Received 30 October 2019
Revised 16 October 2020
Accepted 16 October 2020

Corresponding author
J. de Miguel Rodriguez
jdemiguel@us.es

© The Author(s), 2020. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution-
NonCommercial-ShareAlike licence
(http://creativecommons.org
licenses/by-nc-sa/4.0/), which
permits non-commercial re-use,
distribution, and reproduction in any
medium, provided the same
Creative Commons licence is
included and the original work is
properly cited. The written
permission of Cambridge University
Press must be obtained for
commercial re-use.

Des. Sci., vol. 6, e34
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2020.31

aey Design Society
aworklwide community

i CAMBRIDGE

UNIVERSITY PRESS

Design Science

Generation of geometric
interpolations of building types with
deep variational autoencoders

Jaime de Miguel Rodriguez ”!, Maria Eugenia Villafafie?, Luka Piskorec® and
Fernando Sancho Caparrini'
' University of Seville, Sevilla, Spain

> Imperial College London, London, UK
3 Aalto University, Espoo, Finland

Abstract

This work presents a methodology for the generation of novel 3D objects resembling
wireframes of building types. These result from the reconstruction of interpolated locations
within the learnt distribution of variational autoencoders (VAEs), a deep generative
machine learning model based on neural networks. The data set used features a scheme
for geometry representation based on a ‘connectivity map’ that is especially suited to express
the wireframe objects that compose it. Additionally, the input samples are generated
through ‘parametric augmentation’, a strategy proposed in this study that creates coherent
variations among data by enabling a set of parameters to alter representative features on a
given building type. In the experiments that are described in this paper, more than 150k
input samples belonging to two building types have been processed during the training of a
VAE model. The main contribution of this paper has been to explore parametric augmen-
tation for the generation of large data sets of 3D geometries, showcasing its problems and
limitations in the context of neural networks and VAEs. Results show that the generation of
interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour,
promising advances are presented.

Key words: artificial intelligence, artificial neural networks, computer-aided architectural
design, computer-aided design, deep generative models, deep learning, deep neural
networks, form-finding, generative design, procedural design, structural design, variational
autoencoder

1. Introduction

The last years have witnessed a proliferation of machine learning tools and
methods in the design community, in various academic and industrial fields.
While most of these methods, when related to design problems, are implemented
towards classification and prediction tasks, the more recent developments of deep
generative models such as variational autoencoders (VAEs) and generative adver-
sarial networks (GAN) have opened a different and appealing window of possi-
bilities within a core area of design disciplines such as generative design.

In design disciplines, the need for alternatives to a known design is a classic
situation. It manifests itself as a search for variations that can resemble certain
characteristics of the original known design, whilst being original in their own

1/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://orcid.org/0000-0003-0870-5067
mailto:jdemiguel@us.es
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2020.31
https://doi.org/10.1017/dsj.2020.31

Design Science

right. Deep generative models can help tackle such challenges, by producing output
samples that resemble features of the input sample. Being probabilistic models,
they allow for interpretable representations and measurable output predictions, in
addition to the adaptability and learning scalability of deep neural networks. This
research area — which includes VAEs, GAN, and more - is one of the most exciting
and rapidly evolving fields of statistical machine learning (Cunningham 2019).

The present work focusses on the use of VAEs (Kingma & Welling 2014)
models, which are a special kind of autoencoder that enforce a continuous
distribution in their latent space. By sampling from a continuous latent space,
these models generate new objects that inherit features from the samples present in
the training set, but are at the same time essentially unique. This study follows up
on previous work where the notion of a ‘connectivity vector’ was developed, which
represented the geometrical 3D object in a network fashion. This encoding resulted
in a data set of high-dimensional vectors.

By leveraging the way data are encoded, geometrical 3D objects can be
expressed as tensor-shaped input data sets for training. Thus, the challenge
becomes the balance of the high number of parameters of the model, especially
when relative to the amount of samples in the training set. The work presented in
this paper handles input composed of high-dimensional vectors containing the
data of geometrical objects. These objects will be called ‘building types’, since they
are simplified representations of the geometry of more sophisticated architectural
building objects. These are inspired by the structural wireframes of these building
geometries. By taking a simplified set of centre lines of the interconnected struc-
tural elements that compose an architectural object in 3D space, a wireframe is
created. Thus, this wireframe is representative of the core geometry of the building
type. Described by connectivity vectors, this geometrical object is used as input data
for a VAE model, opening up a methodology within machine learning applied to
3D objects that is applicable to the field of architectural design.

VAE models are shown to be able to generate many types of complex data.
Although initially trained on sets of 2D images, proliferated use of these models in
wider disciplines has driven the need for working with vector data and 3D
geometry (Gregor et al. 2015; Ha & Eck 2018). Various works within the design
community that map the potential of this approach have already been conducted
(Cudzik & Radziszewski 2018). Powerful techniques inherent to deep generative
models like sampling (White 2016) and feature vector arithmetic (Radford, Metz &
Chintala 2016) show great promise in the context of design.

Deep generative models typically require large data sets for training purposes.
Working with representations of structural building types allows for the implemen-
tation of parametric tools for data augmentation. This is due to the fact that building
types allow for individual samples to have various discrete yet observable character-
istics that enable them to be identified as part of a given family or type. In the
experimentation section, an account of the experiments conducted is presented. In
these tests, a VAE model trains on an augmented data set and learns to extract features
that are characteristic of the input building types. In the last stage of the process, the
generative capability of the network is used by sampling new points from the
continuous latent distribution that the model has learnt. The decoder then outputs
their corresponding connectivity maps that result in newly generated building types.

The work presented in this paper is intended to improve the results obtained
throughout the experiments conducted during the development of this method

2/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

(de Miguel et al. 2019), leading to overfitting of the learning process of model, such
as the following: (i) due to high dimensionality inherent to the technique used for
encoding 3D-objects, a large number of samples were required to train the model;
(ii) limited geometrical variation of the types at training and validation sets and,
(iii) models with densely connected layers resulted in a very high number of
parameters (150 M+ trainable parameters). This paper explores the following
solutions to the aforementioned problems: firstly, the development of a parametric
data augmentation scheme that enhances geometrical variation. Secondly, the
implementation of convolutional layers within the architecture of the model,
helping to reduce the number of parameters of the model while maintaining a
strong capacity to learn complex patterns. Lastly, a constrained variant of the
parametric augmentation method that allows for the limitation of the feature
spread of the geometries that compose the data set.

The work presented in this paper seeks to serve as a starting point for exploring
future avenues of generative design, especially when in search of alternatives to a
known building configuration. The main contribution of this paper is to provide
new insights into how parametric augmentation techniques might improve VAE
learning in the context of 3D building wireframes. Despite the fact that the current
output is still very much a work in progress, the resulting 3D wireframes can be
conceived as the first step towards the interpolation of geometries from a set of
known input types. Thus, this methodology can serve for experimentation and be
further explored by architectural design disciplines. This is only a snippet of the
possibilities that this methodology can unlock.

This paper begins with an introduction to the methodology and the motivation
igniting this work, and is followed by a brief review of the state of the arts
techniques and related works as implemented in similar contemporary research
projects. The methodology section is arranged in three parts: data representation,
VAE and network architecture. In the first part, a detailed description of the
methods used for data representation is presented: A parametric approach to data
augmentation, and the improvements brought through its implementation. Then,
a description of the encoding method based on the concept of a 3D-canvas with
voxelized wireframes is presented: In this 3D-canvas, the input geometry of the
building types is represented through their connectivity map and augmented to
increase the size of the training set. This is followed by a description of the revised
neural network architecture used: VAE model, now with convolutional layers. The
model learns a continuous latent distribution of the input data from which it is
possible to sample and generate new geometry instances, essentially hybrids of the
initial input geometries. Finally, results of these computational experiments are
presented, as well as conclusions and outlook for future research in this field.

2. Literature review

Creating new instances based on information of known references is a classical
necessity within design disciplines. From an initial known design, one could desire
to preserve some of its features by ‘importing’ these into a family of new designs,
conceived as variations of the original one. Generating this family of new designs is
a task that can be addressed with either manual or computational methods.
However, one could argue that both of these types of methods could be ‘algorith-
mically’ addressed: by identifying the design features that one may wish to preserve

3/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

(so that they are found within the instances of the new family of designs), a set of
rules can be specified so that the selected features are applied with different
gradients, making each instance unique yet identifiable as part of a design family
of shapes (Gips & Stiny 1972).

However utilitarian, tools of this nature may support the creative production
within design disciplines, by offering a dynamic way of obtaining variations of the
known reference for further evaluation. This latter evaluation shall be performed
with tools of a rather serviceable nature. In this regard, machine learning tech-
niques for 3D shapes are implemented in various different tasks of geometry
manipulation for evaluation purposes. These tasks can be classified in the following
categories: Single object classification (Maturana & Scherer 2015; Wu et al. 2016a),
3D pose estimation (Wu et al. 2016b), multiple objects detection (Song & Xiao
2016), scene-object semantic segmentation (Kalogerakis et al. 2017), 3D geometry
synthesis-reconstruction (Pavlakos et al. 2019) and many other categories that are
serviceable to the technical aspects of working with 3D geometry.

When related to design disciplines, some machine learning research projects
around production of 3D objects delve into techniques where deep generative
models actually operate with 2D data sets. Thus, after training, a geometric entity in
3D space can be assessed as a result constructed from the information acquired
from the 2D output of the model (Kelly et al. 2018; Wang et al. 2018; Hoyer, Sohl-
Dickstein & Greydanus 2019). An implementation of this technique in the field of
architectural design, for generating new instances of 2D graphs representing
architectural layouts of living units, finds inspiration in ‘composing high perform-
ing parts of separate design entries into a new whole’ (As, Pal & Basu 2018).

The work reviewed in this section is impressive in terms of innovation and wide
implementation of novel deep learning algorithms developed in the recent years. In
the spirit of establishing a comparison of research efforts, three papers have been
selected, since the work they present offers clearly similar efforts as well as starkly
different approaches for overcoming challenges around the task of generating 3D
designs. The papers for comparison are VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition (Maturana & Scherer 2015),
MeshCNN (Hanocka et al. 2019) and Generative Deep Learning in Architectural
Design (Newton 2019).

In terms of similar research efforts around shape representation, MeshCNN
proposes a workflow where 3D objects are represented as tetrahedron meshes, and
the connectivity of the edges of each mesh informs the architecture of the model, by
accounting for the size of the convolutional layer. In a similar spirit, the work
presented in this paper relies heavily on vectors denoting the connections between
points in 3D space. These points are evenly distributed across space within an
envelope where the building wireframes are constructed. This space will be called
3D-canvas’.

However, in the work of MeshCNN, meshes are nonuniform representations
of the shapes. Since these are essentially numbered point clouds, the objects result
in irregular structures. Different to this approach, the methodology presented in
this paper operates in a 3D-canvas of consistent size and spacing, thus obtaining
uniform representations of shapes across all building types present in the
data sets.

In the work of Newton and Maturana, the 3D objects present in the data set are
denoted in a consistently sized 3D envelope (‘occupancy grid’, in the work of

4/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Maturana), using voxels within this 3D space. This differs from the work presented
in this paper, where a connectivity vector carries the information of the lines
present at each point of the 3D-canvas. This format, bespoke to the connectivity
within the 3D-canvas, finds inspiration in the more classical way of encoding
images for neural networks - for example, stacking pixel values of an image along a
vector. This format lends itself to carrying more information of the wireframe if
required, for each point in this 3D space, thus becoming a flexible way of portraying
the information of each sample of the set.

In terms of similar research efforts around model architecture, the work of
Hanocka and Maturana utilises convolutional neural networks not for generative
purposes but for classification of 3D objects (meshes in the work of Hanocka,
voxelised geometries in the work of Maturana), whereas the work of Newton
revolves around the implementation of various types of GAN for creation of 2D
and 3D designs, assigning one best model architecture to a specific task with a
specific shape of data set. The work presented in this paper utilizes VAE, although
also a type of generative networks, this is different from GAN due to the aspect of
reconstructing data points from the latent scape rather than generating samples by
competition within the network.

In terms of similar research efforts around data augmentation, the work
presented in MeshCNN makes use of well-defined data sets, with no need of
augmenting the number of samples to use for training. However, the works of
Maturana and Newton make use of augmentation when dealing with 3D objects,
using rotation as the preferred augmentation strategy. These three approaches are
different from the one presented in this paper, in that it incorporates a strategy for
parametric augmentation, although a similar approach can be found in the work of
Newton (2018). It is important to note that implementing this strategy would not
be possible in a nonuniform representation shape technique.

Summarizing all the above-mentioned aspects, the work presented in this paper
articulates, firstly, a strategy for shape representation based on indexing lines
through connectivity vectors. Secondly, a strategy for data set augmentation based
on parameters liaizing with variations internal to the type. And, finally, the
implementation of VAE, a generative method for the interpolation of new
instances stemming from shared attributes of two and potentially more different
types. The innovation of this work revolves around the articulation of these three
aspects.

3. Methodology

3.1. Data representation: connectivity map

In order to train a VAE, it is crucial to prepare the 3D geometry in a way that can be
parsed through the network. This means choosing the most compact way to
represent the geometry, avoiding redundancies whilst retaining full information.
The scheme presented here is based on a 3D-canvas, which consists of a rectangular
3D volume discretised in cube-shaped cells within which the input geometry is
contained. Each cell of the 3D-canvas contains labelled connectivity vectors that
can be activated or deactivated depending on the input geometry. These connec-
tivity vectors represent wireframe segments in different orientations that are used
to approximate the input geometry in 3D space. To keep the data representation

5/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

2D canvas

input vector dim = height x width x 4

A,B,C,D
4 possible connections between nodes

Figure 1. Diagram of the connectivity vector scheme for a 2D geometry.

3D canvas

input vector dim = height x width x depth x 13

A0, A1, A2, B0, B1, B2, C0, C1, C2, DO, D1, D2, Z2
13 possible connections between nodes

Figure 2. Diagram of the connectivity vector scheme for a 3D geometry.

compact and without overlaps, parallel connectivity vectors are discarded and only
13 vectors for each cell are considered, as shown in Figure 1 and Figure 2. To
illustrate the scheme, simple geometry and connectivity vectors are depicted in
Figure 3 and Figure 4, showing the same principle working in 2D space.

At the beginning of the routine, a 3D-canvas is generated ‘around’ the input
geometry, so that the full extent of the input can be encoded within it. Wireframe
line segments of the input geometry are then snapped to the grid defined by the
cube-shaped cells of the 3D-canvas and corresponding connectivity vectors are
mapped according to each one of the orientations of the snapped line segment. This
process is iterated throughout each cell of the 3D-canvas (which acts as the
container of the input geometry) until the full extent of the input geometry is

6/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

described in this way. This information is then stored in a set of vectors labelled by
their corresponding grid coordinate (3D-canvas) and containing the 13 connectiv-
ity values. Each value is marked with a letter and a number indicating its orien-
tation in the cells. In previous work, instead of using a binary value for the presence
of a connectivity vector (0 or 1), a continuous value representing a percentage with
a domain [0, 1] was used to enhance data augmentation. Although not implemen-
ted in the current model, this continuous value could be used in the future to
encode the thickness of the structural wireframe element, where smaller values
would correspond to thinner elements and larger values to thicker elements. This
principle could be used to encode other structural or material properties as well.

Parsing the input geometry into a connectivity map was implemented in
Rhino5 using a custom written Python script. The connectivity map itself is stored
as a plain text file and read directly by the Python script used to train the VAE. In
order to be used as an input, each value from all the connectivity vectors of the
3D-canvas is mapped onto a single input neuron. In the training examples
generated, a 3D-canvas with dimensions 21 x 21 x 21 is set up. The 3D-canvas
is then composed of 21 cells along the X-axis, 21 cells along the Y-axis and 21 cells
along the Z-axis. This resolution is sufficient to distinguish structural types like
arches, wall and surface elements, volumes with cavities, openings, etc., allow for
the design and implementation of instances of neural networks which are trained
for recognition and handling of data pertaining to the field of architectural
geometry. With each cell having 13 connectivity vector values assigned to them,
the number of input neurons for the VAE is therefore calculated as 21 x 21 x 21 X
13=120,393. As the number of training parameters in a neural network grows with
the number of input neurons, this size of the 3D-canvas is close to the limit of what
can be reasonably dealt with in terms of available computational power.

3.2. Data set generation: parametric data augmentation

Training neural networks of any kind requires large amounts of input data. Addi-
tionally, these data should ideally be as continuous as possible in terms of raw input
values. For images of 3D objects, this continuity implies gradual changes in trans-
lation, rotation, scale, colour and brightness values of the input data. This continuous
variation on the level of pixels arises naturally when there are many data samples
available. If the number of available training samples is insufficient for conducting a
good-quality training, data augmentation can be used as a technique used for
increasing the number of training samples by artificially adding variation to the
input data (Goodfellow, Bengio & Courville 2016). Different augmentation
approaches are designed to capture data invariances — changes to the data set, which
leave the underlying high-level features unchanged. If implemented correctly, they
increase the robustness of the model training by teaching the model to distinguish
meaningful from superficial variation in the data set. Standard augmentations for
image data are categorised as being either geometric or photometric (Shorten &
Khoshgoftaar 2019). With the exception of noise injection implemented on a
geometric level as random probability that any of the connectivity vectors flip its
state, only geometric augmentations could be used with 3D wireframe data sets.
Prior to the experiments conducted for this paper, the number of training
samples was only two, corresponding to two input models between which the
variational autoencoding was to be performed. In previous research (de Miguel

7/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

et al. 2019), to augment the training data, simple random translation of the input
models was used inside the 3D-canvas to increase the number of training samples
to 3000. Initial experiments using rotation as an augmentation strategy were not
successful, as rotations in a rectangular grid could not be implemented as gradual
transformations but only as 90A° steps. These discretely rotated samples would be
considered as separate sample categories by the neural network, thus defeating the
purpose of the strategy. Similar limitations for scaling the input models were found.
Based on these findings, initial experiments used only discrete randomised trans-
lation to augment the training data.

An augmentation technique that is adopted in this paper is parametric aug-
mentation. Instead of manually modelling training samples as 3D wireframes, a
stochastic parametric generator is implemented that produces samples satisfying
certain constraints. For this paper, the stochastic generator is implemented in the
Rhino Python environment for two models: (i) Hejduk-inspired structure (castle)
and (ii) CCTV building (China Central Television) (Figure 5). Both model imple-
mentations include parameters like total length and width of the model, height of
the individual floor, number of floors of different model segments as well
as thickness of certain model features (i.e., width of the towers) (Figure 6 and
Figure 7). Domains of each of these parameters are fixed by determining minimum
and maximum allowable values. Generation proceeds by randomly sampling these
domains from a uniform distribution. As it is sampled only from discrete domains
with integer values, the resulting model is snapped to the cells of the 3D-canvas
before writing the connectivity map.

Generation of models follows procedurally, building up from basic elements to
composite ones — floor plan outlines, floor volumes and floor volume stacks. Model
generators for castle and CCTV models are implemented as simple procedural
drawing functions in the Rhino Python environment. Final experiments conducted
for this paper use training samples consisting of 3D wireframe models constrained in
dimension to a 21 x 21 x 21 unit 3D-canvas. Because the parametric augmentation
is using discrete domains rather than continuous ones, it is possible to calculate the
number of potential model permutations by multiplying the domain sizes for each
parameter, totalling 72,900 for the castle and 27,075 variations for CCTV models,
respectively (Figure 8 and Figure 9). This shows that parametric augmentation
method would be less effective for certain geometries where fewer variations can
be obtained.

In the presented model training workflow, parametric augmentation is just the
first step on top of which another data augmentation is applied, namely, transla-
tion. Future improvements of the model could include introduction of noise
applied to the training samples in order to increase the robustness of the VAE
training process.

The Keras library provides many options for dynamically augmenting image
data using packages like Imgaug, Albumentations and Augmentor. While these
work well for augmenting image data, they are not directly useful for working with
3D wireframes and therefore could not be implemented within the presented
workflow. As a result, data augmentation and storage of all the training samples
had to be performed before loading them separately during training.

In conclusion, this workflow shows great potential in using parametric aug-
mentation for generating large training data sets from an initial set of parametric
models. Parametric modelling is already a well-established method in the field of

8/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

computational design and is especially suitable for preparing data sets consisting of
3D geometries. It is still an open question if the neural models are able to learn
meaningful features beyond the rules already applied to the parametrisation of
models.

3.3. Generative model: variational autoencoder

VAEs (Kingma & Welling 2014) mix neural networks with probability distribu-
tions to construct generative models. These models are capable of producing
synthetic data that follow the same patterns as the large data sets they feed on. A
generative machine learning model can be interpreted simply as an algorithm that,
after training with a data set, randomly generates a new output that resembles the
training data, and it has normally been used to generate images or texts.

From the point of view of neural networks, a VAE (Doersch 2016) is con-
structed from an autoencoder (Goodfellow, Bengio & Courville 2016) made up of
two networks: an encoder, that transforms its inputs into an internal representa-
tion that extracts the main properties of the input data, and a decoder, that recovers
the original input (as accurately as possible) Figure 10.

Normally, these two networks are trained simultaneously as a unit in order to
couple their behaviour. The loss function (also known as reconstruction loss), that
measures how much a decoded object resembles the input object, is used as a
mechanism to guide this training and reduce the error between them.

Once an autoencoder is obtained, the space of intermediate representations
(the latent space) and the decoder can be used to generate new outputs similar to
those from input data. However, generic autoencoders present some problems in
this task, the main one being that in most cases the latent space is not a continuous
space. Empiric evidence indicates that an interpolation in the intermediate repre-
sentation space does not correspond to a similar interpolation in the original data
space. For example, if the inputs were hand-written characters, an intermediate
representation between a representation of an object of type ‘a’ and another of type
‘b’ does not generally correspond to a new object that would potentially share the
properties between those two objects. Thus, when picking a random point from
this space, the decoder is likely to produce a very unrealistic output that is not
recognisable as an object similar to those in the training data.

Instead, in VAEs, the decoder must learn that not only does one specific point
correspond to a representation of the input but also the whole region around must
produce outputs with a low reconstruction error, facilitating the continuity of the
latent space. When this model is trained repeatedly over a good number of inputs,
the decoder associates complete areas, and not just isolated points as in traditional
autoencoders, to slightly different variants of the same output. This generates a
much smoother and interpolated latent space capable of producing new outputs
that share common features from diverse inputs.

As long as the VAE model does not provide a single encoding, but a set of
encodings that, with greater or lesser probability, could be the result of the encoder,
the usual loss functions (representation losses) are not adequate to measure the
error that the network presents during training. In order to solve this problem,
from a theoretical point of view, a new factor is introduced in the loss function,
called KL-divergence (Kullback-Leibler Divergence) (Kullback & Leibler 1951),

9/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

3D canvas - indexing lines at each position
vector syntax

0,0,0
A0:0,A1:0,A2:0,B0:0,B1:1,B2:0,C0:0,C1:0,C2:0,D0:0,D1:1,D2:0,Z2:1

0,0,1
A0:0,A1:0,A2:0,B0:0,B1:0,B2:0,C0:0,C1:0,C2:0,D0:0,D1:1,D2:0,22:0

0,0,2
A0:0,A1:0,A2:0,80:0,B1:1,B2:0,C0:0,C1:0,C2:0,00:0,D01:0,D2:0,22:1

Figure 3. Sequential construction of a 3D building type with the proposed connectivity vector scheme (vector
detail).

3D canvas - indexing lines at each position

Figure 4. Sequential construction of a 3D building type with the proposed connectivity vector scheme
(geometry detail).

which, instead of measuring the distance between points, measures the difference
between two probability distributions.

As usual in machine learning, some conditions can be imposed on the network
so that it becomes able to learn a convenient distribution (usually, a Gaussian
distribution, as it offers simplicity in the implementation).

3.4. Neural network architecture

Neural network architectures constitute mathematical models whose optimal
design is difficult to determine. In essence, they are networks composed of minimal

10/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

=
<
=
<]

//

/

Figure 5. CCTV headquarters, its representative geometry as a snapped set of lines
within the 3D-canvas and a part of its corresponding connectivity map.

thickness
b N
total height =
number of floors
x floor height
floor height
N "

Figure 6. Parameter scheme for Hejduk-inspired samples.

computing units inspired in biological neurons. There are almost countless con-
figurations, parameters and hyperparameters in a neural network that defines its
architecture and performance. The simplest architecture (feed-forward) is mainly
defined by the number of hidden layers and the size (number of neurons) of each
layer. The interlayer connection of neurons is subject to a range of configurations.
In dense layers, all the neurons of one layer are connected to all the neurons of the
next layer. There are, however, other types of connection schemes like convolu-
tions, where only neurons that share a similar spatiality within the layers are

11/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

thickness

total height =
number of floors
x floor height
floor height
width
length

Figure 7. Parameter scheme for CCTV samples.

connected. In other schemes such as recurrent networks, the output of the neurons
is also fed back into the same neurons as input.

Apart from the architecture, there is also a high number of parameters and
hyperparameters that determine the performance of the learning process. Among
the most notable hyperparameters are for example, the algorithm chosen to minimise
the loss function and the error or evaluation metric used. Popular algorithms
employed to find local minima in the loss function are the Stochastic Gradient
Descent, Adaptive Gradient (Duchi, Hazan & Singer 2011) or Root Mean Square
Propagation (Hinton, Srivastava & Swersky 2012) among others. Each of these
algorithms in turn may be adjusted by a number of parameters such as learning rate,
momentum and, etc. Regarding error metrics, these offer different ways of measuring
how far is the resulting output from what is expected. Some of the most commonly
used metrics are the Mean Squared Error, Mean Absolute Error and Binary Cross
Entropy, among others. The decision of the specific metric to use depends on the
particular problem at hand, and although it affects the learning process substantially,
there is no upfront method that may determine the optimal choice.

Another important hyperparameter is the activation function of the neurons
within each layer, which plays a fundamental role in mapping the output values
of a layer. Typical activation functions are for example, sigmoid (maps values to
0-1 range), hyperbolic tangent (tanh) and rectified linear unit (ReLu). During training,

12/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

OO0
V0N

\ X577
\ﬁ.ﬂ.ﬂ.\\\\\
s

(X\X/
BN

which
13/35

>

Design Science

X\

v
/44»»«»4
A/

inspired castle).

Figure 8. Parametric generation of samples (Hejduk

it is common to perform back-propagation not for every single sample of the data set,

but for groups of these referred to as batches. The error to be back-propagated at the

end of each batch is the average computed among the samples that compose it. The
size of the batch is often a critical parameter in the training process and it has been

observed that in many cases, networks converge faster and perform better against the
validation set with batch sizes larger than 1 (which would be equivalent to not using

batches at all).

that neural network models present an extremely high

, therefore,

It is clear
variety of possible configurations. On top of this, there exists to this date no

straightforward methodology to determine the optimal configuration of a model

for a given data set. Neural network models are very sensitive to input data; what
may work for a certain problem is likely to perform poorly for a different data set.

For this reason

the optimal setup of the model has to be found through heuristics,

>

with the added difficulty that the search space is overwhelming. To complicate

learning problems may require the use of huge data sets

things further,

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Wisices:
FAVAVAVAVAN

NN
VAVAVAVAVAVAVAY

VAVAVAVAVAVAV
4»4»4»4/

YAVAVAV.S
YAVAVAVAVAVAVAY

ARAARRXA

WX
o»ﬂo»o»r////,
\\\\5.\\\\\\

T, /50

O A
X

AARXARA,

AVAVAVAVAVAV
e,
VAVAVAVAVAVAY

thereisa
14/35

>

hinder the possibility of

>

). In the present work however

Some of the most relevant approaches to this problem have been the imple-
mentation of heuristics through genetic algorithms. Genetic algorithms allow the
space of hyperparameters to be searched in a systematic way and have been proved
large overhead in terms of computation due to the magnitude of the problem that is
being dealt with. Working with 3D data sets implies that the networks have to learn
features from very large samples, and therefore, the models must be configured in a
way that allows for accommodating a high level of complexity (the network must
be ready to approximate very complex functions). The combination of a powerful
network architecture and a large data set (+50 k samples, 1 MB per sample) trans-
lates into vastly time-consuming training. This circumstance entails a strong
limitation in the number of experiments that may be carried out in a reasonable

(Stanley & Miikkulainen 2002), especially so, when compared to more traditional

very effective in determining efficient configurations for neural network models
grid-search approaches (Pontes et al. 2016

make training processes a rather slow endeavour and, thus

massive testing through the search space.

Design Science

Figure 9. Parametric generation of samples (CCTV).

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Encoder Decoder
Input layer Output layer
Training set 1 Hidden layer Sample Hidden layer Reconstructed set 1
Hidden layer from Hidden layer
Hidden layer N@©.1) Hidden layer
SR
XA
R CS so/agNe

£
V“v' ylg 'e Latent layer ﬂ
C R

,;%ww,»e

GiSy

FEN
N s 2 eeve
%

il

ANAYAYAYA
\7
o

NI

“.
(Y

NARKRRRRN

Q0

A

D, [N(u,0) | N(0,1)]

Training set 2

NARARRRRN

!
=1
+ = Loss — ReLU activation
’—‘ f sigmoid activation ’—‘ Reconstructed set 2
> Reconstruction Loss <
Figure 10. Generic diagram of the network architecture of a standard VAE.
Geometry — Representation — Parametric Augmentation
TR : W tew, i 0
1 LY e 8 / g o
/ ooiy g0 \
;”‘T'"x G B e 1 ..
Free 'Ll'mlted
o variations match
all variations allowed exact size of dataset
R AR \ /
CR I A A A - Variational Autoencoder
BEBUEED e V4
;; ;; ;; & :: ‘:s ’: ‘;:" w;:; ﬁ Encoder Decoder \
RS <A LY R R Training . & Training
B0 Dense Conv3D
05t et ot e scheme ; K scheme
L EEEETE R
~a~R-E~0-N-E-N- N~
B e

New Geometries ¢

A}

Sampling from
Latent Space

Figure 11. Workflow diagram of the proposed methodology.

amount of time, despite employing one of the best GPUs (graphics processing unit)
available in the market.

Given the context, this early study does not focus on searching exhaustively for
an optimal network configuration, but rather, it simply attempts to find a network
architecture that is capable enough of clearly separating geometric types in the
latent space of the VAE. Finally, before moving onto the next section, Figure 11
presents a complete diagram of the proposed methodology.

15/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

4. Experimentation and discussion of results

Throughout all the experiments conducted in the present work, the source data set
is initially composed of 30k variations of a CCTV-inspired building and another
30k variations of a Hejduk-inspired structure. In the last experiments, this number
is increased to 75 k variations of each type. The 3D-canvas on which these samples
are inscribed is consistently set as a grid of 21 x 21 x 21 units. In all cases, the
connectivity vector for each grid point takes 13 values and the latent space of the
VAE is always fixed to 2 dimensions (2 neurons in the bottleneck of the auto-
encoder). In VAEs, this low value is justified by the fact that high dimensionality in
the latent space has been shown to deliver poor results (Kingma & Welling 2014)
and has been pointed out as responsible for ‘soap bubble’ effects in the outputs
(Davidson et al. 2018). Encoders and decoders are defined as symmetrical as
possible. Regularisation techniques such as drop-out layers have not been used
because they may compromise the definition of the reconstructed geometries. The
reconstruction error metric used is Binary Cross Entropy, as is commonly recom-
mended in VAE models (Creswell, Arulkumaran & Bharath 2017). However, the
performance of the models will be evaluated also qualitatively from a design
perspective since the objective of this research is to provide a generative tool for
design. In particular, the assessments will consider the uniqueness and the hybri-
disation of features present in the generated geometries.

The first pair of tests aims at comparing the performance of (A) the data set
generated through parametric augmentation, as explained earlier, and (B) the
previous augmentation strategy implemented by the authors (de Miguel et al.
2019), which is based on a combination of displacements of the geometry and
random noise in the values of the connectivity vector. For this purpose, both data
sets are trained during 25 epochs under the same feed-forward network with only
one hidden layer, for the sake of simplicity. The encoder configuration features an
input layer of 21 x 21 x 21 x 13 neurons and 1 hidden layer of 512 neurons as seen
in Table 1. The decoder is exactly symmetrical, and the latent space is two-
dimensional.

In the case of the displacement and noise data set, training yields much lower
error rates than parametric augmentation (Table 2, Table 3 and Figure 12). This is
understandable, as the spectrum of geometries enabled by the new method is much
more diverse and, thus, requires stronger learning capabilities from the VAE
model. However, the latent space resulting from the latter shows that the network
is already able to differentiate the two building types to some extent (Figure 13a),
whereas the latent space corresponding to the former is far from capable of
rendering this distinction (Figure 14). Additionally, there are distinct structural

Table 1. Network architecture of preliminary experiments

Hidden layer Latent Hidden layer Output
Input layer (H1) space (HY) layer
Type - Dense Dense Dense -
Size 120,393 (21 x 21 x 21 x 13) 512 2 512 120,393
Activation rely relu Relu relu sigmoid
16/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Table 2. Hyperparameters and results of preliminary experiments

Batch Learning
size Optimiser rate Validation loss Validation loss
(A) parametric (B) random noise +
augmentation displacements
128 RMSProp 0.0005 1,261.57 401.35
° © 0.0010 1,246.69 400.72
© © 0.0015 1,279.31 399.61
° © 0.0020 1,311.84 405.06
2500
—— v_loss (parametric augmentation)
O t_loss
4 —— v_loss (noise + displacements)
20009 A t_loss
15001,
m M
° \
10004 4
500 \.‘___
01— . . . :
0 5 10 15 20

epochs

Figure 12. Best training results for both the parametric augmentation data set and the
previous random displacements + noise data set.

features that can be observed in the latent space corresponding to the parametric
augmentation data set (Figure 13b), which are not present in any form in the other
latent space. Finally, in Figure 13a, the VAE was able to spread out the samples
taking a broader portion of the latent space than in Figure 14, where most samples
are concentrated in between the values (—2.5, 2.5) on the vertical axis. While these
are purely visual observations, it is advisable to approach this analysis from a more
rigorous methodology in future work, especially in cases where the distinction is
less obvious.

A plausible interpretation of this apparent contradiction would point to the
possibility that the variety of the information contained in the data set generated
through random discrete displacements (which are very limited in comparison
with the volume of the data set) and random noise in the values of the connectivity
vector is not rich enough to enable the learning of relevant features. If the network
learns features that are not representative of the inputs, it may not be able to
separate them on a latent space even if it succeeds in reconstructing them.

17/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

50

-15 5.0 -25 00 25 50 75 10.0

Figure 13a. Latent space. Encoded samples from the parametric augmentation data
set (yellow and purple dots represent each of the two training categories).

Figure 13b. Highlight of observed structural features in the latent space from the
parametric augmentation data set.

Accordingly, it is concluded that the data set produced through parametric
augmentation offers better prospects for further training. It must be noted, though,
that there is a distinctive feature that clearly differentiates the two types: the CCTV
has no diagonal elements. This may give the VAE a head start in the training
process in terms of separating both classes in the latent space. In order to test for

18/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

0.0

-10.0

Figure 14. Latent space. Encoded samples from the random displacements + noise
data set.

generality, more types should be scrutinised. However, this early work attempts
only to carry out an initial exploration on the potential of the methodology
presented here.

Upon proof of the potential benefits of the aforementioned parametric aug-
mentation strategy, the second set of experiments attempts to establish whether a
network architecture based on 3D convolutional hidden layers would outperform a
model containing only linear layers that are densely connected. Convolutional
layers can help to keep the number of trainable parameters in check, as will be
explained in the discussion of results. This is important because if the ratio to the
number of training samples is overweighed by the parameters, then there is a very
high risk of overfitting. Deep architectures can be extremely powerful; however,
there is a trade-off between the magnitude of the problems that a neural network
can solve and the overfitting of the network to the data, as shown in Figure 15.

For this set of experiments, two groups of network architectures have been
selected upon further preliminary testing. The first group (A-Conv) includes three
convolutional schemes and the second (B-Dense), three standard feed-forward
configurations with varying numbers and sizes of hidden layers. The first model
(C21-C7-D512) of the A-Conv group features two 3D convolutional layers in the
encoder, leading to a linear dense layer of 512 neurons and a symmetrical decoder.
Latent space is again 2D (and will remain the same in all the experiments). The first
of the layers is a 3D convolutional layer arranged spatially as 21 x 21 x 21 neurons
with a depth of 13 channels. Convolutions are applied in 3 x 3 x 3 units with
maximum overlap. The size of the second one is 7 x 7 x 7, and the rest of the
configuration remains identical. The second model (2 x C21—-2 x C7-3 x D512)
duplicates both convolutional layers and adds two more dense layers of 512 neu-
rons at the end and beginning of the encoder and decoder, respectively. Repetition
of convolutional layers has delivered good results when applied to deep neural

19/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Table 3. Training results for preliminary experiments

Training loss Validation loss
Parametric augmentation 1242.39 1247.02
Noise + displacements 467.56 471.63

Error

1

) . .

. . Cross validation error
1

Training error

Degree of polynomial

Figure 15. Model complexity versus training and validation errors (overfitting
problem).

networks (Simonyan & Zisserman 2015). Finally, the third model (3 x C21-3 x

C7-4 x D512) adds another convolutional layer in between each of the two pairs of
convolutional layers of the previous model. Both these new layers feature an
increased depth of 39 channels. Also, at the end of the encoder, an additional
dense layer is allocated maintaining the same configuration of the three preceding
layers. The decoder as always is the exact mirror. The three architectures described
above contain 982k, 578 M and 6.725M trainable parameters, respectively. For
each one, different learning rates have been tested, and the final configuration is
shown in Tables 4a—c. Training results for the A-Conv set are shown in Figure 16.

In the B-Dense group (Tables 5a-c), the first model (D2048-D512) bears two
hidden layers that are densely connected for both encoder and decoder. The first
hidden layer holds 2048 neurons and the second one 512, which amount to
495.35 M trainable parameters. In the second model (4xD512), these two hidden
layers are replaced by four identical hidden layers of 512 neurons, thus reducing
the parameter count to 125.245 M. This value, however, may still be quite high for
the data set at hand. Finally, a third model (6 x D112) is set up containing up to
six hidden layers of 112 neurons each, both in the encoder and decoder. This last
model cuts the total parameter count down to 27.215 M, which is still a remark-
able figure, nonetheless. Training results for the B-Dense scheme are shown in
Figure 17.

The best performing architectures from each scheme are 2 x C21-2 x C7-3 x
D512 and 6 x D112. The first one features a total of four convolutional hidden
layers and three hidden dense layers for both encoder and decoder. The second
model is composed of six dense layers in between the input and the latent space,
and the same layers again in between the latent space and the output layer of the
autoencoder. The performance of both models in terms of validation loss is
relatively similar as can be seen in Table 6 and Figures 16 and 17. However, the

20/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Table 4a. C21-C7-D512 network architecture (showing only encoder for simplicity)

C21-C7-D512 Input H1 H2 H3 Latent
Type - Conv 3D Conv 3D Dense Dense
Size 120,393 21 x 21 x 21 7X7x7 512 2
Convolution filter - (3x3x3)x1 (3x3x3)x1 - -

Notes: Optimizer RMSProp, Lr (learning rate) =0.0017, Stride =1

All activations are ReLu except output layer (sigmoid)

Total parameters: 982k
Table 4b. 2xC21-2 x C7-3 x D512 network architecture (showing only encoder for simplicity)
2 x C21-2 x C7-3 x D512 Input HI1-H2 H3-H4 H5-H7 Latent
Type = Conv 3D Conv 3D Dense Dense
Size 120,393 21 x 21 x21 7X7X7 512 2
Convolution filter - (B3x3x3)x1 Bx3x3)x1 - -

Notes: Optimizer RMSProp, Lr=0.0011, Stride=1
All activations are ReLu except output layer (sigmoid)

Total parameters: 5.78 M

Table 4c. 3 x C21-3 x C7-4 x D512 network architecture (showing only encoder for simplicity)

3 x C21-3 x C7- H7-
4 x D512 Input HI1-H2 H3 H4-H5 He6 H10 Latent
Type - Conv 3D Conv 3D Conv 3D Conv 3D Dense Dense
Size 120,393 21 x21x 21 x21x 7X7X7 7X7x7 512 2
21 21
Convolution filter - (3x3x (3x3x (3x3x (3x3x - -
3)x 1 3)x 3 3)x1 3)x 3
Notes: Optimizer RMSProp, Lr=0.0009, Stride =1
All activations are ReLu except output layer (sigmoid)
Total parameters: 6.72M
Table 5a. D2048-D512 network architecture (showing only encoder for simplicity)
D2048-D512 Input H1 H2 Latent
Type - Dense Dense Dense
Size 120,393 2048 512 2

Notes: Optimiser RMSProp, Lr=0.0012

All activations are ReLu except output layer (sigmoid)

Total parameters: 495.35M

latent spaces that each of these two architectures present are quite different
(Figures 18 and 19). The convolutional scheme in fact enables a more structured
differentiation of the two categories present in the input data set. It is expected
that a network performing satisfactory pattern recognition is also able to learn

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

21/35

https://doi.org/10.1017/dsj.2020.31

Design Science

Table 5b. 4 x D512 network architecture (showing only encoder for simplicity)

4 x D512 Input H1-H6 Latent
Type - Dense Dense
Size 120,393 512 2

Notes: Optimiser RMSProp, Lr=0.0015
All activations are ReLu except output layer (sigmoid)
Total parameters: 125.24 M

Table 5c. 6 x D112 network architecture (showing only encoder for simplicity)

6 x D112 Input H1-Hé6 Latent
Type = Dense Dense
Size 120,393 112 2

Notes: Optimiser RMSProp, Lr=0.0010
All activations are ReLu except output layer (sigmoid)
Total parameters: 27.21 M

3000
—— v_loss (C21-C7-D512)
fffff t_loss
2500 1 ! —— v_loss (2xC21-2xC7-3xD512)
fffff t_loss
; —— v_loss (3xC21-3xC7-4xD512)
2000 - :1 s TS FRU SRR SRR t_loss
) |
o 1500 ~ ‘\'3
AN
TN —
1000 A
500 1
0 T T T T T T T T T
0 10 20 30 40 50 60 70 80

epochs

Figure 16. Best training results of A-Conv scheme.

relevant features from each geometric type, leading to successful 3D form
interpolations.

The reconstructed geometries resulting upon sampling a grid of 10 x 10 points
from the latent space through the decoder are shown in Figure 20-23 for both
models. The model from convolutional scheme exhibits a smooth transition across
this space, whereas the dense architecture selected presents less structured varia-
tions of geometry. However, both lack capacity to produce well-defined structures,
in the sense that the reconstructed geometries are somewhat blurry.

22/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

3000
—— v_loss (D2048-D512)
————— t_loss
2500 A —— v_loss (4xD512)
fffff t loss
i —— v_loss (6xD112)
2000 A :", fffff t_loss
&
o 1500 -
1000 -
500 A
0 T T T T T

20

30

epochs

Figure 17. Best training results of B-Dense scheme.

40 50

Table 6. Training results for A-Conv and B-Dense schemes

Training loss

Validation loss

C21-C7-D512 1131.30 1153.33
A-Conv scheme 2 x C21-2 x C7-3 x 512 1011.72 1015.21
3 x C21-3 x C7-4 x 512 2016.05 2052.83
D2048-D512 1001.09 1254.95
B-Dense scheme 4x D512 1085.45 1117.15
6 x D112 1036.85 1074.17

20 5

. g

10
Figure 18. Latent space of 2 x C-2 x C-3 x D512 model.
23/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Figure 20. Geometry reconstructed from latent space. Model 2 x C-2 x C-3 x D512.

This second set of tests aimed at finding a network architecture capable of clearly
differentiating the two types present in the data set. As explained earlier, more
powerful architectures may lead to overfitting issues if the size of the data set does
not tally up with the complexity of the model. For this reason, these experiments
targeted the use of convolutions in hidden layers. When there are patterns relating

24/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Region blow-up

Figure 21. Geometry reconstructed from latent space (blow-up). Model 2 x C-2 x C-
3 x D512.

@ o & .00
’O o’o’«»‘@’@‘.
) 0. 0. ¢ 0
.90
.90
L 2),
Q‘O

Figure 22. Geometry reconstructed from latent space. Model 6 x D112.

.&Q’oo»ooo

)

to spatial relationships in the samples of a data set, the use of convolutional layers
can be more efficient than standard densely interconnected layers, as they provide a
means to reduce the number of trainable parameters of the model while main-
taining a strong learning capacity (Simonyan & Zisserman 2015). In Figure 17,
results show that the first dense model (D2048-D512) achieves the best training
loss values but clearly over fits after a few training epochs, which is not surprising
since it has 495.35M parameters to adjust. The second dense model (4 x D512)
starts to over fit slightly after 20 epochs and presents strong convergence instability.
The third and last of the dense models is the best performing among the dense

25/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Region blow-up

Figure 23. Geometry reconstructed from latent space (blow-up). Model 6 x D112.

schemes (B-Dense). It only over fits moderately after 30-40 epochs and achieves
validation loss values comparable to the best of the convolutional scheme (A-
Conv). However, this model presents very high convergence stability, which is not
reflected in the graph but was apparent during testing; it took several failed runs
until the network actually converged. In Figure 16, the best performing model from
A-Conv (2 x C21-2 x C7-3 x D512) presented a more stable behaviour and
slightly outperformed all the models of B-Dense in terms of validation loss. This
model achieves a better score than the other two in its group because of its balance
in complexity; deeper models like 3 x C21-3 x C7-4 x D512 are fit for such level of
complexity that they require much more massive data sets to feed on; while on the
other side of the spectrum, the model C21-C7-D512 is too simple to deal with the
current data set.

Although the best performing models from each scheme present similar
validation loss values, they behave very differently in the way they encode input
samples into the latent space. Results in Figures 18 and 19 show very different
spatial distributions for each model. Specifically, the convolutional model displays
a very structured distribution, including the particularity of a sort of ‘nesting rings’
formation that suggests the need of adding a third dimension to the latent space to
enable continuity among the encoded samples of each category (which may be
explored in future work). The latent space of the dense model, on the contrary,
displays a less structured distribution and a lower spatial capacity to segregate
categories. This is an interesting finding that might be connected to the fact that
convolutions are especially well-suited for spatial data. As a result, the geometries
being sampled anew from the latent space through the decoder present smoother
interpolation gradient in the convolutional model than in the dense counterpart
(Figures 20-23).

Despite achieving smooth transitions, the reconstruction error reported in the
results is too high. This underperformance causes the new geometries to appear
blurry, which completely defeats the purpose of representing geometry as connec-
tivity maps. The original motivation behind this representation of structural types
was to move away from pixel- or voxel-based approaches that were rooted in

26/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

extensive developments in computer vision. Thus, obtaining outputs that resemble
voxelised geometries are not satisfactory.

The last round of experiments attempts to reduce the blur effect present in the
reconstructed geometries. In this test, the 2 x C21-2 x C7-3 x D512 network
model was employed since it had delivered the best results so far. The objective
is to further reduce the values of validation loss, thus improving the definition of
the output geometry. To achieve this target, two strategies are implemented. The
first one consists simply of providing a larger data set. To this end, a new data set is
generated containing 75 k samples for each of the two working types. The second
strategy focusses on reducing the learning problem that the VAE faces. This has
been carried out by limiting the value ranges of the parameters that generate the
training samples. Furthermore, this limitation has been conducted in a way that
allows for a number of unique variations that match exactly the total number of
desired samples in this data set. In this way, it is expected that the input geometries
suffer the least variations possible, while each sample remains strictly unique (and
thus all samples provide new information that can be learned by the network). In
particular, the parameters that have been most limited are width and length.
Previously, these two dimensions were free to take up the complete size of the
canvas, whereas in the restricted data set, they do not exceed half the length or
width of the canvas. These two strategies have been tested through two experi-
ments. In the first one, the data set is increased and nothing else is altered, and in
the second one, the data set is increased and a limit to the variation of the
parametric augmentation method has been applied as explained above. The results
of these experiments are shown in Table 7 and Figures 24-28. The data show a large
reduction in validation loss (50%) and a latent space with a very clear pattern
segregation. It can also be observed that interpolation of geometry takes place along
a very narrow passage in between the two clusters. A detailed visualisation of the
output geometry for the second case (modified and increased data set) is shown in
Figures 29 and 30.

These last two experiments were an attempt to bring down reconstruction error
by providing a larger data set and limiting the range of variations of the samples
that are generated through parametric augmentation. In Figure 20, it can be
observed that a great part of the transition gradient deals mostly with accommo-
dating variations in size, rather than picking up morphological or topological
features, which are central to this study. Thus, the motivation behind reducing
parameter variation ranges such as those applied to the width and length of the
samples responds to the intention of improving the network’s accuracy by elim-
inating unnecessary information that leads to no relevant learning.

Table 7. Training results for 2 x C21-2 x C7-3 x 512 upon variations of the data set

2x C21-2 x C7-3 x 512 Training loss Validation loss
Reference data set 1029.86 1036.01
Data set increased 1335.11 1357.23
Data set increased and modified 464.34 506.75
27/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

00

25

50

75

Figure 24. Latent space of 2 x C21-2 x C7-3 x D512 model with the ‘increased data

set’.

-10

-5

0

H

pul

Figure 25. Latent space of 2 x C21-2 x C7-3 x D512 model with the ‘modified and
increased data set’.

In the first of these two experiments, the parameters for generation of samples

through parametric augmentation remained unchanged. However, the size of the
data set was more than doubled. In Figure 24, the latent space corresponding to this
test reveals that the model was totally incapable of separating the two types. The
experiment thus suggests that increasing the number of training samples does not

28/35

https://doi.org/10.1017/dsj.2020.31

Design Science

3000

—— V_loss (best result from previous experiment)

2500 A

2000 A

1500 A

loss

1000 A

500 1

0 10 20 30 40 50
epochs
Figure 26. Comparison of training results of 2 x C21-2 x C7-3 x D512 model from

the previous experiment with both the ‘increased data set’ and the ‘increased and
modified data set’.

Figure 27. Geometry reconstructed from latent space. Model 2 x C-2 x C-3 x D512
using the increased and modified data set.

provide the network with better learning prospects. This finding is rather inter-
esting because the initial objective of using parametric augmentation was precisely
to afford the possibility of generating large data sets as required by the complexity
of the problem at hand. However, this result shows exactly the opposite: when the
variations achieved through parametric augmentation are too broad, the shear

29/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Region blow-up

Figure 28. Geometry reconstructed from latent space (blow-up). Model 2 x C-2 x C-
3 x D512 using the increased and modified data set.

Figure 29. Rendered geometry reconstructed from latent space. Model 2 x C-2 x C-3 x D512 using the
increased and modified data set.

scope of these may easily surpass the hypothetical benefit of providing more
samples. In the second experiment, the parameters guiding these variations were
heavily restricted with the intention of producing less heterogeneity while still
generating the desired number of unique samples. Results (Figures 27 and 28)
prove the strategy effective in bringing down validation loss roughly around 50%,
which is highly successful. Additionally, categories are clearly separated after
encoding. However, the resultant latent space (Figure 24) shows a hard fault line
in between the two training categories. This condition entails that interpolation of
geometry may only happen in a very narrow area, and that transitions will not be
able to display smooth gradients. In Figure 27, this effect can be clearly observed in
the distribution of the generated geometries, and the region blow-up effectively
reveals abrupt transitions along the fault line.

It is unclear at this stage the reason behind this fallback into unsatisfactory
interpolation spaces, especially despite the positive results in terms of both vali-
dation loss and spatial segregation in the latent space. Possible explanations may be
connected to the particular geometries selected for the experiments, in the sense

30/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

Figure 30. 3D printed geometry reconstructed from latent space. Model 2 x C-2 x C-
3 x D512 using the increased and modified data set.

that they may not share common distinctive features that allow clean interpola-
tions. Or perhaps, the network architectures implemented in this work lack ability
to capture global features from one or both input types. Finally, there is another
possible factor that should be mentioned, one that touches upon the core of the
methodology presented here and that should be taken into consideration for future
work. Machine learning algorithms are essentially optimisation models. Most of
them function based on the gradient descent, whereby a relevant local minimum of
the loss function may be found. However, loss functions must be continuous and
tractable and should not present frequent or large areas of null derivative (pla-
teaus). If these areas are prevalent in the function, then the algorithm may not
know in which direction to move when pursuing lower loss values. It may assume
that it has already touched bottom, or it may trigger a random decision regarding
which direction to take, resulting in high volatility during the training process
(as can be seen in Figures 17 and 26) and low convergence. In fact, models that did
not converge easily have been prominently present throughout much of the side
work carried out during the present study. The alternative representation of
geometry that has been put forward here is based on a connectivity vector of
discrete values (0, 1). Additionally, in this last experiment, variations among the
training samples were minimised to avoid an excessive spread of features. This
means that many samples shared large sets of identical values, facilitating the
emergence of flat areas in the loss function. And where those values were different,
a transition pattern was hard to find due to the discrete nature of the representation

31/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

method chosen to approach the problem. It may thus be valuable when engaging in
further work to look into some valuable research that is currently taking place to
tackle deep learning problems in discrete spaces. Works along the lines of (Hafner
et al. 2018; Gouk et al. 2018) attempt to find alternative representations of these
spaces that smooth out the issues mentioned above. The adoption of the methods
proposed in these studies may provide the answers that are required to improve the
results presented in this paper.

5. Conclusions

Due to the growing international academic interest in generative machine learning
methods and its wide commercial applications, the workflow presented in this
paper builds on the emergence of a burgeoning field. Although developed five years
ago, the use and usefulness of VAEs in the context of architectural design remains
mostly unexplored.

The work presented in this paper builds on the notion of a connectivity vector
that is used to represent 3D mesh-like geometries, with the objective of facilitating
their processing by neural networks in general and VAEs in particular. This
representation was explored in (de Miguel et al. 2019), where a data set comprising
two building types was generated through noise and displacement-based augmen-
tation. The results suggested on the one hand, that noise did not help the network
in identifying patterns. And on the other hand, that the displacement approach was
always prone to overfitting, because the larger the displacement space, the more the
number of trainable parameters grew. In this context, the main objective of the
present work has been to explore the suitability of an alternative augmentation
method in assisting the generation of novel geometries with a VAE.

This alternative method, parametric augmentation, has allowed very large data
sets to be created without the need to increase the size of the 3D-canvas (and
consequently the size of the input layer and total number of trainable parameters),
as was the case in the previous approach. Additionally, parametric augmentation is
particularly efficient for increasing data sets of 3D geometries within the field of
architectural geometry — especially when resembling building types, due to the
discrete yet observable characteristics of each sample, as constituent of each type.
The results presented in this paper show that the method was indeed successful in
preventing the original overfitting problem. Consequently, the autoencoder was
successful in reconstructing the geometries of the data set. The augmentation
method, however, has posed another set of problems that have challenged the
performance of the VAE.

Firstly, results show that the feature spread produced through parametric
augmentation can overwhelm the network and can hinder its ability to extract
those features. This was made apparent when an increase in the size of the data set
worsened the reconstruction error rather than improving it. This limitation
blocked the possibility of expanding the data set to improve the definition of the
geometries being generated by sampling from the latent space. Thus, although
there were smooth transitions across the two types present in the resulting
geometries, these remained quite blurry. Secondly, when attempting to counter
the latter issue by limiting the range of the parameters involved in building up the
training set, it was found that despite being effective in further lowering the
reconstruction error, transitions across types had been drastically reduced.

32/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.31

Design Science

An important takeaway from the experimentation is that there seems to be a
more fundamental problem underlying the difficulties faced by the VAE. As
discussed in the previous section, the representation based on a connectivity vector
as implemented in this study brings about a tough landscape to be navigated by
optimisation algorithms. This is mainly due to the discrete and sparse nature of the
data set. Potential avenues of research that may shed light onto this problem touch
upon transformation techniques from discrete spaces into continuous ones. Some
of these have been indicated in this paper for future work, as they are currently
being pursued by several authors. Despite the difficulties, the final results show a
partial success in generating new geometries from the latent space that share a mix
of features from the two types present in the training set, which was the initial
objective of the research. The quality of these new samples achieves a certain degree
of interpolation as can be observed in Figures 29 and 30, although the definition of
the resulting geometries may still be improved.

Aside from the definition of the results, the main contribution of this paper has
been to explore an alternative avenue for the parametric generation of large data
sets of 3D geometries, showcasing its problems and limitations in the context of
neural networks and VAEs and pointing out potential solutions for future work.
Opverall, the proposed workflow challenges designers to acquire a critical perspec-
tive of the impact and potential of Al in our society and design practices.
Generative neural network models have a large potential to redefine how architects
and designers work with architectural precedents, namely, to use them directly as
data for design generation. The work presented in this paper aims to show the
potential of such techniques and open a discussion about the future of machine
learning in the context of geometry generation for the architectural design
industry.

References

Cunningham, J. P. 2019 Deep Generative Models, Columbia University, http://stat.
columbia.edu/~cunningham/teaching/GR8201.

Cudzik, J. & Radziszewski, K. 2018 Artificial intelligence aided architectural design. In
Proceedings of the 36th eCAADe Conference, vol. 1. eCAADe.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T. & Tomczak, J. M. 2018 Hyperspherical
variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence
(UAI-18). AUAI Press.

Kingma, D. P. & Welling, M. 2014 Auto-encoding variational bayes. CoRR, abs/1312.6114.
Goodfellow, 1., Bengio, Y. & Courville, A. 2016 Deep Learning. MIT Press. (LP).

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Feishman, S. & Cohen-Or, D. 2019
MeshCNN: a network with an edge. arXiv preprint. arXiv:1809.05910 (MV).

Hinton, G., Srivastava, N. & Swersky, K. 2012 Lecture 6d - a separate, adaptive learning
rate for each connection. Slides of Lecture Neural Networks for Machine Learning.
Retrieved Mar 6, 2019, from https://www.cs.toronto.edu/tijmen/csc321/slides/lecture
slides_lec6.pdf

Hoyer, S., Sohl-Dickstein, J. & Greydanus, S. 2019 Neural reparameterization improves
structural optimization. arXiv preprint. arXiv:1909.04240 (MV).

de Miguel-Rodriguez, J., Villafaiie, M. E., Piskorec, L. & Sancho-Caparrini, F. 2019 Deep
form finding - Using variational autoencoders for deep form finding of structural

33/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

http://stat.columbia.edu/~cunningham/teaching/GR8201
http://stat.columbia.edu/~cunningham/teaching/GR8201
http://arXiv:1809.05910
https://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arXiv:1909.04240
https://doi.org/10.1017/dsj.2020.31

Design Science

typologies. p. 71-80. In: Proceedings of 37 eCAADe and XXIII SIGraDi Joint Confer-
ence, “Architecture in the Age of the 4Th IndustrialRevolution”, Porto 2019, Sousa, José
Pedro; Henriques, Gongalo Castro; Xavier,Jodo Pedro (eds.). Sdo Paulo: Blucher, 2019.
ISSN 2318-6968, doi:10.5151/proceedings-caadesigradi2019_514

Duchi, J., Hazan, E. & Singer, Y. 2011 Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159.

Stanley, K. O., and Miikkulainen, R. 2002 Evolving neural networks through augmenting
topologies. Evol. Comput. 10 2, 99-127; doi:10.1162/106365602320169811.

Kelly, T., Guerrero, P., Steed, A., Wonka, P. & Mitra, N. J. 2018 FrankenGAN: guided
detail synthesis for building mass-models using style-synchonized GANs. ACM
Transactions on Graphics, 37 (6). 216. ISSN0730-0301

Radford, A., Metz, L. & Chintala, S. 2016 Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434

Shorten, C. & Khoshgoftaar, T. M. 2019 A survey on image data augmentation for deep
learning. J. Big Data 6, 60; doi:10.1186/s40537-019-0197-0 (LP).

Wang, T., Ceylan, D., Popovic, J. & Mitra, N. J. 2018 Learning a shared shape space for
multimodal garment design. SIGRAPH ASIA 2018 and arXiv preprint. arXiv:
1806.11335.

White, T. 2016 Sampling generative networks. arXiv preprint. arXiv:1609.04468.

Maturana, D. & Scherer, S. 2015 VoxNet: a 3D convolutional neural network for real-time
object recognition. In 2015 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS). Electronic ISBN: 978-1-4799-9994-1. IEEE.

Kullback, S. &Leibler, R. A. 1951. On information and sufficiency. Ann. Math. Stat. 22,
79-86.

Wu, J.Zhang, C., Xue, T., Freeman, W. T. & Tenenbaum, J. B. 2016a Learning a
probabilistic latent space of object shapes via 3D generative-adversarial modeling. 29th
Conference on Neural Information ProcessingSystems (NIPS 2016), Barcelona, Spain.

Pontes, F. J., Amorim, G. F., Balestrassi, P. P., Paiva, A. P. & Ferreira, J. R. 2016 Design of
experiments and focused grid search for neural network parameter optimization.
Neurocomputing 186, 22-34; ISSN 0925-2312.

Wu,]J., Xue, T., Lim, J.J., Tian, Y., Tenenbaum, J.B., Torralba, A. & Freeman, W.T. 2016b
Single image 3D interpreter network. Proceedings of the European Conference
onComputer Vision, 365-382, Springer.

Song, S. and Xiao, J. 2016 Deep sliding shapes for amodal 3D object detection in RGB-D
images. In Proceedings of 29th IEEE Conference on Computer Vision and Pattern
Recognition. IEEE.

Kalogerakis, E., Averkiou, M., Maji, S. and Chaudhuri, S. 2017 3D shape segmentation
with projective convolutional networks. In Proceedings of the IEEE Computer Vision and
Pattern Recognition (CVPR) (oral presentation). IEEE.

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A., Tzionas, D. & Black, M.
J. 2019. Expressive body capture: 3D hands, face, and body from a single image.
Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition,
10975-10985.

Creswell, A., Arulkumaran, K. & Bharath, A. A. 2017 On denoising autoencoders trained
to minimise binary cross-entropy. arXiv preprint. arXiv:1708.08487.

Gouk, H., Frank, E., Pfahringer, B. & Cree, M. J. 2018 Regularisation of neural networks by
enforcing lipschitz continuity. CoRR. arXiv preprint. arXiv:1804.04368.

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D., Lee, H. & Davidson, J. 2018
Learning latent dynamics for planning from pixels. arXiv preprint. arXiv:1811.04551.

34/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

https://doi.org/10.5151/proceedings-caadesigradi2019_514
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1186/s40537-019-0197-0
http://arXiv:1806.11335
http://arXiv:1806.11335
http://arXiv:1609.04468
http://arXiv:1708.08487
http://arXiv:1804.04368
http://arXiv:1811.04551
https://doi.org/10.1017/dsj.2020.31

Design Science

As, 1., Pal, S. & Basu, P. 2018 Artificial intelligence in architecture: generating conceptual
design via deep learning. Int. J. Archit. Comput. 16 (4), 306-327.

Newton, D. 2019 Generative deep learning in architectural design. Technol. Archit. Des. 3
(2), 176-189.

Gips, J. & Stiny, G. 1972 Shape grammars and the generative specification of painting and
sculpture. In Proceedings of IFIP Congress 1971, 1972. North Holland Publishing Co.

Newton, D. 2018 Multi-objective qualitative optimization (MOQO) in architectural design.
Computing for a better tomorrow. In Proceedings of the Education and Research in
Computer Aided Architectural Design in Europe (eCAADe), Faculty of Civil Engineering,
Architecture and Environmental Engineering, Lodz, Poland, 17-21 September 2018.
eCAADe.

Simonyan, K. & Zisserman, A. 2015 Very deep convolutional networks for large-scale
image recognition. ICLR 2015. arXiv preprint. arXiv:1409.1556.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. and Wierstra, D. (2015) Draw: A
recurrent neural network for image generation. ICCV 2015.

Doersch, C. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Ha, D. and Eck, D. (2018) A neural representation of sketch drawings. In ICLR 2018

35/35

https://doi.org/10.1017/dsj.2020.31 Published online by Cambridge University Press

http://arXiv preprint. arXiv:1409.1556
https://doi.org/10.1017/dsj.2020.31

	Generation of geometric interpolations of building types with deep variational autoencoders
	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Data representation: connectivity map
	3.2. Data set generation: parametric data augmentation
	3.3. Generative model: variational autoencoder
	3.4. Neural network architecture

	4. Experimentation and discussion of results
	5. Conclusions
	References

