MIXED GROUPS OF FINITE NILSTUFE

ΒY

GEORGE V. WILSON

ABSTRACT. This paper constructs a class of examples to show that for torsion-free groups H with finite nilstufe $\nu(H) = n < \infty$ there can be divisible torsion groups D with $\nu(H \oplus D) = n + k$ for all $k \le n + 1$. This answers a question of Feigelstock. The construction is based on a proposition which bounds $\nu(H \oplus D)$ in terms of $\nu(H)$ and rank (D).

DEFINITION. Let $A \neq 0$ be an abelian group. The nilstufe of A, $\nu(A)$, is the greatest positive integer n such that there is an associative ring R with additive group $R^+ \approx A$ and $R^n \neq 0$. If no such integer exists, $\nu(A) = \infty$.

Feigelstock [1] shows that mixed groups A with $v(A) < \infty$ are of the form $A = H \oplus D$ where H is a torsion-free group with $v(H) < \infty$ and D is a divisible torsion group. Further, if v(H) = n, then $v(H \oplus D) \le 2n + 1$. Based on this result, he asks if it is true that for every n > 1 and every $0 \le k \le n + 1$ there is a divisible torsion group D and a torsion free group H with v(H) = n such that $v(H \oplus D) = n + k$ [1, Question 3.1.11]. We will show that the answer is "yes". Our examples are based on the following result.

PROPOSITION. Let $A = H \oplus D$ where H is a torsion-free group with $v(H) = n < \infty$ and D is a divisible torsion group. Writing $m = \max \{r_p(D) = p \text{-rank of } D\}$, we obtain $v(A) \le n + m$.

PROOF. Let *R* be any associative ring with $R^+ = A$. We know that *D* is the direct sum of its primary components D_p . It is easy to see that *D* and all the D_p are ideals in *R*. Further, $D^2 = 0$ because *D* is a nil group. Notice that $(R/D)^+ \approx H$, so $(R/D)^{n+1}$ = 0 and $R^{n+1} \subseteq D$. One easily checks that if *E* is a nonzero divisible ideal of *R*, the ideal *RE* is also divisible. In addition, *RE* is properly contained in *E*, since otherwise $E = RE = R^{n+1}E \subseteq DD = 0$. Similarly, *ER* is divisible and properly contained in *E*. Since $r(D_p) \leq m$ for all *p*, the decreasing chain $D_p \geq RD_p \geq R^2D_p \geq \cdots$ can have at most *m* strict inclusions. Therefore, $R^mD_p = 0$ and $R^mD = \bigoplus R^mD_p = 0$. Now R^{n+m+1} $\subseteq R^mD = 0$, so $v(A) \leq n + m$.

We use this result to answer Feigelstock's question.

Received by the editors January 10, 1986.

AMS Subject Classification (1980): 20K99.

[©] Canadian Mathematical Society 1985.

EXAMPLE. Let G_i be a rank one torsion-free group of type $t(G_i) = (i, i, i, ...)$ for $1 \le i \le n$. Letting $H = \bigoplus_{n \to i}^{n} G_i$, we see that $\nu(H) = n$ as in Example 3.1.7 of [1]. Pick elements $e_i \in G_i$ with height sequence (i, i ... i, 0, i ...) the zero occurring at a chosen prime p. Let $D = (Z_{p^*})^k$, $0 \le k \le n + 1$ be presented

$$\{ia_j, 1 \le i \le k, 1 \le j : p(ia_1) = 0 \ p(ia_{j+1}) = ia_j\}.$$

Define a multiplication on $H \oplus D$ by

$$({}_{i}a_{j})({}_{h}a_{m}) = 0 \qquad e_{i}({}_{j}a_{m}) = \begin{cases} {}_{i+j}a_{m} & i+j \le k \\ 0 & i+j > k \end{cases}$$
$$e_{i}e_{j} = \begin{cases} e_{i+j} & i+j \le n \\ {}_{i+j-n}a_{1} & n < i+j \le n+k \\ 0 & i+j > n+k \end{cases}$$

This gives an associative multiplication with $(e_1)^{n+k} = {}_k a_1 \neq 0$, so $\nu(H \oplus D) = n + k$.

REFERENCES

1. S. Feigelstock, Additive Groups of Rings, Pitman Pub., London, 1983.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GEORGIA ATHENS, GA 30602

256