equal to r. If F has negative rank, set
κ(F ) := −κ(F [1]).

Let
Gan (1.2)

be the subgroupoid of G with the same objects. Morphisms of Gan are compositions of two types of
rational isometries: (1) parallel-transport operators f : H∗(X,Q)→ H∗(Y,Q), which are Hodge
isometries; (2) Hodge isometries

[κ(P)
√
tdX×Y ]∗ : H∗(X,Q)→ H∗(Y,Q) (1.3)

induced by classes κ(P)
√
tdX×Y , where P is a locally free twisted sheaf over X × Y , such

that the Azumaya OX×Y -algebra End(P) is a deformation (in the sense of Definition 5.13) of
the endomorphism algebra of a locally free Fourier–Mukai kernel of an equivalence of derived
categories.3 Morphisms in Gan are induced by analytic correspondences. Indeed, this follows from
the Torelli theorem for parallel-transport Hodge isometries (Theorem 5.2 and Lemma 5.3) and
by definition for morphisms of type (2) above.

The rational LLV lattice of an IHSM X is the vector space

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ

endowed with the non-degenerate symmetric bilinear pairing, which restricts to H2(X,Q) as the
BBF pairing, such that α and β are isotropic and orthogonal toH2(X,Q) and satisfy (α, β) = −1.
An orientation for H2(X,Q) determines an orientation of H̃(X,Q), and so the LLV lattice of
objects of G has a chosen orientation. We assign H̃(X,Q) the grading where α has degree −2, β
has degree 2, and H2(X,Q) has degree 0.

Let G̃ be the groupoid, whose objects are IHSMs and such that morphisms are isometries of
their rational LLV lattices. Results of Taelman’s yield a functor

H̃ : G → G̃ (1.4)

(see Definition 3.3).
We show that the morphism (1.3) is degree reversing (Lemma 4.1). It follows that every

morphism φ in HomGan((X, ε), (Y, ε′)) preserves the grading up to sign. Consequently, H̃(φ)
preserves the grading of H̃(X,Q) up to sign and maps H2(X,Q) to H2(Y,Q) and restricts to
H2(X,Q) as a Hodge isometry H̃(φ)0 (Lemma 3.4).

3 Note that [κ(P)
√
tdX×Y ]∗ is indeed a morphism of G, so that Gan is indeed a subgroupoid of G. This is seen as fol-

lows. The class κ(P) is a characteristic class of the Azumaya algebra End(P) (see [Mar20, § 2.3]). If (X × Y, End(P))
is a deformation of (X0 × Y0, End(P0)) and P0 is a locally free untwisted sheaf, which is the Fourier–Mukai
kernel of an equivalence of derived categories, then [κ(P)

√
tdX×Y ]∗ = f2 ◦ [κ(P0)

√
tdX0×Y0 ]∗ ◦ f1, where f1 and

f2 are parallel-transport operators, and so morphisms in G. Furthermore, writing rank(P0) = r and c1(P0) =
π∗
X0(λ1) + π∗

Y0(λ2) we see that [κ(P0)
√
tdX0×Y0 ]∗(•) = exp(−λ2/r) ∪ [ch(P0)

√
tdX0×Y0 ]∗(exp(−λ1/r) ∪ (•)) is the

composition of three morphisms in G.
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Let Hdg be the groupoid, whose objects are IHSMs, and whose morphisms in HomHdg(X,Y )
are rational Hodge isometries f : H2(X,Q)→ H2(Y,Q) preserving the orientations of the
positive cones (Definition 5.17). We get the functor

H̃0 : Gan → Hdg (1.5)

forgetting the orientation of objects and mapping a morphism φ to H̃(φ)0 or −H̃(φ)0 (whichever
preserves the orientations of the positive cones). Let G[n]

an be the full subgroupoid of Gan, whose
objects are of K3[n] type. Define the subgroupoid Hdg[n] of Hdg analogously. The following
theorem is proved in § 9.

Theorem 1.4. The functor H̃0 : G[n]
an → Hdg[n] is full.4 In particular, the analytic correspon-

dence f̃ of Theorem 1.1 can be chosen to be a morphism in HomG[n]
an

((X, ε), (Y, ε′)) satisfying

H̃0(f̃) = f , possibly after replacing f by −f , so that it would preserve the orientations of the
positive cones.

Let f : H2(X,Q)→ H2(Y,Q) be a rational isometry between two IHSMs of K3[n] type X
and Y . We say that f is of r-cyclic type, for some positive integer r, if there exists a primitive
class u ∈ H2(X,Z), satisfying (u, u) = 2r and (u, •) ∈ H2(X,Z)∗ is primitive as well, and there
exists a parallel-transport operator g : H2(X,Z)→ H2(Y,Z), such that f = −gρu, where ρu ∈
O(H2(X,Q)) is the reflection in u given by ρu(x) = x− (2(u, x)/(u, u))u. Such f is necessarily
compatible with the orientations of the positive cones. The proof of Theorem 1.4 relies on the
following.

Theorem 1.5 (Corollary 8.5). Let f : H2(X,Q)→ H2(Y,Q) be a rational Hodge isometry of
r-cyclic type between two IHSMs X and Y of K3[n] type. There exists over X × Y a (possibly
twisted) locally free coherent sheaf E of rank n!rn, such that φ := [κ(E)

√
tdX×Y ]∗ is a degree-

reversing morphism in HomG[n]
an

(X,Y ) and H̃0(φ) = f .

1.2 Fourier–Mukai kernels of positive rank and the Lefschetz standard conjecture
Theorem 1.5 leads to an alternative short proof of the Lefschetz standard conjecture for projec-
tive IHSMs of K3[n] type, originally proved in [CM13]. Let X be a projective IHSM of K3[n]

type. Let λ ∈ H1,1(X,Q) be an ample class. Let h ∈ End(H∗(X,Q)) multiply Hk(X,Q)[2n]
by k. Denote by eλ ∈ End(H∗(X,Q)) the Lefschetz operator of cup product with λ and let
e∨λ ∈ End(H∗(X,Q)) be dual Lefschetz operator, i.e. the unique element satisfying

[eλ, e∨λ ] = h, [h, e∨λ ] = −2e∨λ .

Choose an IHSM Y , such that there exists a rational Hodge isometry f : H2(X,Q)→ H2(Y,Q)
of r-cyclic type, for some integer r > 0. The existence of such Y follows, for every r > 0, by
Theorem 1.5 and the surjectivity of the period map [Huy99].5 The morphism φ ∈ HomG[n]

an
(X,Y )

in Theorem 1.5 is degree reversing. We get that e∨λ is algebraic, by the following elementary
lemma.

Let X and Y be IHSMs and let φ ∈ HomGan((X, ε), (Y, ε′)) be a degree-reversing morphism.
Then φ̃ := H̃(φ) is degree reversing as well (Lemma 3.4). Let t ∈ Q be such that φ̃(β) = tα. Let
λ ∈ H2(X,Q) be such that (λ, λ) 
= 0.

4 This means that H̃0 : HomG[n]
an

(X1, X2) → HomHdg(X1, X2) is surjective, for any two objects X1 and X2 of G[n]

[an].
5 Choose an isometry ηX : H2(X,Z) → Λ with a fixed lattice Λ. The period map sends (X, η) to η(H2,0(X)) ∈
P(Λ ⊗Z C). Choose Y to be an IHSM of K3[n] type with an isometry ηY : H2(Y,Z) → Λ, such that (X, ηX) and
(Y, ηY ) belong to the same connected component of the moduli space of marked IHSM and such that ηY (H2,0(Y )) =
ηX(ρu(H

2,0(X))), for a class u ∈ H2(X,Z) as in Theorem 1.5. Then f := η−1
Y ηX(−ρu) : H2(X,Q) → H2(Y,Q) is

a rational Hodge isometry of r-cyclic type preserving the orientations of the positive cones.
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Lemma 1.6. The dual Lefschetz operator is given by e∨λ = (2/t(λ, λ))φ−1eφ̃(λ)φ and is algebraic

if λ is, as eφ̃(λ) and the morphisms φ and φ−1 are.

The short proof of the lemma is given at the end of § 4.

Example 1.7. IfX is an IHSM ofK3[n] type, n = 1, 2, then AutG[n]
an

(X) contains a degree-reversing
involution. WhenX is aK3 surface such an involution is induced by the ideal sheaf of the diagonal
in X ×X, as the ideal sheaf is the kernel of a derived auto-equivalence. When X is of K3[2] type,
a rank-2 twisted reflexive sheaf E was constructed on X ×X in [Mar20]. When X = S[2], for
a K3 surface S, Addington showed that E is the Fourier–Mukai kernel of an auto-equivalence
of Db(S[2]) acting on cohomology as an involution [Add16]. It follows that [κ(E)

√
tdX×X ]∗ is

a degree-reversing involution in AutG[2]
an

(X), for every X of K3[2] type. Does a degree-reversing

automorphism exist in AutG[n]
an

(X) for every X of K3[n] type for n ≥ 3? What about other
deformation types?

1.3 The Pontryagin product
In § 10 we define a Pontryagin product � on the cohomology H∗(X,Q) of every IHSM X with
vanishing odd cohomology. The unit with respect to � is cX [pt]/n!, where dim(X) = 2n, [pt] ∈
Htop(X,Q) is the class Poincaré dual to the class of a point, and cX is the Fujiki constant.6

The product � maps Hk(X,Q)⊗H l(X,Q) to Hk+l−4n(X,Q), so that � is compatible with the
grading for which Hk(X,Q) has degree 4n− k. Parallel-transport operators induce isomorphisms
of the Pontryagin rings (Lemma 10.2).

The Pontryagin product � on the cohomologyH∗(S,Z) of aK3 surface S is simple to describe.
The unit with respect to � is the class [pt] ∈ H4(X,Z) Poincaré dual to a point. The product �
maps Hk(S,Z)⊗H l(S,Z) to Hk+l−4(S,Z) and satisfies λ1 � λ2 = (λ1, λ2) ∈ H0(S,Z), for classes
λ1, λ2 ∈ H2(S,Z). Let ρu : H̃(S,Z)→ H̃(S,Z), be the reflection ρu(r, c, s) = (−s, c,−r) in the
Mukai vector u := (1, 0, 1) of the structure sheaf OS . Then −ρu conjugates the usual product on
H∗(S,Z) to the Pontryagin product. Note that −ρu corresponds to the action on cohomology
of the autoequivalence ΦIΔ

of Db(S), whose Fourier–Mukai kernel is the ideal sheaf IΔ of the
diagonal Δ in S × S.

Morphisms in G[an], which are associated to equivalences of derived categories with a
Fourier–Mukai kernel of positive rank, are degree reversing. This corresponds to a normaliza-
tion which annihilates the first Chern class of the Fourier–Mukai kernel. We introduce a further
normalization, which assures that the compositions of any two such degree-reversing morphisms
would map the usual identity 1 ∈ H0(X,Q) to itself. We speculate in the following that thus nor-
malized, the degree-reversing morphisms conjugate the cup product to the Pontryagin product.
We introduce this further normalization in the next paragraph.

Let Q× be the multiplicative group of rational numbers. Let

χ : Gan → Q×

be the groupoid homomorphism sending every object to Q× and sending a morphism φ to t,
if φ is degree preserving and H̃(φ)(α) = tα, or if φ is degree reversing and H̃(φ)(α) = (1/t)β.
Given a non-zero rational number t, denote by μt : H∗(X,Q)[2n]→ H∗(X,Q)[2n] the graded
linear transformation multiplying H2k(X,Q)[dim(X)] by tk. Let

R[n]
an (1.6)

6 The Fujiki constant cX is the positive rational number such that the equality
∫
X
λ2n = ((2n)!/2nn!)cX(λ, λ)n

holds for all λ ∈ H2(X,Q). The Fujiki constant is calculated for all known IHSMs in [Rap08]. If X of K3[n] type,
then cX = 1.
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be the subgroupoid of G[n]
an with the same objects, but whose morphisms φ have the property

that μχ(φ) ◦ φ conjugates the usual product on H∗(X,Q) to itself, if φ is degree preserving and
to � if φ is degree reversing.

Conjecture 1.8. The subgroupoid R[n]
an is, in fact, the whole of G[n]

an . Furthermore, if an object
of positive rank F in Db(X × Y ) is the Fourier–Mukai kernel of an equivalence ΦF : Db(X)→
Db(Y ) of derived categories of projective IHSMs X and Y of K3[n] type, then the rank of F is
n!tn, for some rational number t, and setting φ := μt ◦ [κ(F )

√
tdX×Y ]∗ : H∗(X,Q)→ H∗(Y,Q)

we have

φ(γ1 ∪ γ2) = φ(γ1) � φ(γ2), (1.7)

for all γ1, γ2 ∈ H∗(X,Q).

The stated equality rank(F ) = n!tn, for some rational number t, is known [Bec23,
Theorem 4.14]. As evidence for the conjecture, we show that the examples of morphisms of
G[n]
an used in the proof of Theorem 1.4 all satisfy Conjecture 1.8. Consequently, Theorem 1.4

holds even after replacing G[n]
an by R[n]

an and we get the following result proven in § 10.

Proposition 1.9 (Proposition 10.7). The restriction of the functor H̃0 : G[n]
an → Hdg[n] to the

subgroupoid R[n]
an remains full.

Let X and Y be projective IHSMs of K3[n] type. The proof of Proposition 10.7 implies
that the degree-reversing correspondence κ(E)

√
tdX×Y in Theorem 1.5 satisfies Conjecture 1.8.

Set φ := μt ◦ [κ(E)
√
tdX×Y ]∗, as in the conjecture. Let [Δ] ∈ H∗(X3,Q) the class of the small

diagonal Δ in X3. The following corollary is proved in § 10.2.

Corollary 1.10. The Pontryagin product � : H∗(Y × Y,Q)→ H∗(Y,Q) is induced by the alge-
braic class φ3([Δ]) in H∗(Y 3,Q). In particular, Pontryagin product γ� : H∗(Y,Q)→ H∗(Y,Q)
by an algebraic class γ is induced by an algebraic correspondence.

The algebraicity of the dual Lefschetz operator e∨λ in Lemma 1.6 is a special case of the above
corollary, since e∨λ is a scalar multiple of the operator of Pontryagin product with the algebraic
class φ−1(φ̃(λ)).

1.4 Outline of the proof of Theorem 1.4
The reader familiar with Buskin’s proof of the case n = 1 of the theorem will note the similarity
of our strategy to his. Buskin considers examples of two-dimensional moduli spaces M of vector
bundles over a K3 surface S and the universal bundle U over M × S. Here M is a K3 surface and
so the product M × S is a hyper-Kähler manifold. Buskin uses Verbitsky’s results on hyperholo-
morphic vector bundles over hyper-Kähler manifolds to deform the pair (M × S,U) to twisted
vector bundles (X1 ×X2,U ′) over products of not necessarily projective K3 surfaces X1 and X2.
Buskin proves that the groupoid Hdg[1] is generated by parallel-transport operators, which are
isomorphisms of Hodge structures, and by the restrictions to H2(X1,Q) of the degree-reversing
isometries [κ(U ′)

√
tdX1×X2 ]∗ : H̃(X1,Q)→ H̃(X2,Q).
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We first construct the functor H̃0 : Gan → Hdg and establish its properties in §§ 3 and 4.
The construction depends heavily on the recent work of Taelman [Tae23], as well as on the
work of the author and independently of Beckmann describing the action of equivalences of
derived categories on the LLV lattice [Bec23, Mar21a]. In § 7 we lift the equivalence of derived
categories ΦU : Db(M)→ Db(S), with the universal bundle U as a kernel, to an equivalence
ΦU [n] : Db(M [n])→ Db(S[n]) of derived categories of Hilbert schemes. This is done by conjugating
the equivalence of equivariant derived categories on the cartesian products ΦU�n : Db

Sn
(Mn)→

Db
Sn

(Sn), obtained from the cartesian power of ΦU , with the Bridgeland–King–Reid equivalence
BKR : Db

Sn
(Sn)→ Db(S[n]) and its analogue for M . The Bridgeland–King–Reid equivalence is

reviewed in § 6. The assignment S �→ S[n] and ΦU �→ ΦU [n] extends to define a functor

Θn : G[1]
an → G[n]

an (1.8)

constructed in (7.12). The Fourier–Mukai kernel U [n] is again a locally free sheaf over M [n] × S[n].
Again we use Verbitsky’s results on hyperholomorphic vector bundles on hyper-Kähler manifolds
to deform the pair (M [n] × S[n],U [n]) to pairs (X1 ×X2, E) consisting of a twisted vector bundle
E over the product X1 ×X2 of not necessarily projective IHSMs of K3[n] type. The general
techniques are developed in § 5 and applied to U [n] in § 8.

It remains to prove that we get a full functor already when we restrict the functor H̃0 : G[n]
an →

Hdg[n] to the subgroupoid of G[n]
an generated by parallel-transport operators, which are Hodge

isometries, and morphisms in the image of Θn. This is done as follows.

Step 1 (generators for the group of rational isometries). Let L be a lattice isometric to the second
cohomology of a K3 surface. Let Λ be the orthogonal direct sum L⊕ Zδ, where (δ, δ) = 2− 2n.
Then Λ is isometric to the second cohomology of an IHSM X of K3[n] type endowed with the
BBF pairing [Bea83]. The monodromy group of X acts on H2(X,Z) via a normal subgroup
of O(H2(X,Z)) and so corresponds to a well-defined subgroup Mon(Λ) of O(Λ), by [Mar08,
Theorem 1.6 and Lemma 4.10]. We first prove that the group O(ΛQ) of rational isometries
is generated by Mon(Λ) and O(LQ) (Proposition 2.1). It follows from the Cartan–Dieudonné
theorem that every rational isometry ψ : ΛQ → ΛQ, which preserves the orientation of the pos-
itive cone, decomposes as the composition ψ = ψk ◦ · · · ◦ ψ1, where ψi belongs to the double
orbit Mon(Λ)(−ρu)Mon(Λ), where ρu is the reflection in a primitive integral class u ∈ L with
(u, u) > 0 (Corollary 2.5). The double orbit Mon(Λ)(−ρu)Mon(Λ) depends only on (u, u) and
is otherwise independent of the class u, since so does the double orbit O+(L)(−ρu)O+(L), by
[Bus19, Proposition 3.3], and Mon(Λ) contains O+(L).

Step 2 (reduction to the double orbit of a reflection). Let f : H2(X,Q)→ H2(Y,Q) be a ratio-
nal Hodge isometry preserving the orientations of the positive cones, where X and Y are of
K3[n] type. Choose isometries ηX : H2(X,Z)→ Λ and ηY : H2(Y,Z)→ Λ, so that the marked
pairs (X, ηX) and (Y, ηY ) belong to the same connected component M0

Λ of the moduli space
of marked IHSMs of K3[n] type. Let ΩΛ be the period domain of marked IHSMs of K3[n]

type and let P : M0
Λ → ΩΛ be the period map (see (5.1) for the definitions of ΩΛ and P ). Set

ψ := ηY ◦ f ◦ η−1
X ∈ O(ΛQ) and choose a decomposition ψ = ψk ◦ · · · ◦ ψ1 as in Step 1. The group

O+(ΛQ) acts on ΩΛ and ψ(P (X, ηX)) = P (Y, ηY ). Set �i := (ψi ◦ · · · ◦ ψ1)(P (X, ηX)), 0 ≤ i ≤ k.
The surjectivity of the period map implies the existence of marked pairs (Xi, ηi) ∈M0

Λ, such that
P (Xi, ηi) = �i, where we choose (X0, η0) := (X, ηX) and (Xk, ηk) := (Y, ηY ). Set fi := η−1

i ψi ◦
ηi−1 : H2(Xi−1,Q)→ H2(Xi,Q). Then f = fk ◦ · · · ◦ f1. If k = 0, so that ψ = ηY ◦ f ◦ η−1

X is the
identity, then f = η−1

Y ηX is a parallel-transport operator and a Hodge isometry, and so f lifts to
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a morphism φ ∈ HomGan(X,Y ) with H̃0(φ) = f , by Verbitsky’s Torelli theorem (Theorem 5.2).
It remains to prove that each fi belongs to the image of H̃0.

Step 3. The equivalence of derived categories ΦU [n] : Db(M [n])→ Db(S[n]) described previously
yields a morphism in G[n]

an which is mapped via H̃0 to a Hodge isometry H2(M [n],Q)→
H2(S[n],Q) which, in turn, is simply the extension7 of the isometry H2(M,Q)→ H2(S,Q) asso-
ciated to ΦU (Corollary 7.3). The resulting Hodge isometry H2(M [n],Q)→ H2(S[n],Q) is thus
in the double orbit Mon(Λ)(−ρu)Mon(Λ), where ρu is the reflection in a primitive integral class
u ∈ L with (u, u) > 0. The proof of Corollary 7.3 relies on [Mar21a, Theorem 12.2] obtained
independently by Beckman [Bec23, Theorem 7.4]. All such double orbits are obtained that way
by varying the Mukai vector of the two-dimensional moduli space M , by [Bus19, Proposition 3.3].
We prove that every rational Hodge isometry f : H2(X,Q)→ H2(Y,Q), with f in a fixed double
orbit of a reflection in u ∈ L and preserving the orientation of the positive cones, is of the form
H̃0([κ(E)

√
tdX×Y ]∗), for a pair (X × Y,E), which is a deformation of (M [n] × S[n],U [n]) for a

suitable choice of M (Corollary 8.5).

2. Generators for the rational isometry group

Let U be the rank-2 lattice with basis {e1, e2} satisfying (ei, ei) = 0, i = 1, 2, and (e1, e2) = −1.
Let L be an even unimodular lattice of signature (3, s−), s− ≥ 3, which contains a sublattice
isometric to the orthogonal direct sum of three copies of U . Let the lattice Λ be the orthogonal
direct sum L⊕ Zδ, where (δ, δ) = −2d for some positive integer d. Given a non-degenerate lattice
M , denote by O+(M) the subgroup of isometries of M which preserve the orientation of the
positive cone of M ⊗Z R (see [Mar11, § 4]). Let Γ ⊂ O+(Λ) be the subgroup which acts on the
discriminant group Λ∗/Λ by multiplication by ±1. Set ΛQ := Λ⊗Z Q and LQ := L⊗Z Q. We
regard O(LQ) as a subgroup of O(ΛQ) by extending each isometry so that it leaves δ invariant.

Proposition 2.1. The group O(ΛQ) is generated by Γ and O(LQ).

The following lemmas are needed for the proof of the above proposition.

Lemma 2.2. Let α = λ+ kδ, where λ is a primitive class in L and k ∈ Z. There exists an
isometry γ ∈ Γ, such that γ(α) belongs to L.

Proof. Let Λ̃ be the orthogonal direct sum of L and U and let ι : Λ→ Λ̃ be the isometric
embedding restricting to the identity on L and sending δ to the element of the second direct
summand U with coordinate (1, d) in the basis {e1, e2}. Let v ∈ Λ̃ be the element with coordinates
(1,−d) of the second direct summand U , so that (v, v) = 2d and v⊥ = ι(Λ), where v⊥ is the co-
rank-1 sublattice of Λ̃ orthogonal to v. The sublattice Σ1 := spanZ{ι(α), v} of Λ̃ is saturated.
Indeed, if a, b ∈ Q and aι(α) + bv = aλ+ (ak + b)e1 + (adk − bd)e2 is an integral class of Λ̃,
then a must be an integer, since λ is primitive, hence b must be an integer as well. Let β ∈ L
be a primitive class satisfying (β, β) = (α, α). The sublattice Σ2 := spanZ{β, v} is saturated in
Λ̃ and is isometric to Σ1. There exists an isometry g ∈ O(Λ̃) satisfying g(v) = v and g(ι(α)) =
β, by results of Nikulin [Nik87, Mar08, Lemma 8.1]. Set γ̃ := g, if g belongs to O+(Λ̃), and

7 We note that H̃([ch(U [n])
√
tdM [n]×S[n] ]∗) : H̃(M [n],Q) → H̃(S[n],Q) is not the naive extension of

[ch(U)
√
tdM×S ]∗ : H̃(M,Q) → H̃(S,Q), by [Tae23, Theorem 9.4] in the K3[2] case and by [Mar21a, Theorem 12.2]

and [Bec23, Theorem 7.4] in the K3[n] case, n ≥ 2 (see Lemma 7.2). Nevertheless, when we replace ch(U [n])

by κ(U [n]) the resulting isometry H̃([κ(U [n])
√
tdM [n]×S[n] ]∗) : H̃(M [n],Q) → H̃(S[n],Q) is the naive extension of

[κ(U)
√
tdM×S ]∗ : H̃(M,Q) → H̃(S,Q), by Corollary 7.3.
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γ̃ := −g otherwise. Then γ̃ ◦ ι = ι ◦ γ, for a unique element γ ∈ Γ, by [Mar08, Theorem 1.6 and
Lemma 4.2], and γ(α) belongs to L. �

Let G be the subgroup of O(ΛQ) generated by Γ and O(LQ).

Lemma 2.3. Let λ ∈ LQ and t ∈ Q and assume that (λ, λ) 
= 0. There exists an isometry g ∈ G,
such that g(λ+ tδ) belongs to LQ.

Proof. Let q ∈ Q× be such that q(λ+ tδ) is integral. Choose an integral and primitive class
λ′ ∈ L satisfying (λ′, λ′) = q2(λ, λ). There exists an isometry f ∈ O(LQ), such that λ′ = f(qλ),
by [Ger08, Proposition 2.35]. Then f(q(λ+ tδ)) = λ′ + qtδ is integral and there exists h ∈ Γ,
such that h(f(q(λ+ tδ))) is a primitive class in L, by Lemma 2.2. The statement follows, since
h ◦ f belongs to G. �

Proof of Proposition 2.1. Choose u ∈ L satisfying (u, u) = 2d+ 2. Then (u+ δ, u+ δ) = 2. Let
ρu+δ be the reflection of Λ in (u+ δ)⊥

ρu+δ(x) = x− (u+ δ, x)(u+ δ).

Then ρu+δ(δ) = (2d)u+ (1 + 2d)δ. Furthermore, −ρu+δ belongs to Γ. There exists g1 ∈ G, such
that g1(−ρu+δ(δ)) belongs to LQ, by Lemma 2.3.

Let φ be an isometry in O(ΛQ). Write φ(δ) = λ+ tδ. If (λ, λ) = 0 choose u ∈ L, such
that (u, λ) = 0 and (u, u) = 2d+ 2. Then ρu+δ(φ(δ)) = λ+ (2d)u+ (1 + 2d)δ and the self-
intersection (λ+ (2d)u, λ+ (2d)u) = 4d2(2d+ 2) is non-zero. Now, φ belongs to G, if and
only if −ρu+δφ belongs to G. Hence, we may assume that (λ, λ) 
= 0. Then there exists
g2 ∈ G such that (g2 ◦ φ)(δ) belongs to LQ, by Lemma 2.3. There exists h ∈ O(LQ), such that
h(g2(φ(δ))) = g1(−ρu+δ(δ)), by [Ger08, Proposition 2.35]. Hence, (−ρu+δg−1

1 hg2φ)(δ) = δ, and
so −ρu+δg−1

1 hg2φ belongs to O(LQ). Hence, φ belongs to G. �

Lemma 2.4. The group O(LQ) is generated by O(L) and reflections ρu in u⊥, for u ∈ L satisfying
(u, u) > 0.

Proof. The group O(LQ) is generated by reflections ρu, with (u, u) 
= 0, by [Ger08,
Proposition 2.36]. The isometry group O(L) acts transitively on the set {u : u is
primitive and (u, u) = 2d}, d ∈ Z, by [Nik87, Theorem 1.14.4]. Consider the above basis {e1, e2}
of U and observe that ρe1−de2ρe1+de2 is minus the identity of U . Hence, for every element u ∈ L
with (u, u) < 0, there exists an element w ∈ L with (w,w) = −(u, u), such that ρuρw belongs to
O(L). Thus, it sufficed to consider reflections ρu with (u, u) > 0. �

Corollary 2.5. Let φ be an isometry in O+(ΛQ). There exist a positive integer k, integral
elements ui ∈ L satisfying (ui, ui) ≥ 2, 1 ≤ i ≤ k, and elements γi ∈ Γ, 0 ≤ i ≤ k, such that

φ = (−1)kγkρukγk−1ρuk−1
· · · γ1ρu1γ0,

where ρui(x) = x− (2(ui, x)/(ui, ui))ui is the reflection of ΛQ in u⊥i .

Proof. This follows immediately from Proposition 2.1, Lemma 2.4, the fact that O+(L) is con-
tained in Γ, and the fact that −ρui belongs to O+(ΛQ) if (ui, ui) > 0, since the signature of Λ is
(3, 1 + s−) and 3 is odd. �

Remark 2.6. Note that in Corollary 2.5 we can require γi to belong to any subgroup Γ0 of Γ, such
that Γ0 and O+(L) generate Γ. When L is the K3 lattice, the group Γ is the monodromy group
of IHSMs of K3[d+1] deformation type [Mar08, Theorem 1.6]. If L = U⊕3, the monodromy of
generalized Kummer varieties of dimension 2d− 2, for d ≥ 3, is the following index 2 subgroup
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Γ0 of Γ. Here Γ acts on the discriminant group Λ∗/Λ by a character ξ : Γ→ {±1}, by the
definition of Γ. Let det : Γ→ {±1} be the determinant character. Then Γ0 is the kernel of
the product character det ·ξ : Γ→ {±1}, by [Mar23, Theorem 1.4]. The character det ·ξ has
value −1 on a reflection ρω ∈ O+(L) in a class w ∈ L with (w,w) = −2, and so Γ0 and O+(L)
generate Γ.

3. The LLV Lie algebra

In § 3.1 we recall the LLV Lie algebra gX and its action on the cohomology of a 2n-dimensional
IHSM X. We review the gX -equivariant isomorphism between the subring SH∗(X,Q) of
H∗(X,Q) generated by H2(X,Q) and the nth symmetric power of the LLV lattice H̃(X,Q).
In § 3.2 we recall Taelman’s definition of the functor H̃ : G → G̃, mentioned in (1.4), send-
ing equivalences of derived categories to isometries of LLV lattices. Given a morphism φ ∈
HomG((X, εX), (Y, εY )), which is degree preserving up to sign, we relate in Lemmas 3.6 and 3.7
the restrictions of φ and of H̃(φ) to H2(X,Q).

A note about orientations: we take pains to carefully keep track of the sign of H̃(φ), for
a morphism φ ∈ HomG((X, εX), (Y, εY )). The sign depends in a subtle way on the orientations
εX , εY . We use the functor H̃ : G → G̃ in order to define the functor H̃0 : Gan → Hdg in (1.5) (see
also (5.8)). The sign of H̃0(φ) is independent of the sign of H̃(φ), so the functor H̃0 is independent
of the orientations. The proof of Theorems 1.1 and 1.4 depends only on H̃0. The reader who is
only interested in that proof may ignore the orientations of objects in G and redefine morphisms
in G̃ as pairs {±g} of an isometry g : H̃(X,Q)→ H̃(Y,Q) and its negative. The resulting coarser
version of the functor H̃ is sufficient to define H̃0.

3.1 The subring generated by H2(X, Q)
Let X be a 2n-dimensional IHSM. Given a class λ ∈ H2(X,Q) denote by eλ : H∗(X,Q)→
H∗(X,Q) the endomorphism given by the cup product with λ. The grading operator

hX : H∗(X,Q)→ H∗(X,Q) (3.1)

acts on Hk(X,Q)[2n] = H2n+k(X,Q), −2n ≤ k ≤ 2n, via multiplication by k. A triple (e, h, f)
of endomorphisms of H∗(X,Q) is called an sl2-triple, if

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Given e, if f exists, then it is the unique endomorphism completing the pair (e, h) to an sl2-
triple. The LLV Lie algebra gX ⊂ End(H∗(X,Q)) is the Lie algebra generated by all sl2-triples
(eλ, h, fλ), λ ∈ H2(X,Q).

Denote by S[n]H̃(X,Q) the subspace of Symn(H̃(X,Q)) generated by nth powers of
isotropic elements of H̃(X,Q). Verbitsky proved that the subring SH∗(X,Q) is an irre-
ducible gX -submodule of H∗(X,Q), appearing with multiplicity one, there exists a Lie algebra
isomorphism

ρ̇ : so(H̃(X,Q))→ gX , (3.2)

and there exists a unique graded isomorphism of so(H̃(X,Q))-modules

Ψ : SH∗(X,Q)[2n]→ S[n]H̃(X,Q), (3.3)

satisfying Ψ(1) = αn/n!, where the so(H̃(X,Q))-module structure of SH∗(X,Q)[2n] is via ρ̇ (see
[Tae23, Proposition 3.5]). The pairing on H̃(X,Q) induces a pairing b[n] on S[n]H̃(X,Q), the
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Mukai pairing on H∗(X,Q) restricts to a pairing bSH on SH∗(X,Q), and cXb[n](Ψ(x),Ψ(y)) =
bSH(x, y), where cX is the Fujiki constant [Tae23, Proposition 3.8].

The following is the explicit description of the isomorphism Ψ (see [Tae23, Proposition 3.5]).
Given λ ∈ H2(X,Q), denote by

eλ ∈ so(H̃(X,Q)) (3.4)

also the endomorphism of H̃(X,Q) sending α to λ, annihilating β, and sending λ′ ∈ H2(X,Q)
to (λ, λ′)β. Extend eλ as an endomorphism of SymnH̃(X,Q) via the product rule, so that
eλ(x1 · · ·xn) =

∑n
i=1 x1 · · · eλ(xi) · · ·xn. Then

Ψ(λ1 · · ·λk) = eλ1 · · · eλk(αn/n!).

Let
h̃X : H̃(X,Q)→ H̃(X,Q) (3.5)

be the grading operator multiplying α by −2, β by 2, and H2(X,Q) by 0.

3.2 The functor H̃
Let φ be a morphism in HomG((X, ε), (Y, ε′)), where G is the groupoid (1.1). Then φ is in
particular an isometry φ : H∗(X,Q)→ H∗(Y,Q) with respect to the Mukai pairing and we denote
by

Adφ : End(H∗(X,Q))→ End(H∗(Y,Q))

the Lie algebra isomorphism given by Adφ(ξ) = φξφ−1. Then Adφ restricts to a Lie algebra
isomorphism from gX onto gY , by [Tae23, Theorem A]. Hence, φ restricts to an isometry
φ| : SH∗(X,Q)→ SH∗(Y,Q). Consequently, when X and Y are deformation equivalent, so
that cX = cY , then ΨY ◦ φ| ◦Ψ−1

X : S[n]H̃(X,Q)→ S[n]H̃(Y,Q) is an isometry, which conju-
gates S[n]so(H̃(X,Q)) to S[n]so(H̃(Y,Q)), where S[n]so(H̃(X,Q)) is the image of so(H̃(X,Q)) in
End(S[n]H̃(X,Q)).

Given an isomorphism f : V1 → V2 of oriented vector spaces, we set det(f) = 1, if f is
orientation preserving and det(f) = −1 otherwise.

Proposition 3.1 [Tae23, Proposition 4.4, Theorem 4.10, and Theorem 4.11]. Let V1 and V2 be
d-dimensional vector spaces over Q with non-degenerate bilinear parings and φ : S[n]V1 → S[n]V2

an isometry, such that φ(S[n]so(V1))φ−1 = S[n]so(V2). If n is even assume that d is odd and choose

an orientation for each of V1 and V2. Then there exists a unique isometry H̃(φ) : V1 → V2, such
that the restriction S[n](H̃(φ)) of its n-symmetric power to S[n]V1 satisfies S[n](H̃(φ)) = φ, if n

is odd, and det(H̃(φ))S[n](H̃(φ)) = φ, if n is even.

Remark 3.2. Fix a positive integer n. Consider the two groupoids V and S[n]V, whose objects
are vector spaces over Q, which are odd dimensional if n is even, with non-degenerate symmetric
quadratic forms and with the additional choice of orientations, if n is even. The morphisms of V
are isometries. The morphisms in HomS[n]V(V1, V2) are isometries φ : S[n]V1 → S[n]V2 satisfying
φ(S[n]so(V1))φ−1 = S[n]so(V2). We have the obvious functor S[n] : V → S[n]V, which is the identity
on objects, and which sends an isometry from V1 to V2 to the restriction of its nth symmetric
power to the subrepresentation S[n]V1. Proposition 3.1 gives rise to a functor H̃ : S[n]V → V. If
n is odd, the functors S[n] and H̃ are inverses of each other. If n is even, then S[n] is not faithful,
since S[n](φ) = S[n](−φ). Proposition 3.1 asserts that if n is even, then the functor F : V → S[n]V,
which is the identity on objects, and which sends f ∈ HomV((V1, ε1), (V2, ε2)) to det(f)S[n](f),
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is an equivalence and defines H̃ as its inverse. We have S[n](−f) = −S[n](f), if n is odd, and
F (−f) = −F (f), if n is even, and so H̃(−φ) = −H̃(φ). Let fi ∈ O(Vi), i = 1, 2. We have

H̃(S[n](f2) ◦ φ ◦ S[n](f1)) =

{
f2 ◦ H̃(φ) ◦ f1 if n is odd,
det(f1) det(f2)f2 ◦ H̃(φ) ◦ f1 if n is even.

(3.6)

Definition 3.3. The functor H̃ : G → G̃, given in (1.4), sends a morphism φ in
HomG((X, εX), (Y, εY )) to H̃(ΨY ◦ φ| ◦Ψ−1

X ) : H̃(X,Q)→ H̃(Y,Q), where the latter functor H̃
is from Remark 3.2 (with V1 = H̃(X,Q) with orientation εX and V2 = H̃(Y,Q) with orientation
εY ) and φ| is the restriction of φ to SH∗(X,Q).

Lemma 3.4. Let X and Y be 2n-dimensional IHSMs. Let φ be a morphism in
HomG((X, εX), (Y, εY )). Set φ̃ := H̃(φ) : H̃(X,Q)→ H̃(Y,Q). The equality φ̃h̃X = (−1)kh̃Y φ̃,
for some k ∈ {0, 1}, is equivalent to φhX = (−1)khY φ for the same k.

Proof. The proof is modeled after that of [Tae23, Theorem 5.3]. The isomorphism φ :
H∗(X,Q)→ H∗(Y,Q) conjugates the LLV Lie algebra gX to gY , by [Tae23, Theorem A], and
it conjugates SH∗(X,Q) to SH∗(Y,Q), by [Tae23, Theorem B]. Hence, φhXφ−1 belongs to gY .
Theorems 4.10 and 4.11 in [Tae23] yield the commutative diagram

so(H̃(X,Q))
ad(φ̃)

��

��

so(H̃(Y,Q))

��
sl(SH∗(X,Q)) sl(SH∗(Y,Q))

gX

��
∼=

��

ad(φ)

�� gY

��
∼=

��

(3.7)

where the left bottom vertical arrow is the restriction to the subrepresentation SH∗(X,Q) of
H∗(X,Q) and the right bottom vertical arrow is the analogue. The top left vertical arrow cor-
responds to f �→ Ψ−1

X ◦ (S[n]f) ◦ΨX and the right is the analogue. All four vertical arrows are
injective and each pair in the same column have the same image yielding the curved arrows
which are isomorphisms (inverses of ρ̇ in (3.2)). The grading operator hX ∈ gX restricts to
the same element of sl(SH∗(X,Q)) as the image of the grading operator h̃X ∈ so(H̃(X,Q)),
since ΨX is a graded isomorphism. The same holds for hY and h̃Y . Hence, the equality
φ̃h̃X φ̃

−1 = (−1)kh̃Y is equivalent to the equality of the restrictions of φhXφ−1 and (−1)khY
to elements of sl(SH∗(Y,Q)), by the commutativity of the diagram and the injectivity of the
top right vertical arrow. The latter is equivalent to the equality φhXφ−1 = (−1)khY , since the
restriction homomorphism gY → sl(SH∗(Y,Q)) is injective. �

The relation between hX and h̃X explains the following result of Verbitsky, Looijenga, and
Lunts.

Lemma 3.5 [LL97, Proposition 4.5(ii)]. The commutator of h in gX decomposes as a direct sum
ḡX ⊕QhX , where ḡX is the derived Lie subalgebra of the commutator, and ḡX is isomorphic to
so(H2(X,Q)).

The Hodge operator
h′X ∈ End(H∗(X,C)) (3.8)
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acts on Hp,q(X) by multiplication by q − p. Verbitsky proved that it is an element of the
subalgebra ḡX,C of gX,C (see [Ver99a, Theorem 8.1]; see also [Tae23, Corollary 2.12]).

Lemma 3.6. Assume that φ ∈ HomG((X, εX), (Y, εY )) is degree preserving and let φ2 be the
restriction of φ to H2(X,Q). Let t ∈ Q× be such that H̃(φ)(α) = t−1α. Then the restriction
H̃(φ)0 of H̃(φ) to H2(X,Q) satisfies

H̃(φ)0 =

{
tn−1φ2 if n is odd,

det(H̃(φ))tn−1φ2 if n is even.

Proof. Assume that φ ∈ HomG((X, εX), (Y, εY )) is degree preserving. Then so is H̃(φ), by
Lemma 3.4. Let λ be a class in H2(X,Q). We have

(S[n]H̃(φ))(Ψ(λ)) = (S[n]H̃(φ))(eλ(αn/n!)) = (S[n]H̃(φ))(αn−1λ/(n− 1)!)

=
t1−n

(n− 1)!
αn−1H̃(φ)(λ),

(S[n]H̃(φ))(Ψ(λ)) = aΨ(φ(λ)) = aeφ(λ)(α
n/n!) = aαn−1φ(λ)/(n− 1)!,

where a = 1, if n is odd, and a = det(H̃(φ)), if n is even (Proposition 3.1). The statement follows
from the equality of the right-hand sides in the two equations above. �
Lemma 3.7. Let φ ∈ HomG((X, εX), (Y, εY )) be a degree-reversing morphism, where X and Y
are 2n-dimensional. Then the value H̃0(φ) : H2(X,Q)→ H2(Y,Q) at φ of the functor H̃0 given
in (1.5) is a scalar multiple of the composition

H2(X,Q)
∪c2(X)n−1

−→ H4n−2(X,Q)
φ−→ H2(Y,Q). (3.9)

Proof. Note first that H2(X,Q) and H4n−2(X,Q) are subspaces of SH∗(X,Q). Let φ| be the
restriction of φ to SH∗(X,Q). Given an isometry f ∈ O(H̃(X,Q)), let

ηf : SH∗(X,Q)→ SH∗(X,Q)

be given by ηf := Ψ−1
X ◦ S[n](f) ◦ΨX . Then

H̃(φ| ◦ ηf ) =

{
H̃(φ) ◦ f if n is odd,
det(f)H̃(φ) ◦ f if n is even,

by (3.6). The left-hand side is defined to be H̃(ΨX ◦ (φ| ◦ ηf ) ◦Ψ−1
X ) where H̃ is the functor in

Proposition 3.1.
Let τ ∈ O(H̃(X,Q)) be the element which interchanges α and β and multiplies H2(X,Q)

by −1. Then τ h̃X = −h̃Xτ and so ητ is degree reversing. Hence, φ| ◦ ητ is degree preserving
and so the restriction H̃(φ| ◦ ητ )0 of H̃(φ| ◦ ητ ) to H2(X,Q) is a scalar multiple of (φ| ◦ ητ )2,
by Lemma 3.6. Furthermore, H̃(φ| ◦ ητ )0 = H̃(φ)0 ◦ H̃(ητ )0 and H̃(ητ )0 = −id, so H̃(φ| ◦ ητ )0 =
−H̃(φ)0 = ±H̃0(φ). We conclude that H̃0(φ) is a scalar multiple of (φ| ◦ ητ )2.

It remains to prove that ητ : H2(X,Q)→ H4n−2(X,Q) is a scalar multiple of cup product
with c2(X)n−1. Let G be the subgroup of SO(H̃(X,Q)) leaving each of α and β invariant.
Then G commutes with τ and its η-action on SH∗(X,Q) is via degree-preserving isometries
with respect to which ητ is G-equivariant. Now, H2(X,Q) and H4n−2(X,Q) are dual irreducible
G-representations and ∪c2(X)n−1 : H2(X,Q)→ H4n−2(X,Q) is G-equivariant as well and non-
vanishing, by [LL97, Theorem 4.7]. Hence, a scalar multiple of the latter is equal to the restriction
of ητ to H2(X,Q). �
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Let X and Y be projective IHSMs and P ∈ Db(X × Y ) the Fourier–Mukai kernel of an
equivalence ΦP : Db(X)→ Db(Y ). Assume that the rank r of P does not vanish. Let x be
a point of X, denote by Px ∈ Db(Y ) the restriction of P to {x} × Y , and set λ := c1(Px) ∈
H2(Y,Z). Note that the object Px of Db(Y ) is the image of the skyscraper sheaf at x via ΦP . Set
H̃(ΦP) := H̃([ch(P)

√
tdX×Y ]∗). The following was proved independently by Beckmann [Bec23,

Lemma 4.13(iv)] and the author [Mar21a, Theorem 6.13(3)].

Proposition 3.8. The isometry H̃(ΦP) : H̃(X,Q)→ H̃(Y,Q) maps β to the isotropic line
spanned by rα+ λ+ sβ, where s = (λ, λ)/2r so that the line is isotropic.

4. The degree-reversing Hodge isometry of a Fourier–Mukai kernel of
non-zero rank

Consider an object E of non-zero rank in the derived category of a product X × Y of 2n-
dimensional deformation equivalent IHSMs X and Y . Assume that E is the Fourier–Mukai kernel
of an equivalence of derived categories. This means that the functor ΦE : Db(X)→ Db(Y ), given
by ΦE(•) = RπY,∗(Lπ∗X(•)⊗ E), is an equivalence of triangulated categories.

Lemma 4.1.

(1) The class κ(E)
√
tdX×Y , with κ(E) as in Definition 1.3, induces a degree-reversing Hodge

isometry

φ : H∗(X,Q)→ H∗(Y,Q).

(2) The Hodge isometry H̃(φ) : H̃(X,Q)→ H̃(Y,Q), associated to φ and any choice of
orientations of H2(X,Q) and H2(Y,Q), restricts to a Hodge isometry

H̃(φ)0 : H2(X,Q)→ H2(Y,Q). (4.1)

(3) The Lie algebras isomorphism Adφ : gX → gY is graded and restricts to

Ad
H̃0(φ)

: ḡX → ḡY .

Proof. Let r be the rank of E and let λX ∈ H2(X,Z) and λY ∈ H2(Y,Z) satisfy c1(E) =
π∗X(λX) + π∗Y (λY ). Given λ ∈ H2(X,Q), let eλ be the endomorphism of H̃(X,Q) given in (3.4).
Set Bλ := exp(eλ).

The isometry H̃(ΦE) maps span{βX} to span{rαY + λY + ((λY , λY )/2r)βY }, by
Proposition 3.8. We have B−λX/r(βX) = βX and

B−λY /r

(
rαY + λY +

(λY , λY )
2r

βY

)
= rαY.

The equality H̃(φ) = B−λY /rH̃(ΦE)B−λX/r implies that H̃(φ) maps span{βX} to span{αY}.
The adjoint Φ†

E has Fourier–Mukai kernel E∗[2n]. The argument above applied to the adjoint
shows that H̃(φ)−1 maps span{βY} to span{αX}. Hence, H̃(φ) maps span{αX} to span{βY}. It
follows that H̃(φ) maps the subspace H2(X,Q) orthogonal to span{αX , βX} to the subspace
H2(Y,Q) orthogonal to span{αY , βY}. This proves part (2) of the Lemma. We denote by H̃(φ)0
the restriction of H̃(φ) to H2(X,Q).

The isometry H̃(φ) conjugates the grading operator h̃X of H̃(X,Q), given in (3.5), to −h̃Y ,
where h̃Y is the grading operator of H̃(Y,Q). Lemma 3.4 implies that φ is degree reversing and
part (1) is proven.

(3) The subalgebra ḡX is the semi-simple part of the degree-0 subalgebra of the LLV algebra
gX , by [LL97, Proposition 4.5(ii)], and Adφ : gX → gY is a graded Lie algebra isomorphism, by
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part (1), and so Adφ maps ḡX to the semi-simple part ḡY of the degree-0 subalgebra of gY .
Furthermore, the restriction of Adφ to ḡY is equal to Ad

H̃(φ)0
, by part (2) and the commuta-

tivity of the outer square in diagram (3.7). Finally, Ad
H̃(φ)0

= Ad
H̃0(φ)

, as H̃0(φ) = ±H̃(φ)0, by
definition (1.5). �

Set γ := κ(E)
√
tdX×Y and let γi be the graded summand in H2i(X × Y,Q).

Corollary 4.2. If the odd cohomology of X vanishes, then γi = 0, for odd i. In that case
κ(E) = κ(E∨).

Proof. The class γi induces the homomorphism Hk−2n(X,Q)[2n]→ Hk+2i−6n(Y,Q)[2n]. As φ is
degree reversing, this homomorphism vanishes unless k + i− 4n = 0. Hence, it vanishes unless
the parities of i and k are the same, and it vanishes if k is odd, by assumption. �
Proof of Lemma 1.6. Set φ̃ := H̃(φ). The morphism φ conjugates the LLV Lie algebra of X
to that of Y , by [Tae23, Theorem A]. The LLV Lie algebras act faithfully on the rational LLV
lattices. Hence, it suffices to verify the equality e∨λ = (2/t(λ, λ))φ̃−1eφ̃(λ)φ̃ for the endomorphisms

of H̃(X,Q). We have

(φ̃−1eφ̃(λ)φ̃)(α) = φ̃−1(eφ̃(λ)(t
−1β)) = 0,

(φ̃−1eφ̃(λ)φ̃)(β) = φ̃−1(eφ̃(λ)(tα)) = tφ̃−1(φ̃(λ)) = tλ,

(φ̃−1eφ̃(λ)φ̃)(λ′) = φ̃−1((φ̃(λ), φ̃(λ′))β) = t(λ, λ′)α.

Set ψ := φ̃−1eφ̃(λ)φ̃. We get

[eλ, ψ](α) = −ψ(eλ(α)) = −t(λ, λ)α,

[eλ, ψ](β) = eλ(tλ) = t(λ, λ)β,

[eλ, ψ](λ′) = t(λ, λ′)λ− t(λ, λ′)λ = 0.

Hence, [eλ, ψ] = (t(λ, λ)/2)h. Clearly, [h, ψ] = −2ψ, since ψ has degree −2. Thus, e∨λ =
(2/t(λ, λ))ψ. �

5. Hyperholomorphic vector bundles deforming a Fourier–Mukai kernel

Let X and Y be deformation equivalent IHSMs and E a locally free sheaf over X × Y which
is the Fourier–Mukai kernel of an equivalence ΦE : Db(X)→ Db(Y ) of derived categories. Let
φ : H∗(X,Q)→ H∗(Y,Q) be the morphism in HomGan(X,Y ) induced by κ(E)

√
tdX×Y . Let

H̃0(φ) : H2(X,Q)→ H2(Y,Q) be the value on φ of the functor H̃0, given in (1.5). Let πX and
πY be the projections from X × Y . We prove in this section the following theorem.

Theorem 5.1 (Proposition 5.22 and Lemma 5.7). Assume that there exists an open subcone
of the Kähler cone of X, such that H̃0(φ) maps each Kähler class ω1 in this subcone to a
Kähler class ω2 := H̃0(φ)(ω1) on Y with respect to which E is [π∗X(ω1) + π∗Y (ω2)]-slope stable.
Then for every IHSM X ′ deformation equivalent to X there exists an IHSM Y ′ and a locally free
(possibly twisted) coherent sheaf E′ over X ′ × Y ′, such that the pair (X ′ × Y ′, E′) is deformation
equivalent to (X × Y,E).

Note that the assumptions of the theorem are symmetric with respect to X and Y , upon
replacing E by E∗ and φ by φ−1, and so the conclusions are symmetric as well. Proposition 5.22
is a slightly stronger version of the theorem, allowing the assumptions in the statement of the
theorem to hold instead for a deformation (X0 × Y0, E0) of the Fourier–Mukai kernel (X × Y,E).
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Theorem 5.1 may be viewed as a global analogue, in the special case of classical and gerby defor-
mations of locally free Fourier–Mukai kernels between IHSMs, of the infinitesimal deformability
result of Toda for generalized deformations of Fourier–Mukai kernels [Tod09, Theorem 1.1].

The proof of Theorem 5.1 uses Verbitsky’s results on hyperholomorphic vector bundles over
hyper-Kähler manifolds and their deformability along twistor paths in moduli [Ver99b]. In § 5.1
we recall the notion of a twistor line in the moduli space of marked IHSMs. In § 5.2 we define
the moduli space Mψ of rational Hodge isometries. Given a lattice Λ and a rational isometry
ψ ∈ O(ΛQ), the moduli space Mψ parametrizes isomorphism classes of quadruples (X1, η1, X2, η2)
of deformation equivalent marked pairs (Xi, ηi), where ηi : H2(Xi,Z)→ Λ is an isometry, i = 1, 2,
such that η−1

2 ψη1 : H2(X1,Q)→ H2(X2,Q) is a Hodge isometry which maps some Kähler class
to a Kähler class. In § 5.3 we define diagonal twistor lines in Mψ. In § 5.4 we define the notion
of generic twistor paths and prove that every two points in the same connected component of
Mψ are connected by such a path. In § 5.5 we review Verbitsky’s result about hyperholomorphic
vector bundles and their deformability along twistor paths in Mψ. In § 5.6 we associate to an
equivalence ΦE as in Theorem 5.1 a connected component M0

ψ of the moduli space of rational
Hodge isometries. In § 5.7 we prove Theorem 5.1.

5.1 Twistor lines
A marking of an IHSM X is an isometry η : H2(X,Z)→ Λ with a fixed lattice Λ. Two marked
pairs (X1, η1) and (X2, η2) are isomorphic, if there exists an isomorphism f : X1 → X2, such that
η2 = η1 ◦ f∗. The moduli space MΛ of isomorphism classes of marked IHSMs is a non-Hausdorff
complex manifold of dimension rank(Λ)− 2 (see [Huy99]).

Set ΩΛ := {� ∈ P(ΛC) : (�, �) = 0 and (λ, λ̄) > 0 for all non-zero λ ∈ �}. The period map

P : MΛ → ΩΛ, (5.1)

is given by P (X, η) = η(H2,0(X)). The restriction of the period map to every connected compo-
nent of MΛ is known to be surjective and generically injective, by Verbitsky’s Torelli theorem
[Huy12, Ver13]. Furthermore, if Pic(X) is trivial, or cyclic generated by a class of non-negative
BBF degree, then (X, η) is the unique point in the fiber of P through the connected component
of MΛ containing (X, η).

The Torelli theorem solves the case of Theorem 1.1 in which the Hodge isometry f is a
parallel-transport operator.

Theorem 5.2. Let (X, η) and (X ′, η′) be two marked pairs in the same connected component
of MΛ satisfying P (X, η) = P (X ′, η′). There exist an analytic cycle Z in X ×X ′, such that
[Z]∗ : H∗(X ′,Z)→ H∗(X,Z) is a parallel-transport operator, which restricts to H2(X ′

i,Z) as
η−1 ◦ η′.
Proof. The assumption that (X, η) and (X ′, η′) belong to the same connected component of
MΛ and have the same period implies that (X, η) and (X ′, η′) are inseparable points of MΛ,
by Verbitsky’s Torelli theorem [Huy12, Ver13]. Note also that η′ ◦ η−1 is a parallel-transport
operator, which is a Hodge isometry. The existence of the analytic cycle Z with the claimed
properties thus follows from results of Huybrechts in [Huy03b] (see [Mar11, Theorem 3.2]). �

Lemma 5.3. Let X and X ′ be IHSMs and let fi : H∗(X,Z)→ H∗(X ′,Z) be a parallel-transport
operator, i = 1, 2. Assume that f1 and f2 restrict to the same parallel-transport operator f :
H2(X,Z)→ H2(X ′,Z). Then there exist automorphisms g ∈ Aut(X) and g′ ∈ Aut(X ′), acting
trivially on the second cohomologies, such that f2 = g′∗ ◦ f1 ◦ g∗.
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Proof. There exist families πi : Xi → Bi over connected analytic spaces Bi, points bi, b′i ∈ Bi, and
continuous paths γi from bi to b′i in Bi, such that fi is the parallel-transport operator along γi in
the local system Rπi,∗Z, i = 1, 2. We may and do assume that Bi is simply connected, possibly
after passing to the universal cover and lifting the path γi. Choose an isometric trivialization
ηi : R2πi,∗Z→ Λ, where Λ is the trivial local system over Bi with a fixed lattice Λ, with η1,b1 =
η2,b2 : H2(X,Z)→ Λ. Set η := η1,b1 . Set η′ := η ◦ f−1. We get that ηi,b′i = η′, for i = 1, 2.

Let M0
Λ be the connected component of the moduli space of isomorphism classes of marked

IHSMs containing the isomorphism class [(X, η)] of (X, η). Let si : Bi →M0
Λ be the classify-

ing morphism associated to ηi. Set q := [(X, η)] = s1(X, η1,b1) = s2(X, η2,b2) and q′ := [(X, η′)] =
s1(X ′, η1,b′1) = s2(X ′, η2,b′2).

There exists over M0
Λ a universal family Π : Y →M0

Λ and isomorphisms hi : Xi → s−1
i (Y)

of the two families πi and s−1
i (Π) over Bi, by [Mar21b, Theorem 1.1] and our assumption that

Bi is simply connected, for i = 1, 2. Furthermore, the local system RΠ∗Z over M0
Λ is trivial, by

[Mar21b, Lemma 2.1]. Hence, the paths si ◦ γi, i = 1, 2, from q to q′ in M0
Λ induce the same

parallel-transport operator from the fiber Yq of Y over q to the fiber Yq′ of Y over q′. Let
hi,bi : X → Yq and hi,b′i : X ′ → Yq′ be the isomorphism associated to hi, i = 1, 2. We conclude
that hi,b′i ◦ fi ◦ h

−1
i,bi

is the parallel-transport along si ◦ γi, i = 1, 2, and so

h1,b′1 ◦ f1 ◦ h−1
1,b1

= h2,b′2 ◦ f2 ◦ h−1
2,b2

.

Then g := h−1
1,b1
◦ h2,b2 ∈ Aut(X) and g′ := h−1

2,b′2
◦ h1,b′1 ∈ Aut(X ′) are automorphisms satisfying

f2 = g′∗ ◦ f1 ◦ g∗. �

Given a positive-definite three-dimensional subspaceW of ΛR, setWC := W ⊗R C. We get the
projective conic curve P(WC) ∩ ΩΛ, which is called a twistor line. Let (X, η) be a marked pair in
MΛ and ω ∈ H1,1(X,R) a Kähler class. The intersection ofWC := H2,0(X)⊕H0,2(X)⊕ Cω with
H2(X,R) is a positive-definite three-dimensional subspace W and the twistor line Q(X,η,ω) :=
P(η(WC)) ∩ ΩΛ passes through P (X, η). We endow W with the orientation associated to the
basis

{Re(σ), Im(σ), ω}, (5.2)

for a non-zero class σ ∈ H2,0(X). There exists a family

π : X → Q(X,η,ω) (5.3)

of IHSMs with fiber X over the point P (X, η), known as the twistor family associated to ω, with
the following properties [Huy99, paragraph 1.17, p. 76]. The marking η extends to a trivialization
of the local system R2π∗Z, as Q(X,η,ω) is simply connected. Denote by ηt the resulting marking
of the fiber Xt of π over t ∈ Q(X,η,ω). Then

P (Xt, ηt) = t,

for each t ∈ Q(X,η,ω) and the line in H2(Xt,R), which is contained in η−1
t (η(W )) and orthogonal

to H2,0(Xt), is spanned by a Kähler class ωt. The twistor family depends only on the ray in the
Kähler cone of X through ω. Denote by

Rt ⊂ KXt ∩ η−1
t (η(W )) (5.4)

the ray through ωt in the Kähler cone KXt of Xt. The curve

Q̃(X,η,ω) := {(Xt, ηt) : t ∈ Q(X,η,ω)}
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in M0
Λ is mapped isomorphically onto Q(X,η,ω) via the period map. The curve Q̃(X,η,ω) is called

the twistor line through (X, η) associated to ω. The twistor line Q̃(X,η,ω) is said to be generic,
if Pic(Xt) is trivial, for some t ∈ Q(X,η,ω). This is the case for ω in the complement of a countable
union of hyperplanes in the Kähler cone.

5.2 Moduli spaces of rational Hodge isometries
Fix a deformation class of IHSMs with a second integral cohomology lattice isometric to a
lattice Λ. Let ψ ∈ O(ΛQ) be a rational isometry. Let Mψ be the moduli space of isomorphism
classes of quadruples (X1, η1, X2, η2), where ηi : H2(Xi,Z)→ Λ is a marking, such that η−1

2 ψη1 :
H2(X1,Q)→ H2(X2,Q) is a Hodge isometry which maps some Kähler class to a Kähler class.
Two quadruples (X1, η1, X2, η2) and (X ′

1, η
′
1, X

′
2, η

′
2) are isomorphic, if the marked pair (Xi, ηi)

is isomorphic to (X ′
i, η

′
i), for i = 1, 2. The moduli space Mψ has a natural structure of a non-

Hausdorff complex manifold. The proof of the latter statement is identical to that of [Bus19,
Proposition 4.9]. The isometry ψ induces an automorphism of ΩΛ which we denote by ψ as well.

Lemma 5.4. If (X1, η1, X2, η2) belongs to Mψ, then P (X2, η2) = ψ(P (X1, η1)).

Proof. The composition η−1
2 ψη1 : H2(X1,Q)→ H2(X2,Q) is a Hodge isometry. Hence,

P (X2, η2) := η2(H2,0(X2)) = [η2 ◦ (η−1
2 ψη1)](H2,0(X1)) = ψ(P (X1, η1)). �

Given a quadruple q := (X1, η1, X2, η2) in Mψ set

ψq := η−1
2 ψη1 : H2(X1,Q)→ H2(X2,Q). (5.5)

Let ω1 be a Kähler class on X1, such that ω2 := ψq(ω1) is a Kähler class on X2. Note that
ψ : ΩΛ → ΩΛ maps the twistor line Q(X1,η1,ω1) to the twistor line Q(X2,η2,ω2). Let (Xi,t, ηi,t),
t ∈ Q(Xi,ηi,ωi), be the point of Q̃(Xi,ηi,ωi) over t, for i = 1, 2.

Lemma 5.5. The rays Rt and Rψ(t) in the Kähler cones of X1,t and X2,ψ(t), given in (5.4), satisfy
the equality ψ(η1,t(Rt)) = η2,ψ(t)(Rψ(t)), for each t ∈ Q(X1,η1,ω1). Consequently, the quadruple
(X1,t, η1,t, X2,ψ(t), η2,ψ(t)) belongs to Mψ, for all t ∈ Q(X1,η1,ω1).

Proof. Let CXi := {λ ∈ H1,1(Xi,R) : (λ, λ) > 0} be the positive cone, i = 1, 2. Each CXi has two
connected components and we denote by C+

Xi
the one which contains the Kähler cone. The isom-

etry ψq maps CX1 isomorphically onto CX2 and ψq(KX1) ∩KX2 is non-empty, hence ψq(C+
X1

) =
C+
X2

. Equivalently, ψ(η1,t0(C+
Xt0

)) = η2,ψ(t0)(C+
Xψ(t0)

), where t0 = P (X1, η1). Hence, ψ(η1,t(C+
Xt

)) =

η2,ψ(t)(C+
Xψ(t)

), for all t ∈ Q(X1,η1,ω1), by continuity and connectedness of Q(X1,η1,ω1). We know

that ψ maps the line spanned by η1,t(Rt) to the line spanned by η2,ψ(t)(Rψ(t)), since η−1
2,tψη1,t

is a Hodge isometry which maps the positive-definite three-dimensional subspace W1 associated
to (X1, η1, ω1) to the positive-definite three-dimensional subspace W2 associated to (X2, η2, ω2)
and η1,t(Rt) spans the line in W1 orthogonal to η1,t(H2,0(Xt)) and η2,t(Rψ(t)) spans the line in
W2 orthogonal to η2,t(H2,0(Xψ(t))). Now, Rt is the intersection of the line spanned by it with
C+
Xt

and the similar statement holds for Rψ(t). Hence, ψ(η1,t(Rt)) = η2,ψ(t)(Rψ(t)). �

Lemma 5.5 enables us to define the twistor line in M0
ψ through (X1, η1, X2, η2) determined

by ω1 ∈ KX1 ∩ ψ−1
q (KX2) to be the curve

Q̃(X1,η1,X2,η2),ω1
:= {(X1,t, η1,t, X2,t, η2,ψ(t)) : t ∈ Q(X1,η1,ω1)}. (5.6)
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5.3 Diagonal twistor lines
We explain next that the twistor line (5.6) in the above definition is associated to a hyper-
Kähler structure on the differential manifold underlying the product X1 ×X2. This fact is used
in the proof of Proposition 5.15. A Kähler class on an IHSM X determines a Ricci-flat her-
mitian metric g on the manifold M underlying X, by the Calabi–Yau theorem [Bea83]. The
metric g admits three complex structures I, J , and K, satisfying the quaternionic relation
IJ = K, such that X is the complex manifold (M, I). For each point t in the unit sphere S2 :=
{(a, b, c) : a2 + b2 + c2 = 1}, we get the unit purely imaginary quaternion It := aI + bJ + cK,
which is a complex structure on M . The 2-form ωIt := g(It(•), (•)) is a Kähler form. The origi-
nal class ω is the cohomology class of the 2-form ωI := g(I(•), (•)). The classes of {ωI , ωJ , ωK}
form a basis for the positive-definite three-dimensional subspace W ⊂ H2(X,R) whose com-
plexification is H2,0(X)⊕H0,2(X)⊕ Cω. The latter basis is orthogonal with respect to the
BBF pairing, and the BBF degrees of the three classes are the same. Conversely, a choice of
an orthogonal basis of W with the same orientation consisting of ω and two classes of the
same BBF degree as ω determines complex structures J and K and an action of the unit
purely imaginary quaternions on the tangent bundle of M via parallel complex structures.
The above 2-sphere of complex structures is thus naturally identified with the unit sphere
in W .

The standard complex structure on the unit sphere combines with the above construction
to define a complex structure on S2 ×M , such that the first projection π : S2 ×M → S2 is
holomorphic and the fiber over t is (M, It), giving rise to the twistor family (5.3) (see [HKLR87]).
The base of the twistor family is thus naturally identified with the unit sphere in the positive-
definite three-dimensional subspace W of H2(X,R) via the isomorphism sending a class ω′ in the
unit sphere in W to the unique8 isotropic line in P(WC), which is orthogonal to ω′ and induces
on W the same orientation induced by H2,0(X) in (5.2).

Let Mi be the differential manifold underlying Xi, i = 1, 2. Let g1 be the Ricci-flat her-
mitian metric on M1 associated with the Kähler class ω1 in (5.6) and let g2 be the metric
on M2 associated with the Kähler class ω2 := ψq(ω1). Let Wi be the positive-definite three-
dimensional subspace of H2(Xi,R), whose complexification is H2,0(Xi)⊕H0,2(Xi)⊕ Cwi. We
have the equality W2 = ψq(W1), and ψq maps the unit sphere in W1 to that in W2, as ψq is a
Hodge isometry. Hence, ψ restricts to an isometry from η1(W1) onto η2(W2), which maps the
twistor line Q(X1,η1,ω1) isomorphically onto Q(X2,η2,ω2). Denote by

Q(X1,η1,X2,η2),ω1
⊂ Q(X1,η1,ω1) ×Q(X2,η2,ω2)

the graph of the restriction of ψ. Let πi : Xi → Q(Xi,ηi,ωi) be the twistor family through (Xi, ηi)
associated to ωi, i = 1, 2. The twistor line (5.6) is the lift of Q(X1,η1,X2,η2),ω1

to a curve in M0
ψ

obtained via the extensions of ηi to a trivialization of Rπ2
i,∗Z, i = 1, 2. Choose an orthogonal basis

ofW1, extending ω1 and consisting of classes of the same BBF degree, and let I1, J1, andK1 be the
resulting basis of the purely imaginary quaternions acting via complex structures on the tangent
bundle of M1. Define the complex structures I2, J2, K2 on M2 associated to the orthogonal basis
of W2, which is the image via ψq of the chosen basis of W1. Given a point t in the unit sphere
in Wi denote by Ii,t the corresponding complex structure on Mi such that gi(Ii,t(•), •) is the
Kähler form with class t, i = 1, 2. We get the 2-sphere of complex structures It := (I1,t, I2,ψ(t))
on M1 ×M2 compatible with the Ricci-flat hermitian metric (g1, g2) on M1 ×M2. Then the fiber

8 The intersection of the conic Q in P(WC) of isotropic lines in WC with the line P((ω′)⊥C ∩WC) orthogonal to ω′

consists of two complex conjugate points inducing on W distinct orientations.

1280

https://doi.org/10.1112/S0010437X24007048 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007048


Rational Hodge isometries of hyper-Kähler varieties of K3[n]
type

product

X1 ×Q(X1,η1,X2,η2),ω1
X2 → Q(X1,η1,X2,η2),ω1

of the two twistor families is the twistor family associated to the above sphere of complex
structures on M1 ×M2.

5.4 Diagonal twistor paths
Let

Πi : Mψ →MΛ

be the morphism sending the isomorphism class of (X1, η1, X2, η2) to that of (Xi, ηi). Note that
Πi maps Q̃(X1,η1,X2,η2),ω1

isomorphically onto Q̃(Xi,ηi,ωi), i = 1, 2. Fix a connected component
M0

Λ of MΛ.

Definition 5.6. (1) A twistor path in M0
Λ from a marked pair (X, η) to a marked pair (X ′, η′)

consists of the data of a sequence of marked pairs (Xi, ηi), 0 ≤ i ≤ k + 1, with (X0, η0) = (X, η)
and (Xk+1, ηk+1) = (X ′, η′), together with a twistor line Q̃(Xi,ηi,ωi) through (Xi, ηi) passing
through (Xi+1, ηi+1) as well, for 0 ≤ i ≤ k. The twistor path is said to be generic if Pic(Xi)
is trivial, for 1 ≤ i ≤ k.

(2) A twistor path in M0
ψ from a quadruple (X1, η1, X2, η2) to a quadruple (Y1, e1, Y2, e2)

consists of the data of a sequence (X1,i, η1,i, X2,i, η2,i), 0 ≤ i ≤ k + 1, with (X1,0, η1,0, X2,0, η2,0) =
(X1, η1, X2, η2) and (X1,k+1, η1,k+1, X2,k+1, η2,k+1) = (Y1, e1, Y2, e2), together with a twistor line
Q̃(X1,i,η1,i,X2,i,η2,i),ωi through (X1,i, η1,i, X2,i, η2,i) passing through (X1,i+1, η1,i+1, X2,i+1, η2,i+1) as
well, for 0 ≤ i ≤ k. The twistor path is said to be generic if Pic(X1,i) is trivial, for 1 ≤ i ≤ k.
Lemma 5.7. The morphism Πi : M0

ψ →M0
Λ is surjective, for i = 1, 2.

Proof. Let q := (X1, η1, X2, η2) be a quadruple in M0
ψ and let (Y ′

1 , η
′
1) be a marked pair in M0

Λ.
Choose a generic Kähler class ω1 in KX1 ∩ ψ−1

q (KX2) so that the twistor line Q̃(X1,η1,ω1) is generic
and let (Y1, e1) be a marked pair in Q̃(X1,η1,ω1) with a trivial Pic(Y1). A pair (Y2, e2) in the fiber of
the period map through M0

Λ over ψ(P (Y1, e1)) must be the unique marked pair in this fiber, since
Pic(Y2) is trivial as well. The equalities KYi = C+

Yi
, i = 1, 2, imply that KY1 = (e−1

1 ψe2)(KY2) and
so the quadruple (Y1, e1, Y2, e2) belongs to the diagonal twistor line Q(X1,η1,X2,η2),ω1

and, hence,
to the connected component M0

ψ of Mψ. Furthermore, every twistor path Q(Y1,e1,ω′
1) through

(Y1, e1) lifts to a twistor path Q(Y1,e1,Y2,e2),ω′
1

through (Y1, e1, Y2, e2), by Lemma 5.5. There exists
a generic twistor path from (Y1, e1) to (Y ′

1 , η
′
1), by [Ver96, Theorems 3.2 and 5.2.e]. Repeating

the above argument we get that this twistor path lifts to a twistor path from (Y1, e1, Y2, e2) to
(Y ′

1 , η
′
1, Y

′
2 , η

′
2), for some (Y ′

2 , η
′
2) in M0

Λ, by the genericity assumption. Hence, (Y ′
1 , η

′
1) belongs

to the image of Π1 and Π1 is surjective. The isomorphism Mψ →Mψ−1 sending (X1, η1, X2, η2)
to (X2, η2, X1, η1) interchanges the roles of Π1 and Π2. It follows that Π2 is surjective as well. �
Lemma 5.8. Every two points in M0

ψ are connected by a generic twistor path in M0
ψ.

Proof. Let q := (X1, η1, X2, η2) be a quadruple in M0
ψ, such that Pic(X1) is trivial. Then Pic(X2)

is trivial as well, since ψq : H2(X1,Q)→ H2(X2,Q) is a Hodge isometry. Hence, (Xi, ηi) is the
unique pair in its connected component in MΛ over its period P (Xi, ηi), by Verbitsky’s Torelli
theorem [Huy12, Ver13]. Consequently, q is the unique point in M0

ψ mapping via P ◦Πi to
P (Xi, ηi), for each of i = 1, 2. It follows that every two such quadruples are connected by a
generic twistor path in M0

ψ, by the analogous theorem for marked pairs and the liftability of
such paths to M0

ψ demonstrated in the proof of Lemma 5.7. Now, through each point in M0
ψ

1281

https://doi.org/10.1112/S0010437X24007048 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007048


E. Markman

passes a generic twistor line. Hence, every two points in M0
ψ are connected by a generic twistor

path. �

5.5 Deforming vector bundles along diagonal twistor paths
A universal family f : X →M0

Λ exists, by [Mar21b]. We get the universal families Π∗
i (f) : Π∗

iX →
M0

ψ, i = 1, 2, as well as the universal fiber product

f̃ : Π∗
1X ×M0

ψ
Π∗

2X →M0
ψ. (5.7)

The local system Rf∗Z over M0
Λ is trivial, by [Mar21b, Lemma 2.1]. Hence, so are the local

system Rf̃∗Z and Rf̃∗Q.

Definition 5.9. Let M be a d-dimensional compact Kähler manifold. Set Hev(M,Q) :=
⊕2d
i=0H

2i(M,Q). Given a class γ ∈ Hev(M,Q) denote by γi the graded summand in H2i(M,Q).
We say that γ is a Hodge class, if γi belongs to H i,i(M), for all 0 ≤ i ≤ 2d.

Definition 5.10. Let q := (X1, η1, X2, η2) be a quadruple in M0
ψ and let γ be a Hodge class in

Hev(X1 ×X2,Q). We say that γ remains a Hodge class under every deformation in M0
ψ, if for

every quadruple q′ := (X ′
1, η

′
1, X

′
2, η

′
2) in M0

ψ the parallel transport γ′ ∈ Hev(X ′
1 ×X ′

2,Q) of γ in
the local system Rf̃∗Q along some, hence any, continuous path from q to q′ in M0

ψ is a Hodge
class.

Definition 5.11. An Azumaya OX -algebra of rank r over a complex manifold X is a sheaf
A of locally free coherent OX -modules, with a global section 1A, and an OX -linear associa-
tive multiplication m : A⊗OX A → A with identity 1A, admitting an open covering {Uα} of X
and an isomorphism ηα : A|Uα → End(Fα) of unital associative algebras for some locally free
OUα-module Fα of rank r over each Uα. We will also refer to such A as an Azumaya algebra
over X.

Remark 5.12. The endomorphism sheaf End(F ) of a locally free twisted sheaf F overX is an Azu-
maya algebra over X. Conversely, an Azumaya algebra corresponds to a natural equivalence class
of locally free twisted sheaves over X, modulo tensorization by line bundles [Căl00]. The class
κ(F ) depends only on this equivalence class and so may be regarded as a characteristic
class of the pair (A,m) of the locally free sheaf A underlying the Azumaya algebra over X
and its multiplication m (see [Mar20, § 2.3]).

Definition 5.13. Let M1 and M2 be compact Kähler manifolds. Let Ai be an Azumaya algebra
over Mi. We say that A2 is deformation equivalent to A1, if there exists a proper family π :M→
B of compact Kähler manifolds over a connected analytic base B, points bi ∈ B, isomorphisms
fi : Mi →Mbi with the fiber of π over bi, and an Azumaya algebra A overM, such that f∗i A is
isomorphic to Ai, for i = 1, 2.

Let X be a d-dimensional compact Kähler manifold and let ω be a Kähler class on X. The
ω-slope of a torsion-free coherent sheaf F on X is slopeω(F ) :=

∫
X c1(F )ωd−1/rank(F ).

Definition 5.14 [Mar20, Definition 6.5]. Let E be a torsion free coherent sheaf on X, which
is θ-twisted with respect to a class θ in H2(X,O∗

X). We say that E is ω-slope-stable, if for every
non-zero θ-twisted subsheaf F of E of lower rank we have slopeω(Hom(E,F )) < 0.

Proposition 5.15. Let q := (X1, η1, X2, η2) be a quadruple in M0
ψ and let F be a locally free

sheaf over X1 ×X2 with the following properties.
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(1) The locally free sheaf F is
(
π∗X1

(ω) + π∗X2
(ψq(ω))

)
-slope-stable, for every Kähler class ω in

some non-empty open subcone CF of KX1 ∩ ψ−1
q (KX2).

(2) The class c2(End(F )) remains of Hodge type (2, 2) along every deformation in M0
ψ.

For every point q′ := (X ′
1, η

′
1, X

′
2, η

′
2) in M0

ψ there exists a possibly twisted locally free sheaf F ′

over X ′
1 ×X ′

2, such that the Azumaya algebra End(F ′) is deformation equivalent to End(F ).
Furthermore, F ′ is

(
π∗X′

1
(ω) + π∗X′

2
(ψq′(ω))

)
-slope-stable with respect to some Kähler class ω in

KX′
1
∩ ψ−1

q′ (KX′
2
).

Proof. The slope stability property (1) of F implies that the first Chern class of every direct
summand of End(F ) vanishes, by [Mar20, Lemma 7.2]. Property (2), that c2(End(F )) remains
of Hodge type, implies that the Azumaya algebra End(F ) deforms along the twistor family over
a generic twistor line Q̃(X1,η1,X2,η2),ω1

in M0
ψ associated to a Kähler class ω1 in CF , by [Ver99b,

Theorem 3.19], which is generalized to Azumaya algebras in [Mar20, Corollary 6.12]. Here we use
the fact that the twistor line in M0

ψ is associated to a hyper-Kähler structure, as explained in § 5.3,
as well as the fact that the first Chern class of every direct summand of End(F ) vanishes. Choose
a quadruple q0 := (Y1, e1, Y2, e2) in Q̃(X1,η1,X2,η2),ω1

with a trivial Picard group Pic(Y1) and let
A be the Azumaya algebra over Y1 × Y2 resulting by deforming End(F ) along Q̃(X1,η1,X2,η2),ω1

.
The Azumaya algebra A further deforms along every generic twistor path in M0

ψ from q0 to
any point in M0

ψ, by [Mar20, Proposition 6.17]. The existence of an Azumaya algebra A′ over
X ′

1 ×X ′
2 deformation equivalent to End(F ) follows from that fact that every point q′ in M0

ψ is
connected to the point q0 via a generic twistor path, by Lemma 5.8. The existence of a locally
free sheaf F ′, such that the Azumaya algebras End(F ′) and A′ are isomorphic, follows from the
well-known correspondence between Azumaya algebras and equivalence classes of locally free
twisted sheaves modulo tensorization by line bundles [Căl00]. The existence of the Kähler class
ω in KX′

1
∩ ψ−1

q′ (KX′
2
) for which F ′ is

(
π∗X1

(ω) + π∗X2
(ψq(ω))

)
-slope-stable is automatic, since the

twistor deformation F ′ of the hyperholomorphic sheaf F is slope-stable with respect to any such
Kähler class for ω in the ray given in (5.4) parametrized by the point q′ of the twistor path,
by Verbitsky’s theorem (see [Mar20, Corollary 6.12] for this statement in the case of twisted
sheaves). �

5.6 The rational Hodge isometry of a Fourier–Mukai kernel of non-zero rank
Let X and Y be the IHSMs in Lemma 4.1. Choose markings ηX : H2(X,Z)→ Λ and ηY :
H2(Y,Z)→ Λ such that (X, ηX) and (Y, ηY ) belong to the same connected component M0

Λ

of MΛ.

Convention 5.16. Choose an orientation εΛ of Λ⊗Z Q. Given two pairs (X1, η1) and (X2, η2) in
MΛ, we endow H2(Xi,Q) with the orientation εi, such that ηi is orientation preserving. The
homomorphism

H̃ : HomG(X1, X2)→ Hom(H̃(X1,Q), H̃(X2,Q)),

induced by the functor (1.4), is then always evaluated in terms of the orientations ε1 and ε2. The
resulting homomorphism depends on the markings η1 and η2, but is independent of the choice
of εΛ.

The unit sphere in any positive-definite three-dimensional subspace of H2(X,R) is a defor-
mation retract of the positive cone C′X := {x ∈ H2(X,R) ; (x, x) > 0} (see [Mar11, § 4]). Hence,
the second cohomology of the positive cone is a one-dimensional representation of O(H2(X,Q))
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corresponding to a character ν : O(H2(X,Q))→ μ2 := {±1}. Set

O+(H2(X,Q)) := ker(ν).

The orientation given by the basis (5.2) is independent of the choices of a holomorphic 2-form
and of a Kähler class and determines a positive generator of the cyclic group H2(C′X ,Z).

Definition 5.17. The orientation of the positive cone is the positive generator ofH2(C′X ,Z). An
isometry g : H2(X1,Q)→ H2(X2,Q) is orientation preserving, if g∗ : H2(C′X1

,Z)→ H2(C′X2
,Z)

maps the positive generator to the positive generator.

Set

ν(g) =

{
1 if g is orientation preserving,
−1 if g is orientation reveresing.

Note that if g is a Hodge isometry, which maps some Kähler class to a Kähler class, then
ν(g) = 1, as it maps a basis of the form (5.2) to such a basis. In particular, the isometry
η−1
2 ψη1 : H2(X1,Q)→ H2(X2,Q) associated to a quadruple (X1, η1, X2, η2) in Mψ is orientation

preserving.

Remark 5.18. Keep the notation of Convention 5.16. Let g : H∗(X1,Z)→ H∗(X2,Z) be a
parallel-transport operator and denote by ḡ its restriction to H2(X1,Z). One checks that if ḡ is
orientation preserving in the sense of Convention 5.16, so that det(η2ḡη

−1
1 ) = 1, then H̃(g) maps

α to α, β to β, and restricts to H2(X1,Q) as ḡ, so that H̃0(g) = ḡ (see9 [Mar21a, Remark 5.4]). In
particular, this is the case when (X1, η1) and (X2, η2) belong to the same connected component
of MΛ and ḡ = η−1

2 η1.

Let E be the Fourier–Mukai kernel of non-zero rank of an equivalence ΦE : Db(X)→ Db(Y )
of derived categories of two deformation equivalent IHSMs X and Y . Set φ := [κ(E)

√
tdX×Y ]∗ :

H∗(X,Q)→ H∗(Y,Q) and let H̃(φ)0 be the restriction of H̃(φ) to H2(X,Q). Set

H̃0(φ) := ν(H̃(φ)0)H̃(φ)0. (5.8)

We denote H̃0(φ) also by ψE to emphasize its dependence on E:

ψE := H̃0([κ(E)
√
tdX×Y ]∗).

Let ψ : ΛQ → ΛQ, be the isometry given by

ψ = ηY H̃0(φ)η−1
X . (5.9)

Then ψ belongs to O+(ΛQ), since (X, ηX) and (Y, ηY ) belong to the same connected component
of MΛ and H̃0(φ) is orientation preserving (see [Mar11, § 4]).

Assumption 5.19.

(1) Assume that the Fourier–Mukai kernel E in Lemma 4.1 is represented by a locally free
sheaf, which we also denote by E.

9 The statement is true for any parallel-transport operator, when n := dim(Xi)/2 is odd. When n is even we
explain in [Mar21a, Remark 5.4] Taelman’s sign convention in terms of a functor χ from G to μ2 := {±1}, such

that χ(φ)H̃(φ) is orientation preserving, for every φ ∈ HomG(X1, X2), and χ(g) = 1, for every parallel-transport

operator. Thus, when n is even, the restrictions of H̃(g) to H2(X1,Z) is equal to that of g, if g is orientation
preserving, and is equal to that of −g, if g is orientation reversing.
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(2) Assume that there exist10 proper and smooth families of Kähler manifolds p : X → B and q :
Y → B, over the same simply connected analytic base B, a possibly twisted vector bundle E
over X ×B Y, a point b ∈ B, isomorphisms f : X → Xb and g : Y → Yb, and an isomorphism
of Azumaya algebras End(E) ∼= (f × g)∗End(E), where Xb and Yb are the fibers of X and
Y over b, such that the value of the parallel transport ψE0 of ψE in the local system
(R2p∗Q)∗ ⊗R2q∗Q at some point 0 ∈ B maps some Kähler class ω1 on the fiber X0 of p to
a Kähler class ω2 over the fiber Y0 of q.

(3) We assume that E0 is [π∗X0
(ω) + π∗Y0

(ψE0(ω))]-slope-stable, for classes ω in a non-empty
subcone of the intersection KX0 ∩ ψ−1

E0
(KY0).

Remark 5.20. Note that the class κ(E0)
√
tdX0×Y0 induces the degree-reversing Hodge isometry

(with respect to the Mukai pairings)

φ0 : H∗(X0,Q)→ H∗(Y0,Q), (5.10)

which is the parallel transport of φ in Lemma 4.1, hence a morphism in HomG(X0, Y0). Its image
H̃(φ0) restricts to a Hodge isometry H̃(φ0)0 : H2(X0,Q)→ H2(Y0,Q), which is the parallel
transport of H̃(φ)0 in Lemma 4.1. The parallel transport ψE0 : H2(X0,Q)→ H2(Y0,Q) of ψE in
Assumption 5.19(2) is equal to H̃0(φ0).

Let ηX0 be the marking of X0 resulting in the extension of ηX to a trivialization of R2p∗Z for
the family p : X → B in Assumption 5.19. Define ηY0 similarly. Note that ψ(ηX0(ω1)) = ηY0(ω2)
for some Kähler classes ω1 and ω2, by Assumption 5.19, and so (X0, ηX0 , Y0, ηY0) belongs to Mψ.
Denote by

M0
ψ (5.11)

the connected component of Mψ containing (X0, ηX0 , Y0, ηY0).

5.7 Deforming the Fourier–Mukai kernel
Definition 5.21. A quadruple (X1, η1, X2, η2) in Mψ is said to support a compatible vector
bundle if there exists a (possibly twisted) locally free coherent sheaf F over X1 ×X2 with the
following properties.

(1) The class κ(F )
√
tdX1×X2 induces a morphism

φF : H∗(X1,Q)→ H∗(X2,Q)

in HomGan(X1, X2), where Gan is the groupoid given in (1.2).
(2) The equality ψ = η2H̃0(φF )η−1

1 holds, where H̃0 is given in (5.8).

Proposition 5.22. Every quadruple (X1, η1, X2, η2) in the connected component M0
ψ given in

(5.11) supports a compatible vector bundle.

Proof. Step 1. Let q ∈M0
ψ be the isomorphism class of (X1, η1, X2, η2). Consider the local system

Rf̃∗Q over M0
ψ associated to the universal fiber product (5.7). Let γq ∈ H∗(X1 ×X2,Q) be a

flat deformation of the class

γ := κ(E0)
√
tdX0×Y0

via a path in M0
ψ from (X0, ηX0 , Y0, ηY0) to q. If η̃1 : H∗(X1,Q)→ H∗(X0,Q) denotes the parallel-

transport operator in the local system Π∗
1Rf∗Q and η̃2 : H∗(X2,Q)→ H∗(Y0,Q) denotes the

10 If the isometry ψE , given in (5.8), maps some Kähler class ω1 on X to a Kähler class ω2 on Y , then one can
take the constant families with B a point. This is the case in the K3 surface examples used in [Bus19].
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parallel-transport operator in the local system Π∗
2Rf∗Q, both with respect to the chosen path

(backward), then γ = (η̃1 ⊗ η̃2)(γq). The class γq is independent of the path chosen, since the
local system Rf̃∗Q over M0

Λ is trivial, by [Mar21b, Lemma 2.1]. We prove in this step that γq is
a Hodge class. In particular, c2(End(E0)) remains of Hodge type over X1 ×X2, by the equality
c2(End(E0)) = −2 rank(E0)κ2(E0). Once it is proven that γq is a Hodge class, for all q ∈M0

ψ,
Proposition 5.15 implies the existence of a locally free sheaf F over X1 ×X2 such that End(F )
is deformation equivalent to End(E0).

The isometry11 φ0 : H∗(X0,Q)→ H∗(Y0,Q), induced by γ, is invariant under the action of
GL(H∗(X0,Q)) on Hom(H∗(X0,Q), H∗(Y0,Q)), where an element g ∈ GL(H∗(X0,Q)) acts by
h �→ (φ0gφ

−1
0 )hg−1. The isometry φ0 is related to the class γ := κ(E0)

√
tdX0×Y0 via

φ0 ∈ Hom(H∗(X0), H∗(Y0)) ∼= H∗(X0)∗ ⊗H∗(Y0) ∼= H∗(X0)⊗H∗(Y0) ∼= H∗(X0 × Y0) � γ,
where the middle isomorphism is induced by the Poincaré duality isomorphism PD :
H∗(X0,Q)→ H∗(X0,Q)∗. Assume that g is an isometry with respect to the Poincaré pairing
and so (g−1)∗ = PD ◦ g ◦ PD−1. In this case γ is invariant with respect to the action by
g ⊗ (φ0gφ

−1
0 ). The Lie algebra ḡX0,R acts on H∗(X0,R) by derivations [LL97, Proposition 4.5(ii)],

and so it annihilates the cup product and is thus contained in the Lie algebra of the isom-
etry group with respect to the Poincaré pairing. We get that the class γ is annihilated by
(ξ ⊗ 1) + (1⊗Adφ0(ξ)), for every element ξ ∈ ḡX0 . We conclude that γ is annihilated by the Lie
subalgebra

ḡφ0 := {(ξ ⊗ 1) + (1⊗Adφ0(ξ)) : ξ ∈ ḡX0} ⊂ ḡX0 × gY0 ,

where the inclusion follows from the equality Adφ0(gX0) = gY0 established in [Tae23, Theorem A].
Note that ḡφ0 is, in fact, the subalgebra

ḡψE0
:= {(ξ ⊗ 1) + (1⊗AdψE0

(ξ)) : ξ ∈ ḡX0} ⊂ ḡX0 × ḡY0 ,

by Lemma 4.1(3) and Remark 5.20.
We have the commutative diagram

H2(X0,Q)
η−1
1 ηX0��

η−1
Y0
ψηX0

=ψE0
��

H2(X1,Q)

ψq :=η
−1
2 ψη1

��

H2(Y0,Q)
η−1
2 ηY0

�� H2(X2,Q)

whose horizontal arrows are parallel-transport operators. The Lie algebra gX0 deforms flatly to
gX1 , by the topological nature of both, and so the semi-simple part of its degree-0 summand ḡX0

deforms flatly to ḡX1 . The Lie subalgebra gψE0
deforms flatly to

ḡψq := {(ξ ⊗ 1) + (1⊗Adψq(ξ)) : ξ ∈ ḡX1} ⊂ ḡX1 × ḡX2 ,

by the commutativity of the above diagram. Indeed,

(Adη−1
1 ηX0

⊗Adη−1
2 ηY0

)
(
(ξ ⊗ 1) + (1⊗AdψE0

(ξ))
)

= (Adη−1
1 ηX0

(ξ)⊗ 1) + (1⊗Adη−1
2 ηY0

ψE0
(ξ))

= (ξ′ ⊗ 1) + (1⊗Adψq(ξ′)),
11 The isomorphism φ0 is an isometry with respect to the Mukai pairings. When the odd cohomology of X vanishes
φ0 is also an isometry with respect to the Poincaré pairings, by Corollary 4.2, but we do not assume the vanishing
of the odd cohomology here.
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where ξ′ := Adη−1
1 ηX0

(ξ) ∈ ḡX1 . It follows that γq is annihilated by ḡψq , as we have seen that γ
is annihilated by ḡψE0

.
Let h′Xi be the Hodge operator of Xi, i = 1, 2, given in (3.8). Then h′X2

= Adψq(h
′
X1

), since
ψq is an isomorphism of Hodge structures. Hence, the Hodge operator of X1 ×X2

(h′X1
⊗ 1) + (1⊗ h′X2

) = (h′X1
⊗ 1) + (1⊗Adψq(h′X1

))

belongs to ḡψq and, thus, annihilates γq. We conclude that γq is a Hodge class.

Step 2. Consider first the quadruple q0 := (X0, ηX0 , Y0, ηY0), used in the definition of the con-
nected component M0

ψ in (5.11), and set F := E0. Property (1) in Definition 5.21 follows in this
case from Assumption 5.19 and property (2) follows from the definition of ψ in (5.9).

Let φγq : H∗(X1,Q)→ H∗(X2,Q) be the homomorphism induced by γq. The equality φγq =
η̃−1
2 φ0η̃1 exhibits φγq as a composition of morphisms in the groupoid G, hence in HomG(X1, X2).

Choose a twistor path C in M0
ψ from q0 to q along which the Azumaya algebra End(E0) deforms

via an Azumaya algebra A over the twistor family Π∗
1X ×C Π∗

2X → C. Such a path C exists, by
Assumption 5.19 and Proposition 5.15. There exists a locally free twisted sheaf F over Π∗

1X ×C
Π∗

2X , such that End(F) is isomorphic to A. F restricts to a locally free twisted sheaf F0 over
X0 × Y0 and a locally free sheaf F over X1 ×X2, such that the Azumaya algebras End(F0)
is isomorphic to End(E0) and κ(F ) is a parallel transport of κ(F0) along a (real) path in C.
Hence, γq is equal to κ(F )

√
tdX1×X2 and property (1) in Definition 5.21 follows. Property (2)

in Definition 5.21 is equivalent to the equality ψq = H̃0([κ(F )
√
tdX1×X2 ]∗). The latter equality

follows at q via Remark 5.18 from the fact that it holds for q0. Explicitly,

ψq = (η−1
2 ηY0)ψE0(η

−1
X0
η1) = (η−1

2 ηY0)H̃0([κ(E0)
√
tdX0×Y0 ]∗)(η

−1
X0
η1)

Remark 5.18= H̃0

(
(η̃−1

2 ) ◦ [κ(E0)
√
tdX0×Y0 ]∗ ◦ η̃1

)
= H̃0([κ(F )

√
tdX1×X2 ]∗). �

6. The BKR equivalence

Let S be a projective surface and denote by S[n] the Hilbert scheme of length n subscheme of S.
The symmetric group Sn on n letters acts on the cartesian product Sn permuting the factors. Let
HilbSn(S

n) be the Hilbert scheme of length n! subschemes Z of Sn, which are Sn-invariant, and
such that H0(Z,OZ) is the regular representation of Sn. Then S[n] is isomorphic to the closure
in HilbSn(S

n) of the locus of reduced subschemes which are Sn-orbits of n-tuples consisting of
n distinct points of S, by [Hai01]. The restriction

ΓS ⊂ S[n] × Sn,
to S[n] of the universal subscheme of HilbSn(S

n)× Sn is called12 the isospectral Hilbert scheme.
The projections S[n] q← ΓS

b→ Sn have the following properties. The morphism q is flat and Sn-
invariant of degree n!, by the proof of [Hai01, Proposition 3.7.4]. The morphism b restricts to an
isomorphism over the complement of the union of the diagonals in Sn. The isospectral Hilbert
scheme ΓS is Gorenstein, by [Hai01, Theorem 3.1], and its dualizing sheaf ωΓS is isomorphic to the
line bundle q∗(ωS[n](δ)), by [Hai01, Theorem 3.1, Proposition 3.4.3, comment after Lemma 3.4.2].
Above δ is the divisor class, such that OS[n](−δ) ∼=

(
q∗(OΓS )

)χ, where χ is the sign character of
Sn. Note that 2δ is the class of the effective divisor in S[n] of non-reduced subschemes.

12 The isospectral Hilbert scheme ΓS is defined in [Hai01] as the reduced subscheme associated to the support of
the fiber product of S[n] and Sn over the symmetric product S(n). Haiman proves that ΓS is flat over S[n], and so
it is indeed the universal subscheme.
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Let Db
Sn

(Sn) be the bounded derived category of Sn-equivariant coherent sheaves on Sn and
Db

Sn
(S[n] × Sn) its analogue with respect to the permutation action of Sn on the factor Sn and

the trivial action on the factor S[n]. Let ρ be the natural Sn-linearization of OΓS . The object
(OΓS , ρ) of Db

Sn
(S[n] × Sn) is the Fourier–Mukai kernel of an equivalence of derived categories

BKR : Db
Sn

(Sn)→ Db(S[n]),

given by the composition RqSn∗ Lb∗ of the functors Lb∗ : Db
Sn

(Sn)→ Db
Sn

(ΓS) and RqSn∗ :
Db

Sn
(ΓS)→ Db(S[n]), by [BKR01].

7. A universal bundle over M [n] × S[n] from a universal bundle over M × S

In § 7.1 we recall the construction of a locally free Fourier–Mukai kernel of an equivalence of
the derived categories of the Hilbert schemes S[n] and M [n], where M is a two-dimensional
smooth and projective moduli space of vector bundles on a K3 surface S. In § 7.2 we construct
a functor Θ̃n : G[1] → G[n], which sends a morphism associated to an equivalence Φ of derived
categories of K3 surfaces to a morphism associated to the equivalence of the derived categories
of their Hilbert schemes, which is the BKR conjugate of the cartesian power Φn. In § 7.3 we
normalize Θ̃n to obtain the functor Θn : G[1] → G[n], mentioned in the introduction in (1.8),
which maps G[1]

an to G[n]
an . The functor Θn sends a parallel-transport operator between two K3

surfaces S1 and S2 to the associated parallel-transport operator between their Hilbert schemes
S

[n]
1 and S[n]

2 . If φ ∈ HomG[1]
an

(S1, S2) is induced by the class κ(U)
√
tdS1×S2 of the Fourier–Mukai

kernel U of an equivalence ΦU : Db(S1)→ Db(S2), then Θn(φ) is induced by the analogous class
associated to the BKR conjugate of the nth cartesian power of ΦU . In Corollary 7.4 we show
that H̃(Θn(φ)) : H̃(S[n]

1 ,Q)→ H̃(S[n]
2 ,Q) is the naive extension of H̃(φ) : H̃(S1,Q)→ H̃(S2,Q).

7.1 A universal bundle over M [n] × S[n]

Assume that S is a K3 surface, v = (r, λ, s) ∈ H̃(S,Z) is a primitive and isotropic Mukai vector
of rank r ≥ 2, and H is a v-generic polarization. Then every H-slope-semistable sheaf on S is
H-slope-stable and locally free. Let M be the moduli space of H-slope-stable sheaves on S with
Mukai vector v. Then M is a K3 surface, by [Muk87]. Assume that a universal sheaf U exists
over M × S. Then U is the Fourier–Mukai kernel of an equivalence

ΦU : Db(M)→ Db(S)

(see [Huy06, Proposition 10.25]). We get the equivalence

Φ�n
U : Db

Sn
(Mn)→ Db

Sn
(Sn)

and its conjugate

Φ[n]
U := BKR ◦ Φ�n

U ◦ BKR−1 : Db(M [n])→ Db(S[n]). (7.1)

Let Sn,Δ be the diagonal subgroup of Sn ×Sn. Let U�n := U � · · ·� U be the exterior
tensor power of U over Mn × Sn. Then U�n admits the permutation Sn,Δ-linearization ρ�.
Denote by χ the sign character of Sn,Δ. We get the object (U�n, ρ�⊗ χ) in Db

Sn,Δ
(Mn × Sn).

We use the same notation for the morphisms Mn b← ΓM
q→M [n] from the isospectral Hilbert

scheme of M . We get the product morphisms

Mn × Sn b×b←− ΓM × ΓS
q×q−→M [n] × S[n].
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Lemma 7.1. The equivalence Φ[n]
U has the rank n!rn locally free Fourier–Mukai kernel

E := π∗
M [n](OM [n](δ))⊗ (q × q)Sn,Δ∗ ((b× b)∗(U�n, ρ�⊗ χ)). (7.2)

Proof. The statement is proved in [Mar21a, § 11.1.2, (11.6)] �

7.2 The functor Θ̃n : G[1] → G[n]

In the remainder of § 7 we will keep the assumption that the rank of the object U ∈ Db(S ×M)
is non-zero, but drop the assumption that U is represented by a coherent sheaf. Let G[n] be the
subgroupoid of the groupoid G given in (1.1) whose objects are of K3[n] type. We define next the
functor Θ̃n : G[1] → G[n]. Define Θ̃n(X, ε) = (X [n], ε[n]), where the orientation ε[n] of H2(X [n],Q)
is such that the class δ extends a basis compatible with the orientation ε to one compatible
with ε[n].

(1) The functor Θ̃n maps a parallel-transport operator, associated to two fibers over two
points b0 and b1 in the base of a family X → B of K3 surfaces and a path γ from b0 to b1,
to the parallel-transport operator associated to the same path and the relative Hilbert scheme
X [n] → B. Denote by

θ : H2(S,Z)→ H2(S[n],Z) (7.3)

the composition of the isomorphism H2(S,Z) ∼= H2(S(n),Z) with the pullback H2(S(n),Z)→
H2(S[n],Z) via the Hilbert–Chow morphism.

(2) The functor Θ̃n sends the cup product with exp(λ), λ ∈ H2(X,Q), to the cup product
with exp(θ(λ)).

(3) The functor Θ̃n sends the isometry φP : H∗(X,Q)→ H∗(Y,Q) induced by the corre-
spondence

√
tdX×Y ch(P), where P ∈ Db(X × Y ) is the Fourier–Mukai kernel of an equivalence

ΦP : Db(X)→ Db(Y ), to the isometry induced by the correspondence
√
tdX[n]×Y [n]ch(P [n]),

where P [n] is the Fourier–Mukai kernel in (7.2) of the BKR-conjugate of Φ�n
P as in (7.1).

The image of morphisms under the functor Θ̃n was defined above separately for the three
types of morphisms. Let [OΓS ] be the class ofOΓS , with its natural linearization, in the topological
Sn-equivariant K-ring KSn(S

n × S[n]). We get the correspondence [OΓS ]∗ : KSn(S
n)→ K(S[n])

on the level of topological K-rings. The inverse is induced by a class in KSn(S
n × S[n]) as

well. The value of Θ̃n on a morphism in G[1] of type (3) associated to an equivalence ΦU with
Fourier–Mukai kernel U involves first composing the correspondence [U�n, ρ�]∗ : KSn(M

n)→
KSn(S

n) with [OΓS ]∗ and the inverse of [OΓM ]∗, to obtain the correspondence from K(M [n]) to
K(S[n]), and then using the Chern character isomorphism and its inverse to obtain the cohomo-
logical morphism in HomG[n](M [n], S[n]) (see [BKR01, § 10.1]). The value of Θ̃n on morphisms
of types (1) and (2) may be obtained by first conjugating via the Chern character their carte-
sian powers to lift these morphisms to correspondences from KSn(M

n) to KSn(S
n). The check

that Θ̃n maps compositions of morphisms to compositions reduces to showing that its value on
(1) morphisms that are parallel-transport operators or (2) morphisms that are multiplication by
exp(λ), λ ∈ H2(X,Q), is induced by composing the correspondences from KSn(M

n) to KSn(S
n)

with the same correspondences, [OΓS ]∗ and the inverse of [OΓM ]∗, used for morphisms of type (3).
For parallel-transport operators this is the case, since the class [OΓS ] inKSn(S

n × S[n]) is a global
class in the corresponding local system of K-rings over the base of every family of K3 surfaces,
hence the correspondences [OΓS ] and [OΓM ] intertwine parallel-transport operators associated
to paths in the base of such families. The check for multiplication by exp(λ), λ ∈ H2(X,Q),
reduces to checking for integral classes, as the correspondences are all linear. In this case the
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action corresponds to tensorization by topological line bundles on the level of K-rings. The cor-
respondence [OΓS ]∗ intertwines tensorization in KSn(S

n) by the cartesian power L�n of a line
bundle on S and by the line bundle L̃ on S[n] with c1(L̃) = θ(c1(L)), since θ(c1(L)) is defined as
the pullback of the class associated to c1(L) in the symmetric product S(n), and the isospectral
Hilbert scheme is a reduced fiber product of Sn and S[n] over S(n). Hence, the projection formula
yields that [OΓS ]∗ indeed intertwines the two tensorizations.

7.3 The functor Θn : G[1] → G[n]

Let φ : H̃(M,Z)→ H̃(S,Z) be the isometry induced by the correspondence ch(U)
√
tdM×S . The

morphism Θ̃n(φ) : H∗(M [n],Q)→ H∗(S[n],Q) is induced by the correspondence

ch(E)
√
tdM [n]×S[n] ,

where E is given in terms of U in (7.2). We recall next the relationship between φ and H̃(Θ̃n(φ)) :
H̃(M [n],Q)→ H̃(S[n],Q). Let

θ̃ : H̃(S,Q)→ H̃(S[n],Q) (7.4)

be the extension of θ : H2(S,Z)→ H2(S[n],Z), given in (7.3), mapping α to α and β to β. Let

ι̃ : O(H̃(S,Q))→ O(H̃(S[n],Q)) (7.5)

be the embedding given by ι̃g(θ̃(x)) = θ̃(g(x)) and ι̃g acts as the identity on the one-dimensional
subspace orthogonal to the image of θ̃. Given an isometry g : H̃(M,Q)→ H̃(S,Q) we denote
by ι̃g : H̃(M [n],Q)→ H̃(S[n],Q) the isometry satisfying ι̃g(θ̃(x)) = θ̃(g(x)) and mapping δ ∈
H2(M [n],Q) to δ ∈ H2(S[n],Q).

Choose markings ηS : H2(S,Z)→ ΛK3 and ηM : H2(M,Z)→ ΛK3, where ΛK3 is the K3
lattice, and let Λ be the orthogonal direct sum

ΛK3 ⊕ Zδ0, (7.6)

where (δ0, δ0) = 2− 2n, n ≥ 2. Let

ι : O(ΛK3)→ O(Λ) (7.7)

be the embedding, where ιg is the extension of g satisfying ιg(δ0) = δ0. Choose an orientation
of ΛK3 and an orientation of Λ, so that δ0 extends a basis compatible with the orientation of
the former to one compatible with that of the latter. Set det(φ) := det(ηS ◦ φ ◦ η−1

M ). Extend the
marking ηS to a marking

ηS[n] : H2(S[n],Z)→ Λ (7.8)

sending δ to δ0, where δ is half the class of the divisor of non-reduced subschemes. Define ηM [n]

similarly. Define H̃(Θ̃n(φ)) using Convention 5.16.

Lemma 7.2. We have H̃(Θ̃n(φ)) = det(φ)n+1(B−δ/2 ◦ ι̃φ ◦Bδ/2).
Proof. Let ζ : H∗(M,Q)→ H∗(S,Q) be a parallel-transport operator such that det(ηS ◦ ζ̄ ◦
η−1
M ) = 1, where ζ̄ is the restriction of ζ to H2(M,Q). Then ζ lifts to a parallel-transport

operator ζ [n] : H∗(M [n],Q)→ H∗(S[n],Q), since associated to a family of K3 surfaces is a canon-
ical family of relative Douady spaces. Let ζ̄ [n] be the restriction of ζ [n] to H2(M [n],Q). Then
det(ηS[n] ◦ ζ̄ [n] ◦ η−1

M [n]) = 1. We get H̃(ζ [n]) = ι̃ζ = B−δ/2 ◦ ι̃ζ ◦Bδ/2, where the first equality is
by Remark 5.18. The composition φ1 := ζ ◦ φ is an element of AutG[1](S). We conclude that the
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equality in the statement of the lemma is equivalent to the equality

H̃(Θ̃n(φ1)) = det(φ1)n+1(B−δ/2 ◦ ι̃φ1 ◦Bδ/2).
The latter equality holds for all elements in AutG[1](S) by [Mar21a, Theorem 12.2] (see also
[Bec23, Theorem 7.4] and in case n = 2 Taelman’s earlier result [Tae23, Theorem 9.4]). �

Let ϕ : H̃(M,Q)→ H̃(S,Q) be the isometry induced by κ(U)
√
tdM×S . Let

ϕ[n] : H∗(M [n],Q)→ H∗(S[n],Q)

be the isometry induced by the correspondence κ(E)
√
tdM [n]×S[n] . Again, ϕ[n] is a morphism in

HomG[n](M [n], S[n]). As previously, we denote by H̃(ϕ)0 the restriction of ϕ to H2(M,Q) and set
ψU := H̃0(ϕ), where H̃0(ϕ) := ν(H̃(ϕ)0)H̃(ϕ)0 as in (5.8). We define H̃(ϕ[n])0 as the restriction
of H̃(ϕ[n]) to H2(M [n],Q) and set ψE := H̃0(ϕ[n]), where H̃0(ϕ[n]) := ν(H̃(ϕ[n])0)H̃(ϕ[n])0.

Corollary 7.3. We have

H̃(ϕ[n]) = det(ϕ)n+1ι̃ϕ. (7.9)

Consequently, ψE ◦ θ = θ ◦ ψU and ψE(δ) = δ.

Proof. Let a1 ∈ H2(M,Z) and a2 ∈ H2(S,Z) be the classes satisfying c1(U) = π∗M (a1) + π∗S(a2).
Let e1 ∈ H2(M [n],Z) and e2 ∈ H2(S[n],Z) be the classes satisfying c1(E) = π∗

M [n](e1) + π∗
S[n](e2).

Set R := n!rn. We have

H̃(ϕ[n]) = B−e2/R ◦ H̃(Θ̃n(φ)) ◦B−e1/R

= det(φ)n+1B−(δ/2+e2/R) ◦ ι̃φ ◦Bδ/2−e1/R
= det(φ)n+1B(θ(a2)/r−δ/2−e2/R) ◦ ιϕ ◦B(θ(a1)/r+δ/2−e1/R)

= det(φ)n+1Bλ2 ◦ ιϕ ◦Bλ1 ,

where λ1 = θ(a1)/r + δ/2− e1/R and λ2 = θ(a2)/r − δ/2− e2/R. The first equality follows from
the definition of κ(E), the second from Lemma 7.2, the third from the definition of κ(U), and
the fourth is obvious. Note that det(φ) = det(ϕ). In order to establish (7.9) it remains to prove
that λi = 0, i = 1, 2, or, equivalently,

e1 = n!rn
(
θ(a1)
r

+
δ

2

)
, (7.10)

e2 = n!rn
(
θ(a2)
r
− δ

2

)
. (7.11)

Both ϕ and ϕ[n] are degree reversing, by Lemma 4.1. Hence, both H̃(ϕ[n]) and ιϕ are degree
reversing, the first by Lemma 3.4. If λ1 
= 0, then (λ1, λ

′
1) 
= 0, for some λ′1 ∈ H2(M [n],Z) and

the coefficient of β in Bλ1(λ
′
1) is non-zero, which implies that the coefficient of α in ιϕ(Bλ1(λ

′
1))

is non-zero, and hence so is the coefficient of α in H̃(ϕ[n])(λ′1). This contradicts the fact that
H̃(ϕ[n]) maps H2(M [n],Q) to H2(S[n],Q). Hence, λ1 = 0.

If λ2 
= 0, then (λ2, λ
′
2) 
= 0, for some λ′2 ∈ H2(S[n],Z) and the coefficient of β in Bλ2(λ

′
2)

is non-zero. There exists a class λ′1 ∈ H2(M [n],Q), such that ιϕ(λ′1) = λ′2, as ιϕ is an isometry.
Hence, the coefficient of β in H̃(ϕ[n])(λ′1) does not vanish. A contradiction. We conclude that
λ2 = 0.

Equality (7.9) implies that ν(H̃(ϕ[n])0) = det(ϕ)n+1ν(H̃(ϕ)0). Hence, ψE is the extension of
ψU mapping δ ∈ H2(M [n],Q) to δ ∈ H2(S[n],Q). �

1291

https://doi.org/10.1112/S0010437X24007048 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007048


E. Markman

Let G[n] be the subgroupoid of the groupoid G given in (1.1) whose objects are of K3[n] type.
Let

Θn : G[1] → G[n] (7.12)
be the following normalization of the functor Θ̃n defined in § 7.2. The functor Θn sends an object
of G[1] to the same object that Θ̃n does. Given a morphism φ ∈ HomG[1]((X, ε), (Y, ε′)), we define

Θn(φ) = Bδ/2 ◦ Θ̃n(φ) ◦B−δ/2,

where we denote by δ half the class of the divisor of non-reduced subschemes in both X [n] and
Y [n] and Bλ is the cup product with exp(λ). Note that if φ is Bλ ∈ Aut(X, ε), λ ∈ H2(X,Q), or
if φ is a parallel-transport operator, then Θn(φ) = Θ̃n(φ).

Corollary 7.4. The functor Θn maps G[1]
an to G[n]

an . Furthermore, Θn(ϕ) = ϕ[n], where ϕ and
ϕ[n] are the morphisms in Corollary 7.3.

Proof. The statement is clear for parallel-transport operators. Hence, it suffices to prove the
equality Θn(ϕ) = ϕ[n]. Keep the notation of the proof of Corollary 7.3. The second equality
below follows from (7.10) and (7.11):

ϕ[n] = B−(e2/R) ◦ Θ̃n(φ) ◦B−(e1/R) = B−(θ(a2/r)) ◦Bδ/2 ◦ Θ̃n(φ) ◦B−δ/2 ◦B−(θ(a1)/r)

= Θn(B−a2/r) ◦Θn(φ) ◦Θn(B−a1/r) = Θn(B−a2/r ◦ φ ◦B−a1/r) = Θn(ϕ).

The equality Θn(ϕ) = ϕ[n] follows. �

8. Deforming the universal vector bundle over M [n] × S[n]

We consider in this section a sequence of examples of two-dimensional moduli spaces M of
stable vector bundles over a K3 surface S, such that the vector bundle E over M [n] × S[n], given
in (7.2) as the Fourier–Mukai kernel of an equivalence of derived categories, can be deformed
with M [n] × S[n] over the whole connected component M0

ψ of a moduli space of rational Hodge
isometries introduced in § 5.2.

Keep the notation of § 7. Assume that Pic(S) is cyclic, generated by the class h := c1(H) of
an ample line bundle H with (h, h) = 2rs, where r and s are positive integers and gcd(r, s) = 1.
The Mukai vector v := (r, h, s) is then isotropic. The following properties of the moduli space
M of H-stable sheaves with Mukai vector v are proved in [Muk99]. Here M is a K3 surface
with a cyclic Picard group generated by an ample line bundle Ĥ with class ĥ := c1(Ĥ) satisfying
(ĥ, ĥ) = (h, h); M parametrizes locally free H-slope-stable sheaves. For each integer k, such that
ks ≡ 1 (mod r) there exists over M × S a universal vector bundle U with c1(U) = π∗M (kĥ) +
π∗S(h). The universal vector bundle U restricts to an Ĥ-slope-stable vector bundle on M × {x}
of Mukai vector v̂ := (r, kĥ, k2s), for each point x ∈ S, and the classification morphism induces
an isomorphism between S and the moduli space MĤ(v̂) of Ĥ-stable sheaves on M , by [Muk99,
Theorem 1.2].

Proposition 8.1 [Bus19, Proposition 4.19]13. The class −κ(U)
√
tdM×S induces a degree-

reversing rational Hodge isometry φU : H̃(M,Q)→ H̃(S,Q), which restricts to a rational Hodge
isometry ψU : H2(M,Q)→ H2(S,Q) satisfying ψU (ĥ) = h, such that ηS ◦ ψU ◦ η−1

M belongs to
the double orbit O(ΛK3)ρuO(ΛK3) of a reflection ρu in the co-rank-1 lattice u⊥ ⊂ ΛK3 of a
primitive class u with (u, u) = 2r.

13 Buskin states it for κ(U∗), but the latter is equal to κ(U), by Corollary 4.2.
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We claim that U is slope-stable with respect to every Kähler class on M × S. It suffices to
show it for every ample class, i.e. for ω := aπ∗S(h) + bπ∗M (ĥ), for all a > 0 and b > 0. Let W be
a saturated non-zero proper subsheaf of U . Then W is reflexive, hence it is locally free away
from a closed subvariety of dimension at most 1. It follows that the restriction of W to the
generic fiber of πS and of πM is locally free. Let Wx (respectively, Wm) be such a restriction
to the fiber over x ∈ S (respectively, m ∈M). Define Ux and Um similarly in terms of U . Then
c1(W) = π∗Mc1(Wx) + π∗Sc1(Wm) and ω3 = a2bh2ĥ+ ab2hĥ2. Set ρ := rank(W). We have

μω(W) =
1
ρ
c1(W)ω3 = a2b(h, h)μĥ(Wm) + ab2(ĥ, ĥ)μh(Wx)

< a2b(h, h)μĥ(Um) + ab2(ĥ, ĥ)μh(Ux) = μω(U).

Hence, U is slope-stable with respect to every Kähler class onM × S. The universal vector bundle
U thus satisfies the assumptions of Proposition 5.22 (namely Assumption 5.19 stated for E). Set
ψ := ηS ◦ ψU ◦ η−1

M . Let M0
ψ be the connected component of Mψ through q0 := (M,ηM , S, ηS).

Choose a generic twistor line Q in M0
ψ through q0 and let (S′, ηS′ ,M ′, ηM ′) be a quadruple

in this line with Pic(S′) = 0. There exists classes ζS′ ∈ H2(S′,O∗
S′) and ζM ′ ∈ H2(M ′,O∗

M ′) and
a ζ-twisted locally free sheaf U ′ over M ′ × S′, with ζ := π∗S′(ζS′)π∗M ′(ζM ′), such that (M ′ ×
S′, End(U ′)) is deformation equivalent to (M × S, End(U)), by Proposition 5.22. Moreover, U ′ is
ω-slope-stable with respect to some Kähler class on S′ ×M ′, by Proposition 5.15. We note that
the existence of such U ′ follows already from [Bus19, Theorem 5.1] in this case where n = 1.
It follows that U ′ does not have any non-zero proper saturated subsheaf, since Pic(M ′ × S′) is
trivial. Indeed, for every proper non-zero saturated ζ-twisted subsheaf F of U ′ the untwisted sheaf
Hom(U ′, F ) would have slope zero, since Pic(M ′ × S′) is trivial, and so F would slope-destabilize
U ′ (Definition 5.14).

The construction of the sheaf E over M [n] × S[n], given in (7.2), has a natural relative exten-
sion over the chosen twistor line Q in M0

ψ through q0 resulting in the twisted sheaf E′ over
M ′[n] × S′[n] given by substituting U ′ for U in (7.2). The check that (7.2) is still meaningful in
the twisted setting reduces to checking that (q × q)Sn,Δ∗ is well defined. This is the case, since
U ′�n is ζ�n-twisted, and (b× b)∗(ζ�n) is the pullback via q × q of a Brauer class on M ′[n] × S′[n]

(which is itself the pullback of a Brauer class on M ′(n) × S′(n)), as explained in [Mar21a, § 10,
Proof of Theorem 1.4].

Let ψU ′ : H2(M ′,Q)→ H2(S′,Q) and ψE′ : H2(M ′[n],Q)→ H2(S′[n],Q) be the parallel
transports of ψU and ψE in the relevant local systems over the chosen twistor line Q.

Lemma 8.2. The isometry ψE′ maps some Kähler class ω1 on M ′[n] to a Kähler class on S′[n].

Proof. The isometry ψU ′ maps some Kähler class ωM ′ to a Kähler class ωS′ , as (S′, ηS′ ,M ′, ηM ′)
is a point of Mψ. The equalities ψE′ ◦ θ = θ ◦ ψU ′ and ψE′(δ) = δ follow from Corollary 7.3.
The Picard groups of both Douady spaces M ′[n] and S′[n] are cyclic generated by the classes
δ and their cones of effective curves are thus rays spanned by the class δ∨ := 2(δ, •)/(n− 1) in
H2(M ′[n],Q)∗ (were we identify H2(M ′[n],Q) with H2(M ′[n],Q)∗), by [Mar13, Corollary 3.6].
Choose a sufficiently large real number t, such that (tθ(ωM ′)− δ, tθ(ωM ′)− δ) > 0. Then ω1 :=
tθ(ωM ′)− δ is a class in the connected component of the positive cone in H1,1(M ′[n],R), which
contains the Kähler cone, as it pairs positively with θ(ωM ′), and ω1 pairs positively with the
class of every effective curve. Hence, ω1 is a Kähler class, by [Huy03b, Corollary 3.4]. Now,
ψE′(ω1) = tθ(ωS′)− δ is a Kähler class, by the same reason. �
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Let ηS′[n] be the marking of S′[n] induced by extending the marking ηS[n] given in (7.8) to a
trivialization of the local system over the chosen twistor path Q. Define ηM ′[n] similarly in terms
of ηM [n] . Set ψ[n] := η−1

S′[n]ψE′ηM ′[n] . Let

M0
ψ[n] (8.1)

be the connected component of Mψ[n] containing the quadruple (M ′[n], ηM ′[n] , S′[n], ηS′[n]).

Lemma 8.3. The twisted vector bundle E′ is slope-stable with respect to every Kähler class on
M ′[n] × S′[n].

Proof. We have already noted that U ′ does not have any non-zero proper saturated subsheaf. Here
and in the following, by a subsheaf of a twisted sheaf we mean a twisted subsheaf with respect to
the same co-cycle representing the Brauer class. Hence, U ′�n does not have any non-zero proper
saturated subsheaves, by [Mar21a, Proposition 10.1]. Given σ ∈ Sn, let (1× σ) : Mn × Sn →
Mn × Sn act as the identity on Mn and via σ on Sn. The vector bundles U�n and (1× σ)∗U�n

are non-isomorphic, for every σ ∈ Sn, σ 
= 1. Furthermore, Hom(U�n, (1× σ)∗U�n) = 0, for such
σ. Now the dimensions of Hom(U�n, (1× σ)∗U�n) and Hom(U ′�n, (1× σ)∗U ′�n) are equal, by
the invariance of the dimension of sheaf cohomologies of hyperholomorphic sheaves under twistor
deformations [Ver99b, § 3.5]. Hence,

⊕τ∈Sn(1× τ)∗(U ′�n)

does not have any non-zero proper saturated Sn-invariant subsheaf, by [Mar21a, Lemma 11.5].
The same is true for (b× b)∗U ′�n, as b× b is a birational morphism.

Consider the following commutative diagram.

(q × q)∗(q × q)Sn,Δ∗ (b× b)∗U ′�n
p◦ev◦e

��

e

��

⊕τ∈Sn(1× τ)∗(b× b)∗U ′�n

(q × q)∗(q × q)∗(b× b)∗U ′�n
ev

�� ⊕(σ,τ)∈Sn×Sn
(σ × τ)∗(b× b)∗U ′�n

p

��

Here e is the natural injective homomorphism from the Sn,Δ-invariant subsheaf with respect
to the linearization χ⊗ ρ� of U ′�n. The right arrow p is the projection on the subset of direct
summands. For each (σ, τ) ∈ Sn ×Sn we have the evaluation homomorphism from the bot-
tom left vector bundle to the corresponding direct summand of the bottom right vector bundle
due to the equality (q × q) ◦ (σ × τ) = (q × q). The homomorphism ev is the resulting diagonal
homomorphism. The homomorphism ev restricts to an isomorphism over the complement of the
ramification divisor of q × q.

The homomorphism e is Sn,Δ-equivariant. The homomorphism ev is Sn ×Sn-equivariant.
The homomorphism p is Sn ×Sn-equivariant, where the latter group acts on the top right
vector bundle via the projection Sn ×Sn → Sn onto the second factor. It follows that the
homomorphism p ◦ ev ◦ e is Sn,Δ-equivariant, where the latter group acts via the isomorphism
Sn,Δ → Sn, given by (σ, σ) �→ σ on the top right vector bundle.

The homomorphism p ◦ ev ◦ e restricts to an isomorphism over the complement of the ramifi-
cation divisor of q × q. Hence, the pullback via q × q of any saturated non-zero proper subsheaf of
(q × q)Sn,Δ∗ (b× b)∗U ′�n maps via p ◦ ev ◦ e to an Sn-invariant non-zero subsheaf of the top right
vector bundle, whose saturation is a proper subsheaf. We have seen that such a subsheaf does
not exist. It follows that (q × q)Sn,Δ∗ (b× b)∗U ′�n does not have any saturated non-zero proper
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subsheaf. Hence, neither does E′, as the latter is the tensor product of the former with a line
bundle. �
Theorem 8.4. Every quadruple (X1, η1, X2, η2) in the component M0

ψ[n] , given in (8.1), supports

a compatible vector bundle (Definition 5.21).

Proof. Lemma 8.2 verifies Assumption 5.19(2) for the locally free sheaf E′ supported by the
quadruple (M ′[n], ηM ′[n] , S′[n], ηS′[n]) in the component M0

ψ[n] . Lemma 8.3 verifies the stability
condition in Assumption 5.19(3) for E′. The statement thus follows from Proposition 5.22. �

Let ΛK3 be the K3 lattice, Λ the lattice given in (7.6), and ι : O(ΛK3)→ O(Λ) the inclusion
(7.7). Let u ∈ ΛK3 be a primitive element with (u, u) > 0. Let ρu be the reflection in the co-rank-
1 sublattice u⊥ ⊂ ΛK3. Let Mon(Λ) ⊂ O+(Λ) be the subgroup which acts on the discriminant
group Λ∗/Λ via ±1.

Let M0
Λ be the connected component of the moduli space MΛ of marked pairs (X, η), with

X of K3[n] type, containing the marked pair (S[n], ηS[n]), given in (7.8).

Corollary 8.5. Let ψ̃ ∈ O+(ΛQ) be an isometry in the double orbit Mon(Λ)(−ι(ρu))Mon(Λ).
There exists a non-empty connected component M0

ψ̃
of Mψ̃ parametrizing quadruples

(X1, η1, X2, η2), with (X1, η1) and (X2, η2) in M0
Λ, such that each quadruple in M0

ψ̃
supports

a compatible vector bundle (Definition 5.21).

Proof. The double orbit O+(ΛK3)(−ρu)O+(ΛK3) depends only on (u, u), by [Bus19,
Proposition 3.3]. Hence, the double orbit Mon(Λ)(−ι(ρu))Mon(Λ) depends only on (u, u), and so
we may assume that ψ̃ = γ1ι(ηSψUη−1

M )γ0, for some γ1, γ2 ∈ Mon(Λ), where ψU is the isometry
in Proposition 8.1. Set ψ := ηSψUη−1

M . The isometry ψ[n], given in (8.1), is equal to ι(ψ), by
Corollary 7.3, and so ψ̃ = γ2ψ

[n]γ1. We get the isomorphism f : Mψ[n] →Mψ̃ given by

f(X1, η1, X2, η2) = (X1, γ
−1
1 η1, X2, γ2η2),

which maps connected components to connected components, since η−1
i Mon(Λ)ηi is the mon-

odromy group Mon2(Xi) of Xi, i = 1, 2, by [Mar08, Theorem 1.6 and Lemma 4.10]. Furthermore,
the marked pair (X1, γ

−1
1 η1) belongs to the connected component M0

Λ of (X1, η1), since γ−1
1

belongs to Mon(Λ) and Mon(Λ) = η1Mon2(X1)η−1
1 . Similarly, (X2, γ2η2) belongs to the same

connected component M0
Λ of (X2, η2). Clearly, if q ∈Mψ[n] supports a compatible vector bun-

dle, then f(q) supports (the same) compatible vector bundle. The statement now follows from
Theorem 8.4. �

9. Algebraicity of a rational Hodge isometry

We prove Theorems 1.1 and 1.4 in this section. Let Gan be the subgroupoid of G given in (1.2).
Note that morphisms in HomGan((X, ε), (Y, ε′)) are induced by analytic correspondences inX × Y
and are degree preserving up to sign.

Theorem 9.1. Let X and Y be IHSMs of K3[n] type and let f : H2(X,Q)→ H2(Y,Q) be a
rational Hodge isometry. For every pair of orientations ε and ε′ there exists a morphism φ in
HomGan((X, ε), (Y, ε′)), such that H̃0(φ) is equal to f or −f .

Proof. The set HomGan((X, ε), (Y, ε′)) is independent of the orientations as is the functor H̃0, so
the existence of φ is independent of the orientations. We may assume that ν(f) = 1, possibly
after replacing f by −f . Choose markings ηX and ηY , such that (X, ηX) and (Y, ηY ) belong to
the same connected component M0

Λ of MΛ. Choose an orientation of Λ and endow H2(X,Z) and
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H2(Y,Z) with the orientations ε and ε′, so that ηX and ηY are orientation preserving. We write
HomGan(X,Y ) instead of HomGan((X, ε), (Y, ε′)), as in Convention 5.16, and we will continue to
use the convention in the following argument. Set ψ := ηY ◦ f ◦ η−1

X . Then ψ belongs to O+(ΛQ)
and so it decomposes as

ψ = ψk ◦ ψk−1 ◦ · · · ◦ ψ1,

where each ψi belongs to the double orbit Mon(Λ)ι(−ρu)Mon(Λ), for some element u ∈ ΛK3

with (u, u) > 0, by Corollary 2.5. The proof proceeds by induction on k.
Case k = 0. In this case ψ = id and f = η−1

Y ηX is a Hodge isometry. There exists a parallel-
transport operator φ : H∗(X,Q)→ H∗(Y,Q), which is a morphism in HomGan(X,Y ), and such
that φ restricts to H2(X,Q) as f , by Theorem 5.2. In this case H̃0(φ) is also equal to the
restriction of φ to H2(X,Q), by Remark 5.18.

Assume that k ≥ 1 and that the statement holds for k − 1. Set ψ′ = ψk−1 ◦ · · · ◦ ψ1, so
that ψ = ψkψ

′. Set �0 := P (X, ηX), �k−1 := ψ′(�0), and �k = ψ(�0). Note that �k = P (Y, ηY ).
Let (Xk−1, ηk−1) be a marked pair in M0

Λ, such that P (Xk−1, ηk−1) = �k−1. Such a marked
pair exists, by the surjectivity of the period map [Huy99]. Set f ′ := η−1

k−1 ◦ ψ′ ◦ ηX . There exists
a morphism φ′ ∈ HomGan(X,Xk−1), such that H̃0(φ′) = f ′, by the induction hypothesis. The
quadruple (Xk−1, ηk−1, Y, ηY ) satisfies the condition that η−1

Y ψkηk−1 is a Hodge isometry, since

η−1
Y ψkηk−1(H2,0(Xk−1)) = η−1

Y (ψk(�k−1)) = η−1
Y (ψ(�0)) = η−1

Y (P (Y, ηY )) = H2,0(Y ),

but it may not belong to Mψk , since η−1
Y ψkηk−1 need not map a Kähler class to a Kähler class.

There exists a connected component M0
ψk

of Mψk in which every quadruple supports a
compatible vector bundle, and such that Πi : M0

ψk
→MΛ has image in the connected com-

ponent M0
Λ, for i = 1, 2, by Corollary 8.5. Extend the pair (Xk−1, ηk−1) to a quadruple q :=

(Xk−1, ηk−1, Y
′, ηY ′) in M0

ψk
. Such a point q exists, by the surjectivity lemma (Lemma 5.7).

Let Fq be the compatible vector bundle supported by q. Set φ′k :=
[
κ(Fq)

√
tdXk−1×Y ′

]
∗ :

H∗(Xk−1,Q)→ H∗(Y ′,Q). Then H̃0

(
φ′k

)
= η−1

Y ′ ◦ ψk ◦ ηk−1, by Definition 5.21 of the compati-
bility of Fq. We have P (Y ′, ηY ′) = ψk(P (Xk−1, ηk−1)) = P (Y, ηY ), where the first equality is by
Lemma 5.4. Hence, there exists a morphism φk ∈ HomGan(Y ′, Y ), such that H̃0(φk) = η−1

Y ηY ′ ,
by the case k = 0 of the statement. We conclude that φ := φk ◦ φ′k ◦ φ′ is a morphism in
HomGan(X,Y ), and H̃0(φ) = f . �
Proof of Theorem 1.4. The theorem is a rephrasing of Theorem 9.1. �
Proof of Theorem 1.1. Let f : H2(X,Q)→ H2(Y,Q) be a Hodge isometry. We may assume that
ν(f) = 1, possibly after replacing f by −f (and f̃ by −f̃ in the statement of the theorem). There
exist orientations ε and ε′ and a morphism φ ∈ HomGan((X, ε), (Y, ε′)), such that H̃0(φ) = f , by
Theorem 9.1. Morphisms of Gan are induced by analytic correspondences, as already noted in
the paragraph following (1.2) defining this groupoid. If φ is degree preserving, then H̃0(φ) is a
rational scalar multiple of the restriction of φ to H2(X,Q), by Lemma 3.6, and so we choose f̃
to be the appropriate scalar multiple of φ. If φ is degree reversing, then setting f̃ = φ we get an
analytic correspondence with the desired properties, by Lemma 3.7. �

10. The Pontryagin product on the cohomology of IHSMs of K3[n] type

In § 10.1 we introduce the Pontryagin product on the cohomology of an IHSM with vanishing
odd cohomology. The results still apply to the even cohomology if the odd cohomology does
not vanish. In § 10.2 we prove Conjecture 1.8 for morphisms in the image of the functor Θn :
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G[1]
an → G[n]

an , given in (7.12). In particular, morphisms in the image of Θn, once normalized as
in Conjecture 1.8, conjugate the cup product to itself, if they are degree preserving, and to the
Pontryagin product if they are degree reversing.

10.1 The Pontryagin product for an IHSM with vanishing odd cohomology
Let X be an IHSM, let g ⊂ sl(H∗(X,Q)) be its LLV algebra, and let h ∈ g be the grading
operator given in (3.1). The commutator of h in g is ḡ⊕Q · h and composing the isomorphism
ρ̇−1 : g ∼= so(H̃(X,Q)), given in (3.2), with restriction to H2(X,Q) yields an isomorphism ḡ ∼=
so(H2(X,Q)), by Lemma 3.5. Assume that the odd cohomology ofX vanishes. If the second Betti
number b2(X) of X is even, assume that the monodromy group of X contains reflections and
dim(X) = 2n for odd n. The latter assumption holds true for all currently known examples
of IHSMs with even b2(X) (K3 surfaces and IHSMs of O’Grady 6 deformation type). The
g action on H∗(X,C) integrates to an action of SO(H̃(X,C)) and the commutator of h is
C× × SO(H2(X,C)), where an element t of the first factor C× maps α to tα and β to (1/t)β.
The image of the second factor SO(H2(X,C)) in GL(H∗(X,C)) acts on H∗(X,C) via ring
automorphisms, by [LL97, Proposition 4.5(ii)]. The coset {g ∈ SO(H̃(X,C)) : ghg−1 = −h} of
the commutator is the product of the component of O(Cα⊕ Cβ) with determinant −1 with the
component of O(H2(X,C)) with determinant −1. If the monodromy group contains an element
R of order 2 acting as a reflection on H2(X,C), then the factor O(H2(X,C)) acts on H∗(X,C)
via ring automorphisms. Such a monodromy operator R acts on H̃(X,Q) via the operator H̃(R)
stabilizing both α and β and restricting to H2(X,Q) as the monodromy reflection. A choice of
such an element R ∈ Mon(X) yields an action of O(H̃(X,C)) on H∗(X,C)

ρ : O(H̃(X,C))→ GL(H∗(X,C)) (10.1)

extending the above homomorphism ρ : SO(H̃(X,C))→ GL(H∗(X,C)) and satisfying
ρ(H̃(R)) = R.

Let τ be the element of O(H̃(X,Q)) interchanging α and β and acting on H2(X,C) via
multiplication by −1. If b2(X) is odd, then τ belongs to SO(H̃(X,Q)) and ρτ is well defined,
and if b2(X) is even we define ρτ via (10.1). Define the Pontryagin product � on H∗(X,Q) by

γ � δ := ρτ (ρτ (γ) ∪ ρτ (δ)). (10.2)

Remark 10.1. The subring SH∗(X,C) of H∗(X,C) generated by H2(X,C) is invariant under
monodromy operators and it is an LLV subrepresentation, hence it is invariant under elements
in the image of ρ. The defining (10.2) implies that SH∗(X,C) is a subring with respect to the
Pontryagin product.

The values of the representation ρ on the connected component with determinant −1 depends
on our choice of the monodromy reflection R (see [Mar08, Lemma 4.13]). Thus, if b2(X) is even,
then ρτ depends on the choice of R. Nevertheless, the Pontryagin product does not depend on
this choice as we show next (and generalize in Remark 10.5).

Lemma 10.2.

(1) The Pontryagin product � is independent of the choice of the monodromy reflection R.
(2) Parallel-transport operators are isomorphisms of the Pontryagin rings.
(3) The unit with respect to � is ρτ (1) and is independent of the choice of R.

Proof. (1) The statement is clear if b2(X) is odd. Assume that b2(X) is even. Let R′ ∈ Mon(X)
be another monodromy reflection and let ρ′ : O(H̃(X,C))→ GL(H∗(X,C)) be the resulting
representation. Let f, f ′ ∈ SO(H̃(X,C)) be the elements satisfying τ = fH̃(R) = f ′H̃(R′). Then
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ρf ′ = ρ′f ′ , as the restrictions of ρ and ρ′ to SO(H̃(X,C)) are equal. Now, f ′ = fH̃(R)H̃(R′) =
fH̃(RR′). Thus,

ρ′τ = ρf ′R
′ = ρ

fH̃(RR′)R
′ = ρfρH̃(RR′)R

′ = ρfRRρH̃(RR′)R
′ = ρτ (RρH̃(RR′)R

′).

Set g := Rρ
H̃(RR′)R

′. Then ρ′τ = ρτg, and g is an automorphism of H∗(X,C) with respect to cup
product, since each of R, ρ

H̃(RR′), and R′ is. Furthermore, ρτgρτg = (ρ′τ )2 = id, so gρτg = ρτ .
Now compute

ρ′τ (ρ
′
τ (γ) ∪ ρ′τ (δ)) = (ρτg)(ρτ (g(γ)) ∪ ρτ (g(δ))) = ρτ ((gρτg)(γ) ∪ (gρτg)(δ))

= ρτ (ρτ (γ) ∪ ρτ (δ)) = γ � δ.

(2) Let f : H∗(X,C)→ H∗(Y,C) be a parallel-transport operator. We get the commutative
diagram

SO(H̃(X,C)) ��

Ad
H̃(f)

��

GL(H∗(X,C))

Adf

��

SO(H̃(Y,C)) �� GL(H∗(Y,C))

where the horizontal arrows are the integration of the infinitesimal LLV Lie algebras actions.
Clearly, H̃(f) conjugates τ to τ . Parallel-transport operators conjugate a monodromy reflection
to such, and so the representation ρ, given in (10.1), get conjugated via the pair f and H̃(f) to
ρ′ : O(H̃(Y,C))→ GL(H∗(Y,C)), as in part (1), and so f conjugates ρτ to ρ′τ . The statement of
part (2) now follows from part (1).

(3) The unit of a ring is unique, and so ρτ (1) is independent of R, by part (1). �
We calculate the unit explicitly next.

Lemma 10.3. The unit of H∗(X,Q) with respect to the � product is cX [pt]/n!, where dim(X) =
2n and cX is the Fujiki constant.

Proof. Consider the SO(H̃(X,Q))-equivariant embedding

Ψ : SH∗(X,Q)→ Symn(H̃(X,Q)),

given in (3.3), where SO(H̃(X,Q)) acts on SH∗(X,Q) via the representation ρ integrating
the infinitesimal LLV action and via the natural representation on Symn(H̃(X,Q)). If b2(X) is
odd, then τ belongs to SO(H̃(X,C)). If b2(X) is even, then X admits monodromy reflections,
by assumptions, and Ψ is equivariant with respect to those as well, and so Ψ is equivariant
with respect to the ρτ action on its domain and the τ action of its codomain. The element
1 belongs to SH∗(X,C) and Ψ(1) = αn/n!, by [Tae23, Proposition 3.5]. Now, τ(α) = β and
so Ψ(ρτ (1)) = ρτ (Ψ(1)) = βn/n! = Ψ(cX [pt]/n!), where the last equality follows from [Tae23,
Lemma 3.6]. Hence, ρτ (1) = cX [pt]/n!. �

Let μt be the element of SO(Cα⊕ Cβ), given by μt(α) = t−1α and μt(β) = tβ, and μt
restricts to H2(X,C) as the identity. Then ρμt acts on H2k(X,C)[2n] via multiplication
by tk.

Lemma 10.4. Let g be an element of O(H̃(X,C)).

(1) If ghg−1 = h, then g(α) = tα, for some t ∈ C×, and ρμtg is an automorphism of the
cohomology ring H∗(X,C) with respect to the usual cup product.
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(2) If ghg−1 = −h, then g(α) = t−1β, for some t ∈ C×, and

ρμtg(γ ∪ δ) = ρμtg(γ) � ρμtg(δ),

for all γ, δ ∈ H∗(X,C).

Proof. (1) If ghg−1 = h and g(α) = tα, then μtg belongs to the factor OH2(X,C) of the
commutator of h, and so ρμtg acts by ring automorphisms.

(2) If ghg−1 = −h and g(α) = t−1β, then f := τμtg commutes with h and the second equality
below follows from part (1):

ρμtg(γ ∪ δ) = ρτf (γ ∪ δ) = ρτ (ρf (γ) ∪ ρf (δ)) = ρτ (ρτ (ρτf (γ)) ∪ ρτ (ρτf (δ)))
= ρτf (γ) � ρτf (δ) = ρμtg(γ) � ρμtg(δ). �

Remark 10.5. Lemma 10.4(2) equivalently states that the same Pontryagin product can be
defined in terms of any degree-reversing isometry g ∈ O(H̃(X,Q)), by

γ � δ = ρg−1μt−1
(ρμtg(γ) ∪ ρμtg(δ)).

10.2 The Pontryagin product for an IHSM of K3[n] type
Assume from now on that X is of K3[n] type. The following lemma states that the functor
Θn, given in (7.12), integrates the infinitesimal LLV Lie algebra action when restricted to
automorphisms of determinant 1.

Lemma 10.6. The restriction of Θn to the subgroup SAutG[1](S, ε), of elements of AutG[1](S, ε)
of determinant 1, is equal to the restriction of the composition of ι̃ : SO(H̃(S,C))→
SO(H̃(S[n],C)), given in (7.5), with the representation ρ given in (10.1).

Proof. The infinitesimal LLV action ρ̇, given in (3.2), sends eθ(λ) ∈ so(H̃(S[n],Q)) to cup product
with θ(λ), by the so(H̃(S[n],Q))-equivariance of Ψ in (3.3). Thus, the equality Θn(φ) = ρι̃(φ)

holds, when φ is cup product with exp(eλ), λ ∈ H2(S,Q), by the definition of Θn. The map Θn :
AutG[1](S, ε)→ AutG[1](S[n], ε[n]) is induced by an algebraic map, due to its topological nature via
Grothendieck–Riemann–Roch, and so extends to the Zariski closure O(H̃(S,C)) of AutG[1](S, ε).
The statement thus reduces to the equality of the differentials of Θn and ρ ◦ ι̃. We already
established the equality dΘn(eλ) = ρ̇(dι̃(eλ)) = ρ̇(eθ(λ)). We denote ρ̇(eθ(λ)) by eθ(λ) as well, so
that the latter equality becomes

dΘn(eλ) = eθ(λ). (10.3)

Choose (M, ε′) and φ ∈ HomG[1]((S, ε), (M, ε′)), so that φ is degree reversing. We can choose,
for example, (M, ε′) = (S, ε) and φ := [ch(IΔ)

√
tdS×S ]∗, where IΔ is the ideal sheaf of the

diagonal. Note that φ = H̃(φ), as H∗(S,Q) = H̃(S,Q) and similarly for M . Let t ∈ Q, so that
φ(β) = tα. Let λ ∈ H2(S,Q) be an element with (λ, λ) 
= 0. Then

φ−1eφ(λ)φ =
t(λ, λ)

2
e∨λ , (10.4)

by Lemma 1.6. Here e∨λ is the dual Lefschetz operator with respect to the grading operator of
the LLV algebra gS of S. The morphism H̃(Θn(φ)) is degree reversing as well, by Corollaries 7.3
and 7.4. Hence, so is Θn(φ), by Lemma 3.4. Say (H̃(Θn(φ)))(β) = t′α. Then

Θn(φ)−1e
(H̃(Θn(φ)))(θ(λ))

Θn(φ) =
t′(λ, λ)

2
e∨θ(λ).
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by Lemma 1.6. Here e∨θ(λ) is the dual Lefschetz operator with respect to the grading

operator of the LLV algebra gS[n] of S[n] given in (3.1). Note that t′ = det(φ)n+1t and
H̃(Θn(φ)) = det(φ)n+1ι̃φ, by Corollary 7.3. The second equality below follows (using also that
eι̃φ(θ(λ)) = eθ(φ(λ))):

AdΘn(φ)−1(dΘn(eφ(λ)))
(10.3)
= Θn(φ)−1eθ(φ(λ))Θn(φ) =

t(λ, λ)
2

e∨θ(λ).

Given a morphism φ ∈ HomG[1]((S, ε), (M, ε′)), we have

dΘn ◦Adφ = AdΘn(φ) ◦ dΘn

since Θn(φψφ−1) = Θn(φ)Θn(ψ)Θn(φ)−1. We conclude that

dΘn(Adφ−1(eφ(λ))) =
t(λ, λ)

2
e∨θ(λ).

The left-hand side is dΘn

(
(t(λ, λ)/2)e∨λ

)
, by (10.4). Hence, dΘn(e∨λ) = e∨θ(λ). Now ρ̇ :

so(H̃(S[n],Q))→ gS[n] maps the grading operator of so(H̃(S[n],Q)) to that of gS[n] and the
differential of ι̃ sends the grading operator of gS to that of so(H̃(S[n],Q)). Hence, the differential
of ρ ◦ ι̃ sends e∨λ to e∨θ(λ) and we get the equality

dΘn(e∨λ) = d(ρ ◦ ι̃)(e∨λ).

The statement follows, since so(H∗(S,Q)) is generated by the pairs (eλ, e∨λ), as λ varies over
elements of H2(S,Q) with (λ, λ) 
= 0. �

Let R[n]
an be the subgroupoid of G[n]

an given in (1.6).

Proposition 10.7. The restriction of the functor H̃0 to the subgroupoid R[n]
an remains full.

Proof. It suffices to prove that all morphisms of G[n]
an , which were used in the proof of Theorem 1.4

to prove the fullness of H̃0, are already morphisms ofR[n]
an. Parallel-transport operators, which are

Hodge isometries, are morphisms in R[n]
an. The morphisms other than parallel-transport operators

where all deformations of those that appear in Corollary 7.4, hence conjugates of those that
appear in Corollary 7.4 via parallel-transport operators. It suffices to prove that the morphism
Θn(ϕ) of G[n]

an that appears in Corollary 7.4 belongs to R[n]
an, in other words, that μχ(Θn(ϕ))Θn(ϕ)

conjugates the cup product of H∗(S[n],Q) to the Pontryagin product.
Let f : H∗(S,Z)→ H∗(M,Z) be a parallel-transport operator. Then f ◦ ϕ belongs to

AutG[1](M), μχ(Θn(f◦ϕ)) = μχ(Θn(ϕ)) and μχ(Θn(ϕ))Θn(ϕ) conjugates the cup product of
H∗(M [n],Q) to the Pontryagin product, if and only if μχ(Θn(f◦ϕ))Θn(f ◦ ϕ) does, by
Lemma 10.2(2). Hence, it suffices to prove the statement of the Proposition for automorphisms
in the image of Θn.

The restriction of Θn to the subgroup SAutG[1](S, ε) of elements of AutG[1](S, ε) of determi-
nant 1 is equal to the restriction of the composition of ι̃ : SO(H̃(S,C))→ SO(H̃(S[n],C)) with
the representation ρ given in (10.1), by Lemma 10.6. The two agree on the whole of AutG[1](S, ε)
if we choose the reflection R in the definition of ρ to be the image of a monodromy reflection of
S. Hence, if ϕ ∈ AutG[1](S, ε) conjugates h to −h, then μχ(Θn(ϕ))Θn(ϕ) = ρ(μχ(ϕ)ϕ) conjugates
the cup product to the Pontryagin product and if ϕ commutes with h, then μχ(Θn(ϕ))Θn(ϕ) is a
ring automorphism with respect to the cup product, by Lemmas 10.2 and 10.4. �
Proof of Corollary 1.10. Choose an IHSM X and a twisted vector bundle E over X × Y
as in Theorem 1.5. There exists a rational number t, such that the isomorphism φ :=
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μt ◦ [κ(E)
√
tdX×Y ]∗ : H∗(X,Q)→ H∗(Y,Q) satisfies (1.7), by the proof of Proposition 10.7.

Given classes γ1, γ2 ∈ H∗(Y,Q), we thus have

φ(φ−1(γ1) ∪ φ−1(γ2)) = γ1 � γ2. (10.5)

The isomorphism μt is algebraic, since the Lefschetz standard conjecture holds for Y , by
[CM13], and so the Künneth factors of the diagonal in H i(Y,Q)⊗H4n−i(Y,Q), 0 ≤ i ≤ 4n,
are algebraic, by [Kle68, Proposition 1.4.4]. Hence, the isomorphism φ is induced by an alge-
braic correspondence. Now φ−1 : H∗(Y,Q)→ H∗(X,Q) is equal to [κ(E∗)

√
tdY×X ]∗ ◦ μt−1 and

is algebraic as well. Denote by (φ−1)t : H∗(X,Q)→ H∗(Y,Q) the isomorphism induce by the
class in H∗(X × Y,Q), which is the transpose of the class in H∗(Y ×X,Q) inducing φ−1. Then
(φ−1)t × (φ−1)t × φ : H∗(X3,Q)→ H∗(Y 3,Q) is an algebraic correspondence taking the class
[Δ] of the diagonal to an algebraic class Pont inducing the Pontryagin product. The latter
statement is equivalent to the equality

φ
(
π3,∗

(
π∗1(φ

−1(γ1)) ∪ π∗2(φ−1(γ2)) ∪ [Δ]
))

= π3,∗
(
π∗1(γ1) ∪ π∗2(γ2) ∪ Pont

)
,

by (10.5). The above equation is verified as follows (let a, b, c be classes in H∗(X,Q)):

φ
(
π3,∗

(
π∗1[φ

−1(γ1) ∪ a] ∪ π∗2[φ−1(γ2) ∪ b] ∪ π∗3c
))

=
( ∫

X
φ−1(γ1) ∪ a

)( ∫
X
φ−1(γ2) ∪ b

)
φ(c)

=
( ∫

X
γ1 ∪ (φ−1)t(a)

)( ∫
X
γ2 ∪ (φ−1)t(b)

)
φ(c)

= π3,∗
(
π∗1(γ1) ∪ π∗2(γ2) ∪

(
(φ−1)t ⊗ (φ−1)t ⊗ φ)

(π∗1(a) ∪ π∗2(b) ∪ π∗3(c))
)
.

Finally, we observe that [κ(E∗)
√
tdY×X ]∗ ◦ μt−1 = μt ◦ [κ(E∗)

√
tdY×X ]∗, as [κ(E∗)

√
tdY×X ]∗ is

degree reversing, and κ(E∗) = κ(E), by Corollary 4.2. Hence, φ = (φ−1)t. �
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