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PARALLEL TRANSLATION IN VECTOR BUNDLES 
WITH ABELIAN STRUCTURE GROUP AND THE 

GAUSS-BONNET FORMULA 

HANSKLAUS RUMMLER 

Introduction. Most proofs for the classical Gauss-Bonnet formula use 
special coordinates, or other non-trivial preparations. Here, a simple proof is 
given, based on the fact that the structure group 50(2) of the tangent bundle 
of an oriented 2-dimensional Riemannian manifold is abelian. Since only this 
hypothesis is used, we prove a slightly more general result (Theorem 1). 

Let us recall the classical formula 

a ) f Kd<>+ r nds = 2 ir. 
A *>dA 

Here, A denotes a compact contractible disc with smooth boundary dA in a 
2-dimensional Riemannian manifold (of class C°°). K is the Gaussian curva
ture, K the geodesic curvature of the boundary dA, which is oriented in the 
usual way. do and ds are the area and arc-length measure, respectively. 

If we shrink A to a. point, the first integral converges to 0, while the second 
one converges to 2ir. Thus (1) is equivalent to 

(2') f Kdo+ I Kds = 0 mod(27r). 
J A "dA 

Let us identify 50(2) with the unit circle in C, and its Lie algebra with R, 
the exponential map being exp(r) = eir. Then (2') becomes 

(2) exp( - J Kds) = exp( I Kdoj . 

If we fix a point x0 on dA, we may identify the group of orientation-preserv
ing isometric automorphisms of the tangent space TXQ of the manifold with 
50(2). In particular, the parallel translation along the closed curve dA is an 
element of 50(2). By the definition of geodesic curvature, this parallel trans
lation is precisely the left-hand side of (2). Thus, we have to prove that it is also 
equal to the right-hand side of (2). We shall deal with a slightly more general 
problem in § 1. 

The result is applied in § 2 to prove the equivalence of two different defini
tions for the Chern-classes of a splitting complex vector bundle. 
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1. Parallel translation in bundles with abelian structure group. In 
this article, G denotes a connected abelian Lie group with Lie algebra g. Let 
M be a smooth manifold and £ = (E, p, M) a smooth vector bundle over M 
with fibre F and structure group G. If U = (£70*6/ is an open cover of M, 
such that £ is trivial over Ui} the bundle £ is determined by the cocycle of its 
transition functions gtj : Ui(~\ Uj-^G, i,j G / . 

A connection on £ may be expressed by g-valued 1-forms 6t on [/*, subjected 
to the transformation law 

(3') h = gjf (gi/ + 0i'gij) 

(see also [2]). In this formula, for gi, g2 G G and h G T02G, gi • h denotes the 
image of h in Tgi02G under the differential of the diffeomorphism gi : G —> G 
(multiplication by gi). G being abelian, (3') reduces to 

(3) 0j = g„ • g,/ + 0,. 

Over f/i, the curvature tensor of the connection on £ is given by 

(4') Hi = dBt + i[0u 0t]. 

Again this becomes 

(4) Ht = ddu 

since g is abelian. 

LEMMA 1. For h, k G g, exp'(&; &) = (exp h) - k = k • exp &. 

Proof. For £ G R, exp(& + tk) = (exp A) • (exp£fe), whence exp'(^;&) = 
(exp h) - exp'(0; k) = (exp h) - k = k - exp h. 

We may assume that the cover U is 1-simple, i.e. the open sets Ui and the 
intersections Uu = UiC\ Uj are simply connected. In this case, we can write 
gij = exp hij for differentiate htj : Ua —> g, and by Lemma 1 we have 
gji ' gi/ = (exP hji) * (exP hij) ' hi/ = hi/ = dhijf and hence over Uij 

(5) dj - St = dhtj. 

In particular, iJ^ coincides with Ht over t/iy . Thus the curvature tensor can 
be regarded as a g-valued 2-form H, defined on all of M. In the non-abelian 
case, this is not true! 

PROPOSITION 1. Let k : R —> g be a differentiable function. Then the differential 
equation 

m = g(t)-k(t) 
with initial condition 

g(0) = e 
has the solution 

g(t) = exp( J" k(r)drj . 
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Proof. This follows by differentiation and Lemma 1. 

Now let £ = (R2 X F, p, R2) be a trivial bundle over R2, and let 7 (0 , 
0 ^ t ^ 1, be a closed smooth Jordan curve in R2 with interior A, oriented in 
the usual way as boundary of A. 

Regard £ as a bundle with structure group G, and fix a connection for this 
G-bundle, given by its g-valued connection form 0, and denote its curvature 
form by H. Then the parallel translation Py along 7 is an automorphism of the 
fibre /%(()) and even an element of G, acting on Fy(0). (As element in G, Py is 
uniquely determined only in the case that G acts effectively on F; but we do 
not need the uniqueness of Py.) 

THEOREM 1. With the above notations and hypotheses, 

Py = exp (-£«) 
Proof. With respect to the given trivialization of the bundle £, the parallel 

translation along 7 from 7(0) to y(t) may be regarded as an element g(t) of G. 
For fixed X Ç i*V(o), X(t) = g(t) • X is determined by the differential equation 
Dy(t)X = 0 with initial condition X(0) = X. Here, D denotes the covariant 
derivative with respect to the given connection. In terms of the connection 
form 6, 

Dy{t)X = dX(y(t)) + 0(7(0; 7 (0) - * ( 0 , 

i.e. the differential equation for X becomes 

(60 X(t) + 0(7(O; 7 (0) -x(t) = 0 . 

So, if g(t) Ç G verifies the differential equation 

(6) g(t) = - 0 ( 7 ( 0 ; 7 ( 0 ) - s ( 0 , 

*(0) = e, 

it describes the parallel translation along 7 as an element of the group G. 
According to Proposition 1, a solution is 

g(t) = e x p ( - J d(y(T);y(r))drJ , 

and in particular for t = 1: 

i \ = g(l) = e x p ( - j 6J = e x p ( - J ^ 0 j = e x p ( - £ # ] , 

by Stokes' theorem and (4). 

In the classical case, where £ is the tangent bundle of a 2-dimensional 
Riemannian manifold, the connection form 0 is an expression in the Christoffel 
symbols, while H = —Kdo, where K is the Gaussian curvature and do the 
area element. Thus, the theorem reduces to (2). The proof can be simplified, 
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too, such that it does not involve the concept of Lie group, but only the very 
special group 50(2). 

In the non-abelian case, (4), Lemma 1 and Proposition 1 are not true, and 
the above proof does not work. Also, the theorem is false, as can be shown by 
simple counterexamples with G = 50(3). One can prove, however, a relation 
between the curvature tensor and the limit of the parallel translations along 
a sequence of closed curves, converging to a point. (See [1].) 

2. Curvature and characteristic classes for bundles with abelian 
structure group. Let G, g be as above, and let T = ker(exp) be the integer-
lattice in g. If £ = (E, p, M) is a vector bundle over M with structure group G 
and a connection, the curvature form H of this connection is closed, as follows 
from (4). By de Rham's theorem, it represents a cohomology class 

[H] É f f ( « ; 9 ) . 

PROPOSITION 2. The element [H] Ç H2(M; g) is an integer class, i.e. it is the 
image of an element in H2(M; T) under the canonical map 

j,:H*(M;r)-+IP(M;i). 

Proof. It must be shown that the integral of H over any integer 2-cycle in 
M is in T. It is sufficient, to regard smooth 2-cycles of the form / : B —» M, 
where B is an oriented 2-dimensional closed manifold a n d / a smooth map. In 
this case, we must show 

i f*H e r. 

Now/ *H is the curvature form of the induced bundle/ *£ over B, with respect 
to the induced connection. Thus we may restrict ourselves to the case B = M, 

Let us regard B as the quotient of a disc B with boundary dB the Poincaré 
polygon of B, the parts of which are identified in the usual way: 

Then, by Theorem 1, the parallel translation along the image of dB in B is 
given by 

PdB = exp (-j>) 
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On the other hand, this parallel translation is the identity, since G is abelian: 

PdB = Pai ' Pa2 ' Pai~l ' Pai~l * • • • = i d . 

Therefore 

( H e r . 
J B 

An immediate consequence of this result is 

PROPOSITION 3. [H] does not depend on the choice of connection for the bundle £. 

Proof. For two connections D0l D± on £, there is a family Du 0 ^ t ^ 1, of 
connections, depending continuously on /. In particular the integral of the 
curvature form JB Ht depends continuously on t. Since JB Ht £ T, it must be 
constant. 

Hence there must be another way to describe the ''characteristic class" [H]. 
For simplicity let us assume M connected. We have two exact sequences: 

(7) 0 - ^ T M ^ ^ G - ^ O 

and 

(8) 0 — * r - ^ > G e i S G — * 0 . 

The first one is an exact sequence of abelian groups, while in the second 
sequence G, g and T are the sheaves of germs of differentiate functions on M 
with values in G, g and T. Since T is discrete, the Cech cohomology H*(M; V) 
coincides with the singular cohomology il*(ikf; T). (7) induces a homomor-
phism jf : H2(M) T) -^H2(M; g) (cf. Proposition 2), and (8) induces a long 
exact sequence of Cech cohomology, part of which is 

(9') H\M;§) -^H\M;G) -^H2(M; V) ->H2(M; g). 

g is a fine sheaf. Therefore the connecting homomorphism is an isomorphism: 

(9) d :Hl(M\G) ^H2(M; T). 

Now, a G-bundle £ over M can be regarded as an element of Hl(M\ G), 
which we denote again by £ (cf. [4]). 

THEOREM 2. If H is the curvature form of the G-bundle £ over M with respect 
to some connection, then 

[H] = jfda. 

Proof. We use essentially the same method by which de Rham's theorem is 
proved. (See [3].) Let U be a 1-simple open cover of M", i.e. the V % and the 
intersections U^ = UiC\ Uj are simply connected. We write CP(G) instead 
of CP(U', G), and similarly for g and T. Cv(§) denotes the ^-cochains with res
pect to U of locally constant g-valued functions, similarly CP(T) = CP(T). 
(Cp(g)) may also be described as the set of ^-cochains on the nerve of U with 
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coefficients in g.) Furthermore, AQ (g) denotes the g-valued g-forms on M, 
while C/(g) denotes the ^-cochains with respect to U of g-valued g-forms. In 
particular, C0

p(g) = £*(§), and there is a canonical injection ^4„(g) —> C?°(g). 
If rf denotes the exterior differentiation of differential forms and 8 the 

coboundary operator for cochains with respect to U, we have the following 
two commutative diagrams: 

j exp 
o — » c ^ r ) — > CHë) — * o-iP) — * o (10) 

J exp 
0 >C 2 ( r ) * C2(g) >C2(G) >0 

0 » g -
d d 

* i40(g) » ^ I ( B ) > At(q) 

(ID 

d i d 
0 > C°(g) > C0°(g) » d»(g) • C2°(g) 

0-

51 
51 

^ C 2 ( g ) -

Ô 

-> C.»(fl) 

51 

-» Co2(g) 

CIHB) 

Since U is 1-simple, £ is representable by a 1-cocycle g = (gtj) £ C^G), 
which is of the form g = exp h for a 1-cochain h = (Z^) G Cx(g). By definition 
of the connecting homomorphism, j#d£ is represented by 8h, which is in C 2(Q), 

since j ( C 2 ( r ) ) C C2(g) C C2(g). 
In Diagram (11), the homology of the first column is the singular coho-

mology of M with coefficients in Q, while the homology of the first row is the 
de Rham cohomology of M with coefficients in g. If both cohomologies are 
identified under the usual isomorphism, the differential form H £ ^2(0) and 
the 2-cochain oh represent the same cohomology-class, if there is a corres
pondence along the arrows of (11): 

H 

d I 
* >H 

Oh 

h > dh 

ô\ 
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If we take 6 = (0*) for *, where the dt are the connection forms for the 
bundle £, we have dd = H by the definition of H, while 86tj = Bj — 6< = dhti 

by (5). 

Now let G = [7(1 ) X . . . X U(l) (m factors). We may identify g with 
Cm and r with Zm, if we take the exponential map exp(si, . . . , zm) : = 
{e2«iz\ . . . , e2**'»). Then H2(M; T) ^ (H2(M; Z))m. This isomorphism de
pends on the representation of G as a product. But if at : H2(M;Z)m —> 
H2i(M;Z) denotes the 2th elementary-symmetric function, the maps 
at : H2(M) r ) -> iĴ CZfcf; Z) are well-defined for i = 0, 1, . . . , m. The 
composition 

ct = &fd :H1(M;G)-+H*i(<M;Z) 

is the ith Chern-class, i.e. for a G-bundle £ over M, 

*<tt) = *,(df). 

By Theorem 2, the cohomology-classes 7#(c*(£)) £ if2î'(Af;C) may be 
expressed in terms of the curvature tensor H, and one obtains the known 
formula 

j$Ci(Ç) = ith. coefficient of detl 1 + Ô—:H 
L \ Zirl 

Here the 1/2x2 appears, because we have identified Y with Zm. 
By the technique of the splitting principle for vector bundles, the last 

result can be extended for non-splitting complex vector bundles, i.e. vector 
bundles with structure group GL(n; C). 
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