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The relation between food intake and abomasal emptying 
and small intestinal transit time in sheep 

BY P. C.  G R E G O R Y ,  S. J . M I L L E R  A N D  A. C. BREWER 

Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB 

(Received 2 August 1984 - Accepted 26 October 1984) 

1. The relation between the level of food intake and gastrointestinal motility and digesta flow in the abomasum 
and small intestine was studied in sheep fitted with nichrome-wire electrodes in the gut wall, an abomasal and 
a duodenal catheter and a terminal ileal cannula. 

2. Abomasal volume and outflow were calculated from CrEDTA dilution in six sheep and small intestinal transit 
time by the passage of Phenol Red in ten sheep. 

3. The frequency of the migrating myoelectric complex of the small intestine was not altered by the level of 
food intake but the duration of the periods of irregular spiking activity, the amplitude of abomasal activity and 
the frequency of duodenal rushes were decreased as the level of food intake was decreased. 

4. There was a linear relation between the level of food intake (FI) and abomasal outflow (mean with SEM: 
327 (69) ml/h for each kg FI/d; P < 0.01), and abomasal volume (mean with SEM: 344 (50) ml/kg FI per d ;  
P < 0.001), without any significant change in the half-time of marker dilution in the abomasum. Small intestinal 
transit time decreased with an increase in food intake (mean with SEM: - 54.9 (5.6) min/kg FI per d ;  P < 0.001). 

5. It is concluded that abomasal volume and the rate of digesta flow from the abomasum and along the small 
intestine are linearly related to the level of food intake. 

The digestibility of a diet is partly dependent on the rate of passage of digesta through the 
various compartments of the gastrointestinal (GI) tract, and one of the major factors 
influencing this in sheep is the level of food intake. While many studies have emphasized 
the decrease in overall mean retention time of a marker with an increase in the level of food 
intake (Demarquilly & Journet, 1967; Leaver et al. 1969; Alwash & Thomas, 1971 ; Grovum 
& Williams, 1973a, 1977), only a few direct measurements of compartmental changes in 
volume or digesta passage have been made; these concerned retention times in the 
reticulo-rumen (Grovum & Williams, 1977) and the small and large intestine (Coombe & 
Kay, 1965). Changes in abomasal volume and flow especially, and of transit through the 
small intestine over a wide range of food intakes, remain to be established. 

The rate of flow of digesta through the small intestine (Bueno et al. 1975) and abomasal 
emptying (Ruckebusch & Bueno, 1977) vary according to the phase of the intestinal 
migrating myoelectric complex (MMC). In the present study, changes in abomasal volume 
and emptying and of small intestinal transit time have been measured during the period 
of irregular spiking activity (ISA) of the duodenum over a range of food intakes. 

The experiments represent the first stage of a study of the effects of a parasitic infection 
on gut motility (Gregory & Wenham, 1984). It was expected that the parasites would cause 
some inappetence. To be able to assess separately the effects of parasitization and of reduced 
food intake on gut motility and digesta flow, it was necessary to establish, before infestation 
of the sheep, the relations between food intake and digesta passage. Since these relations 
have not been described previously, they are reported separately from the findings on 
parasitization (Gregory & Wenham, 1984). The results indicate that there is a dose relation 
between the level of intake and the time which digesta spends in the abomasum and small 
intestine. 
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METHODS 

Animals 
Ten female Suffolk-Finn Dorset cross sheep were used. They had been raised parasite-free 
to 4-6 months of age in order to carry out the experiments reported by Gregory & Wenham 
(1984). Up to twelve sets of three nichrome-wire electrodes were sewn into the musculature 
of the GI tract, in the reticulum, abomasum, duodenal bulb, descending duodenum, 
proximal jejunum, 2, 4 and 8 m distal to the jejunal electrode, and the terminal ileum, as 
previously described for the forestomach (Gregory, 1982). At the same time a duodenal 
catheter (polyvinyl chloride, 2 mm diameter) was implanted 60-80 mm from the pylorus, 
and a simple Perspex T-cannula (barrel diameter 15 mm) was placed in the terminal ileum 
about 300 mm from the ileo-caecal junction. In six of the animals an abomasal catheter 
(polyvinyl chloride, 8 mm diameter) was also fitted. All surgery was performed with aseptic 
precautions under Halothane anaesthesia. The animals were allowed at least 2 weeks to 
recover from surgery before experimentation and were housed in metabolism cages under 
continuous lighting. 

Experimental design 
The animals were fed on diet AA6, a pelleted complete ruminant diet containing 300 g barley 
straw/kg (Wainman et al. 1975). To minimize the variability in digesta flow caused by 
feeding, the animals were kept as near as possible to continuous feeding conditions by 
providing a slow continuous supply of food by a belt-feeder. The supply of food was initially 
regulated such that there was a small refusal per d to establish the voluntary intake (ad lib. 
feeding). Intakes were then restricted in random order to about 25, 40, 55, 70 and 85% of 
the voluntary intake for 5 d. Measurements were made on days 4 and 5 and the animals 
were then returned to ad lib. feeding for 5 d between each food restriction. Water was freely 
available at all times. The body-weights of the animals remained fairly steady, changing 
only from (mean with SEM) 32.9 (1.4) to 34.9 (1.3) kg during the course of the study 
(2 months). 

Measurement of motility and digesta f low 
GI motility was recorded continuously from the implanted electrodes via a twelve channel 
Polygraph (Grass Model 7D) for periods of 1-3 d. The transit time of digesta passage along 
the small intestine was measured by rapid injection of 5 ml Phenol Red solution (20 g/l) 
into the duodenal catheter during the ISA, i.e. soon after the resumption of duodenal rushes 
following a period of regular spiking activity (RSA) in the duodenum (Grivel & Ruckebusch, 
1972), and sampling for the peak appearance of the marker in the digesta at the terminal 
ileal cannula (Barreiro et al. 1968). 

Abomasal outflow and volume were estimated by dilution of CrEDTA, which has been 
shown to be a suitable marker for abomasal as well as ruminal flow (Hogan, 1964). The 
CrEDTA was prepared by a modification of the method of Downes & McDonald (1964) 
using a solution containing 100 g CrCI, .6H,O and 124 g disodium EDTA/I and omitting 
radioactive Cr. A 30 ml dose of this CrEDTA was injected directly into the abomasum at 
a time when duodenal activity had resumed following a duodenal RSA. Samples of 
abomasal contents, 20 ml, were withdrawn at intervals via the abomasal catheter until 
the Cr had disappeared. The samples were centrifuged at 1560 g for 20 min, and the 
supernatant fraction acidified with hydrochloric acid and analysed for Cr at 357.9 nm in 
an atomic absorption spectrophotometer (Binnerts et al. 1968). The abomasal volume was 
estimated from Cr concentration extrapolated to time of dosing. The half-time ( t / 2 )  of the 
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Fig. 1. The influence of the level of food intake on abomasal and small intestinal motility recorded by 
electromyography. (a) Recording from sheep no. 5760 with a food intake of 1679 g/d. (b) Recording 
from sheep no. 5760 with a food intake of 500 g/d. Electrode 1, abomasal antrum 100 mm from pylorus; 
electrode 2, duodenal bulb; electrode 3, descending duodenum; electrode 4, proximal jejunum; electrode 
5. 4 m distal to electrode no. 4. 

marker in the abomasum was measured directly from the graph of log concentration of 
Cr v .  time, and the abomasal outflow was calculated from the formula: 

flow = 
volume x 0.693 

t/2 ' 

described for the rumen by Warner & Stacy (1968). 
The relations between abomasal volume, t / 2  and flow, and also of small intestinal transit 

time v. level of food intake, were subjected to linear regression analysis for the individual 
animals.The mean regressions were then tested for significance by Student's t test. 

RESULTS 

EfSect of food intake on GI motility 
The frequency of the MMC was unaffected by the level of food intake. At voluntary intake 
(mean intake with SEM: 1047 (75) g/d) there were 18 (2) duodenal and 23 (3)jeJunal MMC 
per 24 h, and with food intake restricted to 30% of the voluntary level there were 18 (2)  
duodenal and 21 (3) jejunal MMC per 24 h. However, changes were seen in the pattern of 
the MMC. The frequency of duodenal rushes and the period of ISA decreased and the length 
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Fig. 3. The individual regressions of six sheep showing the effect of the level of food intake on: (a), 
abomasal outflow; (b), half-time (t/2) of marker dilution; (c), abomasal volume, from values estimated 
by dilution of a single injection of CrEDTA. 

- - 
1 1 1 1  I I I I I  

https://doi.org/10.1079/BJN
19850044  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN19850044


Food intake and digestaflow in sheep 

160 120 

80 

40 

0 .  

377 

- - j .* .. .. - *. . 
- 

I I 1 1 I I I I 1 

Food intake (g/d) 
Fig. 4. The influence of the level of food intake on the rate of transit from the duodenum to the terminal 
ileum measured by passage of Phenol Red marker. (a) The individual regressions of ten sheep. (b) The 
result of parallel line regression analysis. The line shown is the common within-animal regression (r  0.739) 
with a slope of -0.0549 (SE 0.0057) and it has an intercept equal to the mean of the individual intercepts 
from each animal. The plotted points (n 73) are of the transit times from each animal adjusted according 
to the differences between the animals’ intercept and the mean intercept. 

of the quiescent period increased with decrease in food intake (Fig. 1) while the amplitude 
of abomasal spiking activity was reduced at the lowest levels of food intake. 

Eflect of food intake on abomasal volume and outflow 
A straight-line relation of the log concentration of Cr v. time was generally observed in all 
animals and at all levels of food intake as illustrated in Fig. 2. In fourteen of a total of 
eighty-eight measurements a straight line was not observed, and these results were 
discarded. 

A linear relation was observed in each animal between the level of food intake and 
abomasal outflow (Fig. 3 a), t / 2  (Fig. 3 b) and abomasal volume (Fig. 3 c). For each of these 
the individual regressions provided a significantly better fit to the values than either the 
pooled single regression or parallel line regressions with common slope and separate 
intercepts for each animal. The means (with SEM) of the individual regressions were 
calculated: for abomasal outflow (ml/h), t / 2  (min) and abomasal volume (ml) the slopes 
were 0.327 (0.069), 0.0052 (0.0036) and 0.344 (0.050) g FI/d respectively. 

Using the individual regressions there was no significant correlation between t / 2  and the 
level of food intake although there was a trend towards a slight increase in t / 2  with increase 
in food intake in five of the six sheep. There was a highly significant relation between 
abomasal outflow and the level of food intake (P < 0.01) and between abomasal volume 
and food intake (P < 0.001). 
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Relation between food intake and small intestinal transit time 
The transit time of Phenol Red marker through the small intestine varied inversely with 
the level of food intake in each animal. There was a considerable variation in the transit 
time between individual animals at each level of food intake, but a similar change in transit 
time per unit change in food intake in each sheep (Fig. 4a). The mean (with SE) common 
slope from these regressions was -0.0549 (0.0057) min/g FI per d, showing a highly 
significant relation (P < 0.001) between food intake and small intestinal transit time. When 
allowance was made for between-sheep variation in transit time at a given food intake (see 
Fig. 4b), there was little scatter of values about the mean regression (r 0-739). 

DISCUSSION 

The decrease in the retention time of marker in the GI tract of sheep and other ruminants 
with increased level of food intake (Blaxter et al. 1956; Shellenberger & Kesler, 1961; 
Demarquilly & Journet, 1967; Leaver et al. 1969; Alwash & Thomas, 1971; Grovum & 
Williams, 1973a, 1977) appears to be mainly due to changes in marker retention in the 
reticulo-rumen (Blaxter et al. 1956; Grovum & Williams, 1977) and the large intestine 
(Coombe & Kay, 1965; Grovum & Hecker, 1973), i.e. the compartments with the longest 
retention times and which contain the greatest volume of digesta. The retention times in 
the abomasum (Grovum &Williams, 1973 b) and the small intestine (Coombe & Kay, 1965; 
Grovum & Williams, 1973~)  are very much shorter than in the hind-gut or reticulo-rumen. 
Nevertheless, changes in digesta flow and retention times in these compartments are also 
important for the digestion and absorption of nutrients, especially in animals infected with 
GI parasites, as discussed elsewhere (Gregory & Wenham, 1984). For the reasons described 
earlier the experiments were performed on young rather than adult animals; nevertheless, 
there was little increase in body-weight during the study. Radiographic examination of the 
animals before experimentation indicated that both abomasal emptying and small intestinal 
flow of digesta were normal in all animals, so the slow growth rate presumably relates to 
the periods of restricted food supply. It seems, therefore, that the results reported here are 
unlikely to have been greatly influenced by changes in size of the abomasum or small 
intestine during the course of the study. 

In view of the short retention times in the abomasum and small intestine, it is essential 
to make direct measurements of flow in these compartments rather than rely on compart- 
mental analysis of excretion curves of marker. The authors are unaware of any previous 
direct measurements of the relation between food intake and abomasal volume and flow 
other than single estimates of flow per animal at two levels of food intake (Grovum & 
Williams, 1973a) and measurement of flow through a duodenal re-entrant cannula at two 
levels of food intake (Hogan, 1964), where both the cannula and the sampling are likely 
to alter normal flow (Wenham & Wyburn, 1980). Direct measurements of intestinal 
retention times at different levels of food intake have been reported by Coombe & Kay (1965) 
but using only three animals at two or three levels of food intake, and by Grovum & 
Williams (1973a) with single measurements at two levels of food intake, and these did not 
take into account the phase of the MMC which alters the rate of digesta flow (Bueno 
et af. 1975). 

The method used in the present study to estimate abomasal volume and flow relies on 
a good linear relation between log Cr concentration and time. This was achieved in 
seventy-four out of eighty-eight experiments. The reasons for non-linearity in the remaining 
fourteen experiments which were discarded could not always be determined, but in eight 
experiments it appeared to be due to the occurrence of duodenal RSA during the period 
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of sampling. The t/2 values by this method are within the range calculated from Hyden 
(1961) and observed by Grovum & Williams (19734 of approximately 17-42 min. 

The liquid marker used gives a measure of the fluid outflow from the abomasum. Since 
fluid represents some 94-97% of total abomasal outflow (Faichney & Griffiths, 1978) the 
flow measured provides a close approximation to the total emptying rate. When CrEDTA 
is administered to the rumen of sheep about 3 % is excreted in the urine (Binnerts et al. 1968) 
although the site of absorption is not known. Absorption from the abomasum is therefore 
unlikely to affect the results of the present experiment significantly. The values recorded 
for abomasal outflow represent a slight overestimate of the mean hourly flow per d, since 
they do not take into account the brief period (5-10 min) of abomasal inhibition following 
a duodenal RSA (Ruckebusch & Bueno, 1977; Wenham & Wyburn, 1980), as illustrated 
in Fig. 1. Previous studies have shown a wide variation in the level of abomasal outflow 
and, indeed, of flow from day-to-day and during the same day in single individuals, e.g. 
13300-24000 ml/d at 1700 g daily food intake (Hogan, 1964) and 8200-16500 ml/d at 
1100 g daily food intake (Poncet et al. 1977). Taking into account the period of abomasal 
inhibition with each MMC (mean (with SE) 18 (2)/24 h) the present values fall within these 
ranges, and are similar to the values reported for hourly fed sheep of 8165 ml/d at 400 g 
intake, and 21 700 ml/d at 1200 g intake (Grovum &Williams, 1973~). It has been reported 
that sheep fed three times daily have approximately double the abomasal outflow of sheep 
fed the same quantity once daily (Harrison & Hill, 1962). In the present study, feeding by 
continuous belt-feeder could have led to the high rates of flow observed. It may also have 
helped to reduce the variability of the results, although some variability remained within 
individual sheep at the same level of food intake. By plotting the regressions from about 
twelve measurements in each sheep t h s  problem was partly overcome but significant 
differences were observed between the individual animals. However, in each case it was 
evident that there was quite close correlation between the regressions of five of the six sheep, 
i.e. for all except sheep no. 61 76 for abomasal volume (Fig. 3a) and flow (Fig. 3c) and except 
for sheep no. 5765 for t/2 (Fig. 3b). It was therefore concluded that the mean of the 
individual regressions for each index gave a true reflection of the response of this group 
of animals rather than the regressions from the pooled values. There was a linear relation 
between the level of food intake and both abomasal volume and abomasal outflow but there 
was no consistent relation with the t/2 of marker dilution even though there was a trend 
towards a slight increase in t/2 with increase in food intake (seen in five of the six animals). 

Reducing the level of food intake to about 30% of the voluntary intake had no effect 
on the frequency of the duodenal MMC while causing a slight, non-significant decrease in 
frequency of the jejunal MMC, and a decrease in frequency of duodenal rushes and of the 
period of ISA. Evidently even more severe alterations of food intake are necessary before 
the normal MMC frequency is disturbed, such as by complete starvation or with overfeeding 
of concentrates (Bueno, 1977), although the period and intensity of ISA apparently depends 
on the amount of digesta flowing from the abomasum. 

The transit time of marker through the small intestine was inversely related to the level 
of food intake. The transit times observed correspond with the reported mean retention 
time in the small intestine of 1-2 h (Hyden, 1961) 2.3-4.5 h (Coombe & Kay, 1965) and 
91 and 136 min at 400 and 1200 g/d intake respectively (Grovum & Williams, 1973~). Using 
the method described there was a very good reproducibility of transit time at a given food 
intake in any one sheep, but considerable variation between individuals. However, each 
animal showed a similar change in transit time with change in food intake (Fig. 4a) and 
by allowing for this individual variation it could be seen that there was a very close relation 
between food intake and intestinal transit time (Fig. 4b). Thus, once the transit time in an 
individual fed at about normal voluntary intake has been established, it should be possible 
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to estimate accurately the transit time at different levels of food intake using the mean 
regression calculated here for animals under the same experimental conditions. 

The authors thank Dr F. White and Mr C .  A. Simpson for their assistance in the surgical 
preparation of the animals, Mr I. Robb and Mr R. Middleton for preparing the figures and 
Dr R. N. B. Kay for his review of the manuscript. 
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