
J. Austral. Math. Soc. (Series A) 60 (1996), 311-333

ON PRODUCTS OF ALMOST STRONG LIFTINGS

N. D. MACHERAS and W. STRAUSS

(Received 5 November 1992; revised 31 January 1994)

Communicated by A. H. Dooley

Abstract

Dealing with a problem posed by Kupka we give results concerning the permanence of the almost strong
lifting property (respectively of the universal strong lifting property) under finite and countable products
of topological probability spaces. As a basis we prove a theorem on the existence of liftings compatible
with products for general probability spaces, and in addition we use this theorem for discussing finite
products of lifting topologies.

1991 Mathematics subject classification (Amer. Math. Soc): 28A51.

Introduction

In this paper we are concerned with hereditary properties of almost strong liftings for
finite and countable products of general topological probability spaces (respectively
Baire probability spaces) (see Section 1 for terminology), with the existence of liftings
compatible with products (see Section 2, Theorem 4 and Theorem 5), and with finite
products of lifting topologies. The Baire-almost strong lifting property (Baire-ASLP
for short) of a finite product of topological probability spaces implies the almost strong
lifting property (ASLP for short) of the factors (by Theorem 1 of Section 2). This
generalizes the result of [22, 3.2], but the converse is not true for the ordinary product
of probability spaces by Section 3, Remark 5(b) even if we have Radon measures on
the factors. The crucial point in the construction is that for factors with strong liftings,
products of open sets are measurable in the product probability space (see Theorem 1
(respectively Lemma 1) of Section 3). But [8] gives a hyperstonian space where the
latter fails (see Remark 5 of Section 3 for details).

Talagrand's paper [28] seems to be the first one where a certain compatibility
for products and liftings appears, but it is only for products in which all factors are
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equal, so only applies in a very restricted situation. To be precise the condition (P)
of Theorem 4 of Section 2 (respectively (iii) of Lemma 1, Section 3) holds true. In
the latter lemma we give equivalent conditions in terms of lifting topologies. As a
consequence we find that the product of lifting topologies is never a lifting topology
if one assumes the non-existence of measurable cardinals (see Theorem 2 of Section
3). This result is a consequence of a theorem of Curtis, Hendriksen, and Isbell on
products of extremally disconnected spaces (see [11, p. 53]).

If we replace the ASLP by the stronger "universal strong lifting property", USLP
for short, which has proved useful in connection strong lifting compactness (see [1,23
and 25]), the situation becomes more pleasant: If a finite product has the Baire-USLP
each factor has the USLP, (see Theorem 2 of Section 2), and conversely the finite
product and by Theorem 4 of Section 3, also the countable product, where in both
cases the completion regularity also carries over to the product; and has the ASLP
if each factor has the USLP, with the exception of probably one which has only the
ASLP. This is based on Theorem 4 of Section 2, where for given lifting in one factor
we can find in the other factor, and on the product, liftings such that compatibility with
products holds true. By induction, we extend this result to products with countably
many factors in Theorem 5 of Section 2. All factors of our products may be different,
while Talagrand's construction of the consistent liftings works only if all factors are
equal.

In the forthcoming papers [24, 25 and 26] we study the same problems for uncount-
able products and general projective limits. But this requires different techniques.

The second author is indebted to D. H. Fremlin for a helpful discussion on the
topics of this paper.

1. Preliminaries

Throughout, a quadruple (Q, ^, E, /x) will be called a topological probability
space (respectively Baire probability space) if and only if (£2, 3") is a completely
regular Hausdorff topological space and (Q, E, fi) is a complete probability space
such that 3B(Q.) c £ where &(£!), the cr-field generated by ^, is the Borel a-field of
(£2, £?) (respectively &0(Q) c E where &0(Sl), the a-field generated by all bounded
continuous functions on Q, is the Baire a -field of (£2, S)). Therefore any topological
probability space is a Baire probability space but not vice versa.

We use the notion of lifting (respectively lower density) in the sense of [16, Chapter
III, Section 1, Definition 3 (respectively Definition 4)] and for any complete probability
space (Q, E, /j.) we denote by A (/A) the system of all liftings. For any p e A(/z) there
exists exactly one (multiplicative) lifting p (in the sense of [16, Chapter III, Section
1, Definition 2]) on Jzf°°(/z), the space of all bounded E-measurable functions on Q,
such that P(XA) = XP(A) for all A e E (\A denotes the characteristic function of
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A) and vice versa (see [16, pp. 35,36]). For simplicity we write p = p throughout
what follows. The linear lifting is defined by [16, Chapter III, Section 1, Definition
1]. For a Baire probability space (in particular for a topological probability space)
(£2, S?, E, /x) a lifting p e A(/LA) is called strong (respectively almost strong) if and
only if p(/) = / for all / <= Cb(Q), the space of all bounded continuous functions on
(£2, &) (respectively there exists N e T, such that /x(A0 = 0 and p(f)(co) = f(co)
for all / e Q,(£2) and all GO e Q \ N).

For a topological probability space it is equivalent with p(G) =3 G for all G e 5~
(respectively there exists N e E such that fj,(N) = 0 and G C p(G) U N for all
G e ^ ) (see[16, chapter VIII]). (£2, 3\ E, /x) has the almost strong lifting property,
ASLP for short (respectively the Baire-almost strong lifting property, Baire-ASLP
for short), if and only if (Q, Z?, E, /x) is a topological probability space (respect-
ively a Baire probability space) and there exists p e AQx) which is almost strong.
(£2, S?, E, /x) has the universal strong lifting property, USLP for short (respect-
ively the Baire-universal strong lifting property, Baire-USLP for short), if and only
if (Q, ST, E, /x) is a topological probability space (respectively a Baire probability
space) and any p € A (/x) is almost strong. Compare [25] for a list of spaces having
the USLP from which it becomes obvious that all spaces appearing in applications
have the USLP.

For a given probability space (£2, E, fi) a set N e E with i^(N) — 0 is called a
li-null set and for f,g& J£°°{\£) and A, B e E we write f = g a.e. (/x) respectively
A = B a.e. (/x) if (o> e £2 : /(a>) ^ g(a>)} (respectively AAB, the symmetric
difference of /I and B) is a /U,-null set.

A Borel measure /x on £2 is said to be completion regular if and only if for any
Borel set B there exist Au A2 € <^0(S2) such that A, c fi c A2 and /x(A2 \ ^ 0 = 0.

We denote by (Qx x • • • x Qn, T,i ®- • -®E,,, nx<S>- • -<g>Atn) the product probability
space of the probability spaces (£2,, E,, /x,-) (/ = 1 , . . . , n) and by (£2i x •• • x
£2n, Ei® • • • <8>En, /Xi<8> • • • <8>/xn) its (Caratheodory) completion. By N we denote the
set {1, 2, 3, . . . } of the natural numbers.

2. Liftings and products

Before stating the first theorem we mention that the product of Baire probability
spaces is in general not a Baire probability space (see [2]), and the same is true for
topological probability spaces (see [8]), where the situation is even much worse (see
[18 and 19]). For this reason we assume in the next theorem only the Baire-ASLP for
the product which is more likely satisfied than the ASLP.

THEOREM 1. If the completed product fl~["=1 fi,-, FlLi %> (®"=iE.)A. (®"=iM;)A)
of the topological probability spaces (£2,-, ^ , E,, /x,) has the Baire-ASLP then each
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( A , 5-, £,-, Mi) &« '&? ASLP (j = 1, .. . , «).

PROOF. By induction it is sufficient to give the proof only for n = 2. If (fl, x
^2, ^ ® <̂ 2, Ei<8>S2, Mi®/^) has an almost strong lifting then it has a strong lifting
p by [16, p. 127] (there the blanket assumption of local compactness is not needed).

Let p( : fl| x fl2 —> £2, denote the canonical projections (/ = 1, 2) and define the
partial maps /<^(ft>i) := f(cou u>2) for / e -S?°°(MI<£>M2)> w, e £2, 0 = 1,2). Then
put

:= f9(g)(a>2) := J p(go

for g e ^f°°(/Li2). Since p(g o p2) = g o p 2 a.e. (/ii®M2) we have for all A e S2 by
Fubini

-II
-L

that is

/ \ = 0 forall A/ /

from which it follows that 9(g) = g a.e.
Since g = h a.e. (/x2) for g, h e J£°°(ii2) implies p(g o p2) = p(ho p2) it follows

that 0(g) = 0( /J ) and it is easy to verify that 9 is a linear lifting for ^f°°(/U2). Since p
is strong and g o p2 e Cb(Qi x £22) for g e C(,(fi2) we have

= / g° p2(C0UC02)d£ti(<Wi) = /9(g)(a>2)= gop2(a>uco2)dnl(col)= g(co2)d(jL1(co1) = g(a>2) for o^ e £22,

that is, 9 is strong. By [16, Chapter VIII, Theorem 2] (the proof of this theorem
works for every topological probability space) there exists a strong lifting p' for
(Q2, £?2, E2, ix2). The same reasoning gives us a strong lifting for (£2,, ^ , S j , /xO.

Theorem 3.2 in [22] is a special case of Theorem 1.

THEOREM 2. If the completed product (f]"=i n / . FlLi ^/- (<8>"=,S,)A, (<8>;=1/x,)A)
o/r/je topological probability spaces (Qh tf, E,, /x,) toi ?/ie Ba/re-USLP ?/ien each
factor (Qi, %, E,, fit) has the USLP (/ = 1 , . . . , « ) .
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PROOF. By induction it is again sufficient to give the proof for n = 2 and for
simplicity we may put i = 1. We denote by p\(co) := a^ forw = (ct)ua)2) e Qi x Q2

the canonical projection px from Qi x Q2 onto S^. For given p\ e A(/Hi) put

op, for / , € J^

Then p is extendable to a lifting p e A(/z), the so called inverse lifting of pi, by an
argument given in [1, proof of Theorem 2.3] (see also [23]). Since p is almost strong
by assumption there exists a Q.o e E with AI(£20) = 1 such that

(/i o px){eo) = p(/ , o pi)(<w) = (pi(/i) o pi)(<u),

that is,

/,(&>[) = pi(/i)(a)i) for all /i e Ch(£2i) and all a> = (a>i,a>2) e £V

By Fubini we have 1 = / / x i ^ f t ^ ) ^ ^ ) . if ^o^ := {̂>i e ^ i : (wi, a>2) € fi0)
is the section of S20 for ct)2 e ^2- This implies /xiC^o^) = 1 f°r almost all o>2 e fi2-
Since /x2(^2) > 0 we can choose a>i e fi2 such that /^(^o^) = 1> ^o^ € Si, and

= Pi(/i)(fo)i) for all wi e ^o^, that is p! is almost strong.

For /. : nf- —• R(i = 1,2) we define / , ® /2 := (/, o p,) • (/2 o p2) if
p,- : fi| x O2 —>• fi, (i = 1, 2) are the canonical projections. If (S2, E, ^) is a
probability space and rj is a c-subalgebra of E we write E^(f) for a version of the
conditional expectation of / 6 ^f°°(ti) with respect to rj. For the proof of Theorem
3 we need two lemmas which are more or less known but we could not find a suitable
reference.

LEMMA 1. Let there be given probability spaces (£2,-, EM /z,-) ando-subalgebras r)t

o/E, (i = l,2). Then for / e if00
 (/A,-) 0" = 1, 2) if to/* m«>

PROOF. By the definition of the conditional expectation and by Fubini's theorem
we have for B, e rj, (/ = 1, 2)

/
B,XB2

/ ( / I • XB,) ® (/2 • XB7)d(ix{ (8) /x2)
- / '

f f
= / Em(fi)d(ii- / Em(f2)dn2

JB, JB2

-L
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that is the measures with density on r)x ® r]2 given by means of

P e m ® m —• / Em9n(fi ® fi)dQii ® /x2),

coincide on the semi-ring & = [Bi x B2 : Bt € rji (i = 1,2)} which generates 771 ® 172.
Hence they coincide on the ring 8% generated by S since 3ft is the set of all finite
disjoint unions of elements in $ (see for example [14, 1.5, Satz 6]). But from 8&
these measures are uniquely extendable to r]\ <g> r\2 by [4, 5.6]. Now the uniqueness
provision of the Radon-Nikodym theorem implies the assertion.

LEMMA 2. Let there be given probability spaces (fi,, E,, /x,) and a -subalgebras rj,
of Hi (i = 1,2). Then ( ^ x £22, Vi ® 12. (Mi ® M2) I 'Ji ® ^2) w identical with the
product of the probability spaces (Qj, r?,, /U,, | »;,•) (/ = 1,2).

PROOF. Note that the semi-ring g = {Bx x B2 : B,• e rj, (/ = 1,2)} generates
?7i ® r)2. Now for B, e 17,- (/ = 1, 2) we have

x fl2) = / , ( , ) M 2 ( 2 )

S2)

x B2),

that is the measures (/Lti | rji) (8) (/x2 | ^2) and (/X] <8> /x2) | >7i <8> r\i coincide on $.
Hence the same reasoning as in the proof of Lemma 1 shows that they coincide on

iii ® m-

THEOREM 3. Let there be given two probability spaces (£2, E, ix) and ( 0 , T, v)
with product space (£2 x &, E <g) T, /x <8> v). Then for any lower density (p for fj,
there exists a lower density \jt for v and a lower density ft for fi ® v such that
p(A x B) = <p(A) x ^(B) for all A e H and B eT.

PROOF. Let there be given a lower density <p for fj. (such a lower density exists by
[12, Theorem 1]). Let £$ denote the system of all triples (rj, ^ , /!,,) such that rj is a
cr-subalgbra of T containing all v-null sets, \fr^ is a lower density for v | r\ and fin is a
lower density for /x <g) u | E <g> r; such that

j8,(A x B) = (p(A) x fr,{B) for all /I € E, B €

For (??, ^ , ^ ) , (??', ̂ ' , ^ ) € ^ write
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if and only if

»? c »/, ^ I »? = V^. and ^ | S ® I J = J8,.

Then < is a partial order on 38 and SB is non-empty. For the latter define (u, <pu, /?„) e
^ as follows: u is a cr-subalgebra of T generated by To := {N e T : v(7V) = 0}.
Then u = To U Tc if Tc := [® \ N : N e To}. Define ^a(B) := 0 if £ e r0

and ijfu(B) := 0 if B e rc. Clearly T/TU is a lower density on M. On the other hand
/z<g>v(£) = / v(Ew)dfjL(a>) for £ e E<g)wif£w := {(9 e 0 : (a>, 0) e E}forue Q,
and £ := [co e Q : v(£w) = 1} e E since to e Q — • v(£M) is E-measurable (see
[15, (21.4) and (21.8)]). Since v ( £ J = 0 or v(£w) = 1 for all o) e S2 we find
£ = £ x 0 a.e. (/z (8) v). Hence we can define a lower density fiu for all £ € E (8) w
by means of

( 5 , ( £ ) : = # ) x 0 if £ = £ x 0 a.e. (/x <g> v)

which satisfies j8H(A x B) = <p(A) x fu(B) for all A € E, fie u.
We show that the partial order < is inductive. For this let Jtf be a chain in 3S and

put for simplicity <%[ := {17 : (/j, ^ , ^ ) e ^ } . We have to distinguish two cases.
(A) There is no countable cofinal part in Jff'. Then r)X := UJ(f[ is a a-subalgebra

of T and by means of i/or(A) := i/n(A) if A e r\ e Jffi is defined unambiguously a
lower density 1/^ on r\x such that i/̂ jr \ r) = ^^ for all r] & J(f[. It is immediate that
E ® / ^ = U{E<g>r? : JJ € Xx\. If we put ^ ( f i ) :=/3,(£) if £ e E 0 »j, 17 € JtTx

then /3jr is a well-defined lower density on E <g> rjjr such that ^jr | E ® r\ = #, for
rj G J^[. For all A e E, B er)^ there exists a 17 e J ^ such that fi e rj. This implies
that

x B) = ^ ( A x B) = <p(A) x f^B) = <p(A) x

that is (rjjxr, ifr^, fijr) e ^ is an upper bound for J ^ in 38.
(B) There is a countable cofinal part ((17,,, \frnn, PvJ)n^N in «^- Then put for

simplicity \J/n := ty^, fin := jŜ n for all n G N and denote by r\x the a-subalgebra of
T generated by \JneMrin-

CLAIM 1. E <g> r\x 's the a-subalgebra Yx o /E <g> T generated by [Jn€M E ® r\n.

PROOF. Clearly E ' C E 8 r\x. Since E ® r)X is generated by ^ := {A x B : A e
E, B E fjjr} it will for the converse inclusion be sufficient to show $ c E*. We have
# c r if and only if SA = r?^ for all A e E, where ^ , = ( B e i | X : A x B e S ' } .

UneN 'J" — ^»' anc^ ^» ' s a a-algebra, so the result follows.
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By [12, Lemma] it is well-known that by means of

for B e r\x is defined a lower density for v \ r]X such that ^oo \ r]n — \jrn for n e H.
And accordingly (using claim 1)

k€N neN m>n

for P e E <g> ^ defines a lower density for yu, <g> v | E (g> 77^ such that /Soo I E (g) ?jm =
/Jm if again £E®^m(x/>) denotes a version of the conditional expectation of XP w i m

respect to E ® /?m for m e N. It is obvious that fxiB) and ^00(/>) are independent of
the choice of the particular version of the conditional expectation E,,m (XB) respectively
^s®r,m(A'/>) m t n e defining formulas for x/fooiB) respectively ^TC(P). Now for A e E
and B e r)jc we have

keH neN m>n

But

A x { £ ( * ) > 1 1/*} a.e.

for m,k e N where (1) holds true a.e. (/z ® v | E ® ?jm) by Lemma 1. Equation (2)
holds true since we have

(co, 6)eM:= {(XA O Pl) • {Enm(XB) o p2) > 1 - \/k}

if and only if

\-\/k.

For co £ A the latter does not hold true, but for co e A it holds true if and only if
E^(XB)(0) > 1 - 1/k, that is (co, 9) e M if and only if co e A and Enm(xB)(0) >
1 - \/k, that is if and only if (co,9) e Ax {Enm(xB)(0) > 1 - \/k}(k € N).
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This implies that

A»(A x B) = p | U pi pm (A x {E^ixa) > 1 -

= <p(A) x

that is ̂ ( A x B) = <p(A) x ^(B) for all A e E, B e r?jr-
Again we have found an upper bound (rjjf, ifjr, PJT) for J^ in SB if we define

According to Zorn's lemma we choose a maximal element (r]0, i//0, /30) € ^ . If we
assume that r)0 is a strict subset of T then there exists a Bo e T \r)0- Let rj0 denote
the cr-subalgebra of T generated by rj0 U [Bo}. Using the well-known equality

r?0 = {(G n Bo) U (H n fio
c) : G, H € %}

we can check:

CLAIM 2. E <g> T}0 = {(G n ( « x Bo)) U (// n (fi x fi^)) : G , / / e E « %}•

Put

Bi := essinf{B e r)0 : Bo c. B a.e. (v)},

B2 := essinf{B e r]0 : Bc
0 Q B a.e. (v)},

£, := essinf{£ e E ( g i % : ^ x B o ^ £ a.e. (/x <g> v)},

£2 := essinf{£ e Y, ® r)0 : Q x Bfj <c E a.e. (/i <8) v)},

and note that £] respectively E2 is the essential infimum of sets E e E ® rj0 with
S2 x fl0 c £ a.e. (/x <g> v) respectively S2 x BQ C £ a.e. (/x (81 v) modulo /z ® y-null
sets in E <gi r)0, while the essential infima Bt, B2 may be taken with respect to arbitrary
v-nullsets since r)0 contains all v-null sets by definition of r)0 for (r)0, ^rno, fim) e SB.

Then it is well-known by [12, Lemma 2] that by means of

J0((G n Bo) u (H n BC
0))

:= (Bo n M(G n B,) u (// n B[))) U (BO
C n vo((# n B2) u(Gn B2

C)))

for G, H e rj0, and

^ n (n x Bo)) u (L n (n x BO
C))

:= ((£2 x Bo) n Po«K n £0 U(LD £[)))

u ((n x BO
C) n &((L n £2) u («• n £2

C)))
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for K, L e E <g> T)o are defined unambiguously lower densities \js0 on rjQ respectively
Po on E <g> rj0 such that \jf0 \ rj0 = \j/0 and /30 | E <g> r?0 = Po-

CLAIM 3. Ex = Q x B , a.e. (̂ <8>v | H®r)0)andE2 = QxB2a.e. (/x®v | E®/?0)-

PROOF. £ O ^ ^i a.e. (v) implies £2 x £0 £ ft * B, a.e. (/n <g> v | S <g> jj0). Since
fl x B, € E 8 i)o this implies fi x B, 2 £1 a.e. (/z <8> v | S ® %) by definition of
£ i . For OJ € fi let £la ) := {̂  € 0 : (a), 9) e £i} be the w-section of £ ] . Note that by
Lemma 2 the probability space (Q x ©, £ <g) %» M ® v | E <8> )?o) is the product of the
probability spaces (fi, S , /z) and (@, %> v I Vo)- Hence applying Fubini's theorem
(see [15, (21.4) and (21.8)]) to this product, we have Ela) € r)0 for all on e Q. since

= fv(((QxB0)\E1)w)df^(co)

= I v(B0 \ E

0 < v(B0 \ E\m) for all co e Q and co e Q —> v(B0 \ Eia)) is E-measurable. This
implies for N := {co e Q : v(B0 \ Ela)) > 0} that /V € X and fi(N) = 0. If
^o := ft \ Â  then fi0 e E, M(ft0) = 1, v(B0 \ Ela>) = 0 hence Bo c £la ) a.e. (v)
for all o> € ft0- Let B := essinf{£im : co e fto} where the essential infimum is taken
in r)0 with respect to v-null sets. It follows that B e r]0, and B ^ Bo a.e. (v), hence
B 2 fi,a.e. (v). Again by [15, (21.8)] we have

fl,) \Ei) = f v(((« x 5,) \ E,)Jdn{co)

= f v{Bx \ E]a)dn(co)

= 0,

a.e. (v) for all co e ft0 and since /x(fto) = 1- that is
E ® %)• The proof for £2 = ft x 5 2 a.e.

the latter
^ x f i , C
is similar.

since
E\ a.

Bi
e. (

c £1
) V

For A € E and B e~rj0 write B = ( ( G n Bo) U (// n B^)) for G, / / e %• And then
we have

x G) n (£2 x Bo)) U ((A x / / ) n (J2 x fi<))
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together with K := A x G, L := A x H e E <g> rj0- For simplicity put Eo := Qx. Bo.
By definition we have

po(F) = (£0 n fa«K n £,) u (L n £[))) u (£o
c n &((L n £2) u (A: n £2

C))).

By an application of claim 3 this can be rewritten as

0O(F) = (£0 D 0o(A x R)) U (£g n fl,((A x 5))

if

R:=(GD B,) U (// n B[), 5 := (// n B2) U (G n B2
C).

Since R, S € r)0 this implies

£ 0 (F) = (£0 n (^»(A) x MR))) u (£5 n (^(A) X ^ O ( S ) ) ) .

By means of Eo = Q x Bo the latter formula can be transformed into

/30(A x B) = <p(A) x ~fo(B) for all A e E and B e J80.

This implies that (7j0, ^r0, y60) e ^ and clearly (r?0, ^o, ^o) < O/o> V̂ O' ^o)» a contra-
diction. Therefore rj0 = 7 and if we put \{r = x//0, fi = fi0 we are done.

THEOREM 4. L<?/ (J2, E, ^ ) and (&, 7\ v) be complete probability spaces and (Q x
Q, E®7", /̂ <8>y) ?/ze completion of their product. Then for any p e A(/x)
CT € A(v) andn e

(P) TT(A x B) = p(A) x CT(B) /or all A € E anJ B €

/n addition n(f <g> g) = p ( / ) <g> a(g)for all f e Sf°°(fi) and g € ^f°

For the proof we denote for any cr-subalgebra r\ of T by E(g)>? the a-subalgebra
of E<8>r consisting of all F e EigiT for which there exists a set £ e E <8> ?? with
F = E a.e. (̂ i<S>v), in particular E<g»7 contains all /i(8>v-null sets and clearly

The proof of Theorem 4 follows the same general pattern as that of Theorem 3
and with the exception of part (B) it consists in minor modifications of the proof of
Theorem 3 so that we have only to replace 'lower density' by 'lifting', 'E <g> /?' by
'E<g»j', and '/v, (g) v' by '/i<§>v' throughout. In order to shorten the proof let this be
done together with the following indications:

(i) The existence of a lifting cp for \x follows from ([16, IV, 2, Theorem 3]).
(ii) If (r), i/r,,, fin) e 38 then rj is complete since r\ contains all v-null sets.
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(iii) For F € E®M we find £ e E ® u with F = E a.e. (/x®v) and then we can
define the lifting fiu for fi<S>v | E®w by means of fiu(F) = <p(E) x & if E
and u are defined as in the proof of Theorem 3 (independent of the choice of
E).

(iv) From E (g> r]jg- = i J { E ( 8 ) ? j : ^ e J ^ } follows follows immediately that

(v) Claim 2 in the proof of Theorem 3 implies

E®r?o = {(G n (£2 x fi0)) U (// n (fi x ££)) -G,H e

(vi) For Claim 3 the essential infima Eu E2 can (and will) be chosen in E 0 rj0.
This allows us to take over the proof of Claim 3 from Theorem 3 unchanged,

(vii) Once we have rj0 = T we define p := <p,a := \ff0, and n := y30.
(viii) 7T ( / ® g) = p ( / ) (8) CT (g) follows from (P) first for simple functions / , g and

then for / e «Sf °°(/u), g e -Sf°°(v) by approximation with simple functions.

We now turn to the proof of (B). Let there be given a countable cofinal part
((r)n, f,,n, K ))»EN in X. Again put \(rn :=$,„, Pn := ^ for all n e N and denote by
)7oo the CT-subalgebra of T generated by (JneN r\n. Claim 1 of the proof of Theorem 3
implies E i S ^ = o (U« £ N ^ ® J ? » ) - We now choose an ultrafilter ^ on N finer than
the Frechet filter and define by [16, IV, 1, Theorem 2] linear liftings for v respectively
jU,<8)v by means of

:=\im ^{E.Sh)) for A e

for / e

which satisfy ^ ' I -S?°°(v I »;„) = ^ ^ respectively )8' | Jg?°°(/i(i)v) | E<gi??n) = ^n for
« € N. For g € j£?°°(/x), /i e JSf°°(v), applying Lemma 1, we have

= lim pn(Emn.(g ® A)) = lim ^ ( g 0 £,.

= lim(^(g) ® 1sn(Enn(h))) = (pig) ® Hm

that is

(1) /3'(g ® A) = «P(g) ® ^'(A) for all g 6 ^ ° ° ( M ) , A e

(Let us remember that according to Section 1 we write <p for the lifting of functions ip

defined by y(xA) = X<PW, A € E.)
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According to [16, III, 1, page 36] we then define lower densities \jrd for v \ 7]^
respectively Bd for /z<g>v | E ® ^ by means of

fd(B) := WXXB) = 1} for B e r,^ Bd(E) := {B'(XE) = 1} for E e

For a) e ft, 0 e 0 let us define filterbases &(co) := {A e E : co e <p(A)} on ft,
&(9) := {B 6 r?oo : 9 e ifd(B)} on 0 , &(co, 9) := {E e E ® ^ : (co, 9) € Bd(E)}
on f2 x 0 and choose ultrafilters °l/ (co) in E, fy (9) in r]^ finer than «̂ "(<w) respectively

) . Note that

CLAIM. £ n (A x B) ^ 0/or E e ^(ft),^), A € ^(co), and B e ^(6») if
(co, 9) e ft x 0 .

PROOF. Assuming that E n (A x B) = 0 it follows by (1) that

0 = 1 - £ ' ( * E ) ( ^ 0) > P'(XA*B)(CO, 9) = <P(XA)(VW(XB)(9) = ^'(XB)(9) > 0,

hence ^'(XB)(9) = 0. Since ^'(XB) + V(XB<) = 1 this implies 9 e \jfd(B
c), a

contradiction.
By the Claim we find an ultrafilter fy(co, 9) c Eigi^ finer than ^(co, 9) and such

that

Ax B e <ft(co, 9) for all A e ^(co), B e

According to [30] we define liftings <p for /x, y^ooforv | rj^, and/Soo for/x<S)v | E (8)170
respectively by means of

with <p(A) c q>(A) c <p(Ac)c for A e E,

:= {9 e 0 : B e W(9)} with ^ ( B ) c f^B) c ^ ( f i T for B e r,

px(E) := {(w, 9) e ft x 0 : E e ^(&), ^)} with &(£) c /?«(£) c pd(E
c)c

for £ e Eigrjoo. Note that <p = cp and for n 6 N, B e ??„ we have
hence ^ ( B ) = {^'(XB) = 1} = ^ ( B ) , ^«(B) = td(B) c ^
i]fn(B), so i/foo I ??„ = V̂ n. In the same way we find that ^ \ E(g)?jn = fin for n e N.

For (w, ^) 6 ft x 0 , A e E, B e rjoo we have (o>, 9) e <p(A) x Vfoo(fi) if
and only if A e ^ (w) and B e %(6), hence A x B e <%(co, 9) by the claim, so
(a), 6») G ^ ( A x B), that is <p(A) x ^(B) c ^ ( A x B).

If /?[ : ft x 0 —>• ft, p2 : ft x 0 —> 0 are the canonical projections,
then pi(fy(co, 9)) n E is again an ultrafilter in E and so is ^(co) = &(co),
p2('^(co, 9)) n rjoc is an ultrafilter in r)^ and so is ty(9). By the claim W(co) c
PiC2C(co,9)) n E, ^ ( 0 ) c p2(<%(co,9)) n rjo,,. This implies p1(^'(a),9)) n E =

,0)) 0 ^ = ^ ( 0 ) . So if (<y,0) g ^ ( A x B), that is A x B e
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ty(,u),6) we have A e &(a>) and B e <fr(O), that is co e <p(A) and 9 € f^B), hence
BX(A x B) c ^(A) x iAoc(B), so ^ ( A x B) = <p(A) x fx(B).

Again (ry^, r̂TO, p1^) is an upper bound for Jf in 9S.

If for p € A (/A), CT G A ( V ) and n G A(/X®V) the equation (P) of Theorem 4 is true
we write n = p ®o and call n a product lifting of p and a. A lifting n e A(^®v)
is called decomposable if it is a product lifting.

For a sequence ((S2n, £„, /xn))n€N of complete probability spaces we define recurs-
ively forn G N a lifting p* on (®"=1(£2,-, S,, /n,-))A in the following way: Choose p e
A(/ii) and put p\ := p . If p* G A(/X!® • • • ®Ain) has already been constructed, we
find by Theorem 4 a pn + 1 € A (/*„+,) such that/o*+1 := px

n®pn+\ e A(/x,(8i • • • <§>/*,,+,)
for « G N. Then put

Px
n •= (((Pi ® (h) ® Pi) • • • <8> Pn-i) ® P«,

but we may not rearrange the brackets. For this product the following recursion
formulas hold true.

(i) p*{A x An) = p^(A) x pn(An) for all A G (®?r,1E/)
A and AB e SB, /i > 1.

(ii) I f < m < « t h e n p ; ( A x A m + 1 x - - - x A J = px
m(A)xpm+l(Am+l)x- • -xpn{An)

for all A G (<g>r=i£,)A, A,- e S ; (y = /w + 1 , . . . , «), that is

p* := ((p^ ® pm+i) ® • • • <8> pn-i) <8) P«.

In particular we have
(iii) p*(Ai x ••• x An) = pi(Ai) x ••• x pn(An) for all A,- G E, (/ = 1, . . . , n).
(iv) If 1 < m < n then ^ ( A x fim+1 x • • • x Qn) = px

m{A) x Qm+l x • • • x Qn

for all A G (<8>r=1E,)A.

The following is a generalization of theorem 4 for countable products.

THEOREM 5. Le/ ?/jere b<? given a sequence ((Qn, En, fin))neM of complete probab-
ility spaces with completed product (£2, E, /i). Then for any p\ e A(/ii)
pn e A(/^n) (« > 2) anrf p ^ e A(/x) such that

(i) Poo(A x UZn+i «/) = (A ® • • • ® pfl)(A) x ]!"„+, «,•/<»• A € S,® • • • (8>En> and
(A, x • • • x An x n ~ n + i «,-) = Pi(A,) x • • • x pB(AB) x f l L + i ^ . / ^ A; e

PROOF. For any « e N consider the cr-algebra E* := p^jCE,® • • • (8>En) where
p[n] is the canonical projection from Q onto J~["=i ^< an<l[«] := {1, 2 , . . . , n). Clearly
it holds true that E* c E* for any 1 < m < n. Let (E*)^ be the a-subfield of E
generated by En* U u for u := {A? e E : /x(Af) = 0}, £„ := /x | (En*)M and E* =
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\JneN (£*)M. Then E* is a field of subsets of Q and E is equal to the cr-field generated
by E*. Moreover/x0/7^j = fi^ • • • <£>/*„ foralln e N (cf. [17, VI,Proposition5.4]).
Define a lifting p*n for (Q, (En*)M, £„) by means of p*n(A*) := p*n(A) x n ~ B + i «/
where A* e (En*)M and A e £„ with A' = A x FI~n+i Q( a-e- (£«)•

It then holds true that p* | (E^)M = p^ for any m with 1 < m < n.
Indeed for A* e (E* )M there exists a set ^ e Em such that A* = .4 x n~m+i ^<

a.e. (/2m), /n e N. Using recursion formula (iv) following the proof of theorem 4 we
get

= p*(A x Q.m+\ x • • • x Qn x

= p^(A x S2m+1 x • • • x Qn) x

= px
m{A) x fim+1 x ••• x Qn x

Thus there exists a lifting p ^ e A(/x) with property (i) (cf. for example [17, XVI,
Proposition 1.8]). Relation (ii) follows immediately from relation (i) and Theorem 4.

3. Products of lifting topologies

For a complete probability space (Q, £ , /x) and a lifting p e A (^) can be associated
two so-called lifting topologies

p(i) .̂- e S 1 and ^ : = ( / l e E : A

Both ^ and 3~* are extremally disconnected topologies such that 3Tp c ^ * and
C6(n, 5^) = Cft(S2, *?;) = {/ € JS?°°(AI) : / = />(/)} (see [16, Chapter V]). Here
again we use the same notation for p and its uniquely associated lifting for functions
in^f°°(M) as in Section 2.

LEMMA 1. Let (£2,, £,, /A,) be a complete probability space, p, e A(/U,,) (;' =
1 , . . . , n), and denote by (£2[ x • • • x £2n, E, /^) a complete probability space such
that E ,®- • -<8)En c E a n J / i | Ej<8) • • -<8>En = /i,,® • • -<8>/xn. Then for a n € A(/x)
the following conditions are all equivalent.

(i) ^ , x • • • x ^Pn c E a« J 7T is strong with respect to 3"Px x • • • x &Pn.
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(ii) ^p* x • • • x ^ * c E and n is strong with respect to 3?p* x • • • x &£.
( i i i ) 7 r ( A , x ••• x A n ) = p x { A x ) x ••• x p n ( A n ) f o r a l l A , e E , 0 = 1 , . . . , n ) .
( i v ) ^ , x - . - x ^ c ^ , .
( v ) ^x---x^c^;.

PROOF. Either (i) or (ii) implies (iii). For /i, e C6(£2,-,^) = Cb(&i,<?*),
Q := ^ ! x • • • x Qn, pi : £2 —> J2,-, the canonical projection, we have A,- o
p,- € Cb(Q, ^ , x • • • x ^ , ) c C 6 (« , <^* x • • • x &*) for i = 1 , . . . , n). Let
&Px x • • • x S?Pn c E respectively 5 ,̂* x • • • x «̂ ,* c E and let 7r e A(/x) be strong
with respect to ^ , , x • •• x Z?Pn respectively ^p* x • • • x 2T*. Then it follows that

For A,- e E, (/ = 1 , . . . , « ) the sets Ax x • • • x An and px{Ax) x • • • x pn(An) differ
only by a set of /^-measure zero. Therefore n(Ax x • • • x An) = n{px{A\) x • • • x
/On(An)) = Pi(Ai) x • • • x pn(An), where the latter equality follows from (*) for
hi = x A ( A , ) 6 Cb(Qi, 2TP) = Ctfii, &•) (i = 1 , . . . , « ) .

(iii) implies (iv). Since r}t := {p,(A,) : A, 6 E,} is a basis for the topology 3~Pi

(i = I,... ,n). Therefore fj := {pi(Ai)x • • -xpn(An) : A, e E, (/ = 1 , . . . ,«)}isa
basis for the topology &Pl x • • • x 2TPn. By (iii) we have ^ c ^ , JP l x • • • x ̂  c «^;.

(iii) implies (v). rj* :={A!X---xAM : A, e ^,*(/ = 1 , . . . , n)} is a basis for the
topology &*x---x&£. Bu tA,x- - -xA n c p[ (A, )x - • -xp n (AJ = n-(Ai x- • - x A J
by (iii) for A{ x • • • x An £ tj*, that is rf c ̂ * , hence «^* x • • • x Sfp\ C « r̂*.

The equivalences (i) if and only if (iv) and (ii) if and only if (v) hold true by [16,
Theorem 3, p. 64].

THEOREM 1. Let (£2,•, 3[, E,, /x,) be a complete topological probability space with
a lifting p, e A(/tt,), Q,• ^ 0 (/ = 1 , . . . , n), let (£2i x • • • x £2n, E, /u,) be a complete
probability space such that E]® • • • (8>En c E and n \ E]® • • • ®En = /Zj® • • • (8>M«.
and let n e A(jti) satisfy

7r(A, x ••• x An) = p! (A, ) x ••• x p n (A n ) / o r a// A, e E, ( / = 1 , . . . , n ) .

77zen we have ^ x • • • x ^ c E / o r a n e A(/ii) and 7r is strong with respect to

3T\ x • • • x ^ i/arcd o« / j i /a / / p, are strong for i = 1 , . . . , « .

M o r e o v e r if £ , = < ^ ( £ 2 , ) , / A , i s c o m p l e t i o n r e g u l a r f o r i = I,... , n , E =

E,<8> • • • <g>En, and&0(Sl) = ^ 0 ( ^ i ) <8 • • • <g>^0(^«) ^ e n /ii<8> • • • <8>M« IS in addition

completion regular.

PROOF. If the liftings Pi (i = 1 , . . . , « ) are strong we have &\ x • • • x &„ c
3?* x • • • x &l. By Lemma 1, (iii) if and only if (v) it follows that ^ x - - x ^ ' c j ; .
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Since clearly 3~* c E we have 5; x • • • x X c ^*, that is n is strong by [16,
Theorem 3, p. 64]. On the other hand if 51 x • • • x 2Tn c E and 7r is strong then
d x Q2 x • • • x £2n e 55 x • • • x Sfn for d e 51 and hence Gi x £22 x • • • x Qn c
7r(Gi x £22 x • • • x &n) = PiC^i) x £22 x • • • x £2n. This implies G, C pi(Gi) for
Gi G 55, that is pi is strong. In the same way it follows that p 2 , . . . , pn are strong.

To show that \n is completion regular let A = A\ x • • -x An, A,- G E, 0 = 1 , . . . , n).
The completion regularity of /x, implies that A, G ^ 0 ( ^ , ) 0 = 1, . . . ,«)• So
there exist £,, F, G ^ 0 (^ , ) such that F, c A,- c F, and /x,(F, \ £,) = 0 for
any i = 1 , . . . , n. Hence E := £, x • • • x £„, F := Fx x • • • x Fn e B80{&),
E c A c F, and ^ (F \ £) = 0. Therefore A e «^0(fi) and hence E c 3go(Q). But
from 5^ x • • • x X c E it follows that 3S(Sl) = E and consequently ^o ^

REMARK 1. If p, e A(/A,) for a complete probability space (£2,, E,, /x,) then p, is
strong with respect to ^ = 8fPi respectively & = &* (/ = 1 , . . . , n). If we choose
p, 6 A (/A,) (i = 1, . . . , n) and p^ G A(/XI<8> • • • <8>AO according to the discussion
following Theorem 4 in Section 2 then by Theorem 1 for 51 = 5^, respectively
5J = 5̂ ,* (/ = 1 , . . . , «) it follows that p* is strong with respect to 5^, x • • • x 5^,
respectively 5̂ ,* x • • • x 5 ,̂*, that is 5J,, x • • • x 3TPn c 5 ^ respectively 5̂ ,* x • • • x
5̂ ,* c 5p;. This raises the question whether 5 ^ = 5 ,̂, x • • • x 5 ^ respectively
5̂ ,* = 5̂ ,* x • • • x 5̂ ,*? Barring measurable cardinals, Curtis, Hendricksen, and
Isbell proved (see [11, p. 53]) that a product of two topological spaces is extremally
disconnected if and only if one factor is extremally disconnected and the other one
is discrete. This implies the following result whose blanket assumptions are satisfied
for example by the Lebesgue measure space on [0, 1].

THEOREM 2. If we are barring measurable cardinals then for two complete prob-
ability spaces (S2,, E,, /i,-) and p, e A (/*,-) with non-discrete lifting topologies 3?Pi,
&* (i = 1, 2) the product topologies 5 ,̂, x 5 ^ , 5̂ ,* x 5 ^ are not extremally discon-
nected. If (£l\ x S22, E, /x) is a complete probability space such that E ^ E a c E,
H | Ei<8)E2 = /xi<|>/x2, 5 ,̂, x 5^,, ^ x ^ c E f/ien inparticular

5;, x 5^ ^ 5;, 5;* and ^ x 5;* # x , ?:

for any n G A(/x), and I/JT w strong with respect to 5£, x 5 ^ respectively
(/br example ifit = p^) then it holds true that

REMARK 2. By [8] there exists a compact Radon measure probability space F :=
(X, 5", E, /x) such that 5* x 5" 2 £<§)E and this situation occurs for complete
topological probability spaces such that (X, 5*) is compact extremally disconnected,
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\x is a diffuse Radon measure, and G £ £T, n(G) = ii{G) for all t? e 3T. Such
spaces are given by the hyperstonian space derived from a diffuse probability space,
for example the hyperstonian space of the Lebesgue measure space on [0, 1] will do
(see [8]). It is well-known that such spaces have a unique strong lifting a. Since G
is clopen for G e ^ we have Xc e C{X), CT(XC) = Xc- t n a t is G(G) = G. But
then /x(G) = /J,(G) implies cr(G) = o(G) ~ G. Moreover for any A € E w e find
a G £ & such that /x(AAG) = 0 by [7, p. 27] or [20, p.533 note 12] since F is
hyperstonian, and this implies a {A) = cr{G) = G, hence we get <% c & c ^ * .
Since (X, ^ ) is compact (X, X) must be too, and any ^"-compact subset of X is
X -compact; therefore /x is a Radon measure for f?a too. If we assume X Hausdorff
(this is true for example for the hyperstonian space of the Lebesgue space on [0, 1])
then 3f and &„ are completely regular and C(X, X) = C(X, &) = C(X, X*) since
•X Q & £ &*• This implies & = X- So from ^ x J g E i g i E w e infer X*X,
2Ta* x 3Ta* g

REMARK 3. Nevertheless it is a standard procedure (see for example [5]) to con-
struct for compact Radon measure spaces (£2,-, ,57, E,, /x,), / = 1, . . . , n a complete
probability space (J2] x • • • x Qn, E, /z) satisfying the assumption of Lemma 1 and
Theorems 1 and 2. For h e C ^ x • • • x Qn) define R(h) '•=/•• • jh(co\,... , u>n)
d(ii(coi) • • • dnn(con). Then 7? defines a positive Radon measure As = jit on the
complete a-algebra E := m{kR) of all A.R-measurable subsets of Qt x • • • x £2n.

For another procedure to construct for more general spaces (£2,-, tf, E,, fi,), i ~

1 , . . . , n a complete probability space ( ^ x • • • £2n, E, ^i) as above see [27, Theorem

1].

REMARK 4. In [28] is proved the existence of a so-called consistent lifting p for a
complete probability space (Q, E, /A), that is of a p £ A(/x) such that for all n e N
there exists a p " € A(/x"), /x" := /it® • • • <§)//. (n factors) with

/o"(Ai x ••• x An) = p(Ax) x ••• x p{An) for all A, e I (i = 1 n).

Let F := (X, ^ , E, /u,) be defined as in Remark 2 and choose a consistent lifting for
this space. If we assume p = a, a the only strong lifting for F, then Theorem 1
implies £?" c E", a contradiction for n = 2 according to [8]. Therefore the unique
strong lifting for F is not consistent and any consistent lifting for F is not strong. In
[29] Talagrand proves the existence of non-consistent liftings under the continuum
hypothesis. The above construction does not need this hypothesis. In particular F is
a space with the SLP but not with the USLP.

REMARK 5. We consider in more detail hyperstonian spaces (£2], &[, E], fi{) for
£2i y£ 0 which are derived from a diffuse probability space. Throughout a denotes the
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unique strong lifting of such a space and we assume the lifting topology S?a Hausdorff
(see Remark 2). Such spaces provide additional simplifications. Write £2 = Q\ x Qu

3 — ^ x 3X and let (Q, 3, AR, XR) denote the Radon product of {Q{, £>\, E,, ^i)
taken with itself according to Remark 3. Clearly 5T c AR.

For a measure space (Q, E, /z) such that E ^ E j c E and fj, |
(which holds true for E = AR, /x — kR) we have not in general 3 c E and hence
we define 7r e A(/x) to be ^ n E-strong if G c ^-(G) for all G € ^ n E. Such
liftings are uniquely determined by a on the generator of Ej <g> E].

(a) / /7r e A(ju.) W 5 " n X-strong then n(A x B) = o{A) x o(B)for A,B e E 1 ;

moreover 3 C E and 7r « in fact strong; this is in particular true for any strong

lifting of XR.

Indeed we have <rG4) x cr(B) e 3 for A, B e E, since ^ = X by Remark 2.
This implies a (A) x o(B) C 7r(a(i4) x a(B)). Since

x a(B))A(A x B)) = ^ ^ ^ ( ^ ( A ) x a(B))A(A x B ) ) = 0

wehaveCT(A)xcr(B) c jr(AxB). From this inclusion follows the converse inclusion
by considering the complement of A x B. Now Theorem 1 implies 3 c E since cr
is strong. In particular for E = E,®Si we have 3 % E by [8] (see Remark 2) and
(a) implies

(b) /Zi<8>Mi does not have 3 D (Ei<8>Ei)-.sfrortg lifting.
If we choose by Theorem 4 of Section 2 liftings p € Adu,]) and n e A(/U,(8)JLI,)

such that n{A x B) = a(A) x p{B) for A, B G Ei then we have
(c) n is not 3 n {Yn<&Y*x)-strong, p ^ a and p is neither strong nor consistent.
Indeed if n would be 3 D (Ej^EO-strong then (a) would imply n(A x B) =

o{A) x o(B) for A, B e El5 in particular S2, x p(Z?) = 7r(^! X B) = fii X
a(B) therefore p(B) = a(B) for B e E1; hence ^ c EidiEi by Theorem 1, a
contradiction according to (b).

(d) Assuming the continuum hypothesis andweight(Qu 3[) < c, c the cardinality of
the continuum (for example take the hyperstonian space of the Lebesgue measure space
on[0, 1]) then (Q, 3, A R,XR) has the ASLP by [9] but (Q, 3, E ^ E , , Mi®Mi) does
not.

This means that (Q, 3', AR, kR) has a unique strong lifting n e A(A.R) satisfying
n(A x B) = a(A) x o(B) by (a) while for (£2, 3, Ei<8>Ei, tx\®^\) does not exist
such a lifting by (b).

A natural question to ask is: Given complete probability spaces (Q, E, /z),(®, T, v)
and liftings p e A(/x),a e A(v) does there always exist a 'product lifting' n = p®al
It follows from (c) above that the answer is to the negative and this shows that Theorem
4 of Section 2 is the best possible result in the direction of product liftings.

The first author is indebted to Dr Grekas and Dr Gryllakis for finding a gap in an
earlier version of Remark 5.
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THEOREM 3. Let there be given topological probability spaces (£2,-, 5^, E,-, /A,-)
(/ = 1 , . . . , « ) 5MC/I r/uatf one of these spaces has the ASLP and all the other ones have
the USLP. Then the completed product fl"^, fl,-, FlLi # . (®?=iE/)A, (®?=1AOA) «
a topological probability space which has the ASLP.

PROOF. By induction on n we may assume n = 2. Let us choose an almost strong
lifting pi for /xt and then according to Theorem 4 of Section 2 a lifting /O2 for /x2

and a lifting n for /Xi®M2 such that 7r(Ai X A2) = Pi(A]) X PI(M) f° r ^/ € E,
(i = 1, 2). Since (£22. =̂ 2, E2, /x2) has the USLP p2 must be almost strong and there
exist Ni € E, such that /x, (N,) = 0, G, c p,(G,) U fy for G, € 5- (/ = 1, 2). Putting
yv := (JV, x £22) U (£2, x A 2̂) we have (.fii<S>fi2)(N) = 0 and

G, x G2 c (pdGi) x /t>2(G2)) UW = ff(Gi x G2) U N.

Since the set Sf of all G\ x G2, G, e ^ (/ = 1, 2) is a generator for the product
topology Sx x &2 it follows from [25, Lemma 4.1] that ^ x ^2 c E,(8)E2 and xr is
almost strong.

The following is a generalization of Theorem 3 for countable products.

THEOREM 4. Let{(Q,j, 5^, E,, fij))i€nbe a sequence ofcomplete probability spaces
with completed product (Q, 3', E, /z). Suppose that one of the spaces (Qj, ty, E,, /*,-)
/or / e N tos ?/ze ASLP and the other ones have the USLP. Then & c E a«d
(f2, ^ , E, ju,) /zai ?/i6 ASLP. Moreover, J / E , = i#(£2,), /x, w completion regular for
any i e N, and &0(£l) = (^)~, ^o(£2,) ^Aen /x w completion regular.

PROOF. We may assume that (£21; ^J, Si,/ixi) has the ASLP and all the other spaces
have the USLP. Then choose an almost strong lifting px for {Q.\, 3\, E : , /x^ and by
Theorem 4 of Section 2, for any n e N and i e ( 2 , . . . , n ) a lifting p, e A(/x,) which
is almost strong with respect to tf by assumption, and a lifting px

n e A (/Xi (§)••• <8>/xn)
such that for each A,- € E,- (/ = 1 , . . . , /i)

^ ( A , x • • • x An) = A ( ^ I ) x • • • x pn(An).

Then there exists a /x,-null set N,- e E, such that for each G, 6 ^ , G, c p,(G,) U Â ,
( / - I , . . . ,«) . Put

Nln] := (Ni x £22 x • • • x Qn) U • • • U (n{ x • • • x ftn_, x #„).

In view of Theorem 3 it holds true that (/xi<§> • • • <t>AO(N[«]) = 0 and for any G e
<j\ x • • • x tVfl

(1) G C
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Now let N* := p[n\(Nln]) and N := \JneN N*. Then it follows (i(N) = 0. By
Theorem 5 of Section 2 there exists a lifting Poo € A(fx) such that

00

(2) Poo(A x p [ £2,) = p*(A) x |~[ £2, for A 6 E,(g> • • • ®ZB.
i=B+l

For j , « e N let £2° := £2, \ Nit £^° := % n £2°, E,° := E, n £2°, /A? := Hi I £,°> and
let p,° be the lifting on E° defined by

p,°(A, fl £2°) := pi(Aj) fl £2° for any A, e E,.

Denote by (£2°, &°, E°, jn°) the completed product of the family ((£29, «^°, E,°, /x9)),-eN,
and let p0^ be the lifting defined by

p^iA n £2°) := Poo(A) n £2° for any A e E.

It is easily seen that relation (2) implies

Poo(/?,rl(A)) = A ~ ' ( A ( A ) ) for all A, e E, and / e N,

and hence it holds true that

p^oip^iAj)) = P^\p?(Aj)) for all A, e E,° and / e M.

The last relation and the fact that each p° is strong imply the £?*0 — £?% -continuity of
Pi for any / e N. Thus

— Poo — —

From the above relations it follows that & c E. Indeed for G e & it holds true that
G = (G n £2°) U (G n (£2 \ £2°)), G n £2° e ^ ° c E because of G n (£2 \ £2°) c £2 \ £2°
and /i(£2 \ £2°) = 0. Hence G e E.

To show that Poo is almost strong let G* := p[n\(G\ x • •• x Gn) for G, e ^ (i =
! , . . . , « ) . It follows from (1) and (2) that

Hence for G € & we get G c p0O(G) U N. Using now the same arguments with
those in the proof of Theorem 1 we conclude the completion regularity of fi.

COROLLARY. Let ((£2,-, %, ^0(£2j), MI))/EN ^ a sequence of Baire probability
spaces with completed product (£2, &, E.yu.). Suppose that one of the spaces
(£2,, &t, £8o{Sli), Hi) for i e N has the Baire-ASLP and the other ones have the
Baire-USLP, and BS0(p.) = (gj*L\ &o(&i)- Then (£2, &, E, (i) has the Baire-ASLP.
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PROOF. From [3, Proposition 3] each /^, is completion regular. We may suppose
that (S2i, f?x, S§0{Q\), fj,i) has the Baire-ASLP and all the other ones have the Baire-
USLP. So (S2i, ^ , ^ o ( ^ i ) , Mi) has the ASLP and all the other spaces have the USLP.
Applying now Theorem 4 we conclude that n has the ASLP and is completion regular.
Hence fi has the Baire-ASLP.

Property &0(Q) = (g)~, £8o(Sli) holds true for compact or Polish spaces Qt, i e N
(see for example [17, VI, Theorem 5.5 and Theorem 5.6]). For more general spaces
with the above property, see [21].

The product of two completion regular even Radon measures is not in general
completion regular (see [8, p. 288]). For positive results in special cases compare
also [13]. In [24] we study the same problem for uncountable products and general
projective limits.

Finally we remark that since the space F of [8] described in Remark 2 is completion
regular (see [6, p. 85]) and has the ASLP it has the Baire-ASLP too. Assuming that
the probability space (X x X, S? x 2T, £<§>£, A<,<8>M) has the Baire-ASLP then it
would be completion regular according to [3, Proposition 3], a contradiction to [8].
So (X x X, & x S?, £<8>i;, ix®ii) does not have the Baire-ASLP and hence the
above property is not in general invariant under the formation of products of Baire
probability spaces.

The authors are indebted to the referee for remarks and suggestions which led to
substantial improvements of the manuscript.
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