Bull. Aust. Math. Soc. 91 (2015), 191-201
doi:10.1017/S0004972714001154

MULTIPLICITY AND LOJASIEWICZ EXPONENT OF
GENERIC LINEAR SECTIONS OF MONOMIAL IDEALS

CARLES BIVIA-AUSINA
(Received 30 June 2014; accepted 11 December 2014)

Abstract

We obtain a characterisation of the monomial ideals / € C[xy,..., x,] of finite colength that satisfy
the condition e(/) = L(()l)(l) .- ~£g')(1), where Lf)l)(l), ... ,LB")(I) is the sequence of mixed Lojasiewicz
exponents of / and e(/) is the Samuel multiplicity of /. These are the monomial ideals whose integral
closure admits a reduction generated by homogeneous polynomials.
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1. Introduction

Let (R, m) denote a local ring of dimension n. Let / be an m-primary ideal of R.
There are two important numbers attached to /: the multiplicity of /, denoted by e(/)
(see for instance [9, 14] or [24]), and the L.ojasiewicz exponent of [, that is usually
denoted by Ly(1) (see [15, 22, 23]). We shall also refer to m-primary ideals as ideals
of finite colength. We recall that Ly(/) was originally defined for ideals of the ring
O, of analytic function germs (C",0) — C around the origin. That is, if / is generated
by g1,...,&r € Oy, then Ly(I) is defined as the infimum of all positive real numbers «
such that
llx|* < C sup [gi(x)]
l

for some constant C > 0 and all x that belong to some open neighbourhood of the
origin in C". Lejeune and Teissier showed in [15] a relation between Ly(/) and the
asymptotic Samuel function of / and, consequently, with the integral closure of /. This
relation is the motivation of the definition of Ly(/) for an arbitrary ideal I of finite
colength in a local ring (R, m). We shall now explain this more precisely.

Fix alocal ring (R, m). Let I be an ideal of R and let 4 € R. Then the order of h with
respect to I is defined as ord;(h) = sup{r > 1 : h € I"}. By convention, ord;(0) = +co.
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It is proven in [15, Section 0.2] and [17] that the sequence {r~'ord;(h")},>1 has a
limit in Ry U {+o0}. The asymptotic Samuel function of I is defined as the function
vr: R — Ry U {+0c0} given by

vi(h) = lim

r—o0

ord;(h")
r

for all i € R, where we set ¥;(0) = +co. We remark that v;(h) = 0 for all 1 ¢ VI. The
number v;(h) is also known as the reduced order of h with respect to 1. It is known that
the range of v; is Q5o U {+co} (see for instance [14, Section 10]).

If I is an ideal of O, such that I is a monomial ideal (that is, I is generated by
monomials), then v; can be expressed in terms of the Newton polyhedron of 7 (see [2]).
If I and J are ideals of R, then we define

vi(J) = min{v;(h) : h € J}.
The result of Lejeune—Teissier to which we referred before states: if / is an ideal of O,
of finite colength and m,, denotes the maximal ideal of O,, then

1

‘_/I(mn) .

Lo() =

(1.1)

The above equality is used as the definition of the L.ojasiewicz exponent of an arbitrary
ideal [ of finite colength in a local ring (R, m). We also remark that the equality (1.1)
is equivalent to Lo(I) = inf{r/s:r,s € Zy;,m, C I*} (see [15, Section 7]).

The notion of multiplicity of an ideal was extended by Risler and Teissier [22]
to sequences of m-primary ideals, thus leading to the notion of mixed multiplicity
e(ly,...,1I,) of n m-primary ideals in R (see [14, Section 17.4]). The motivation for this
generalisation has its origin in the study developed by Teissier of the Milnor number of
the restriction of a given function germ f € O, to generic subspaces of C" of different
dimensions [22]. The study of mixed multiplicities of ideals was further developed by
Rees [18]. Let (R, m) be a local ring and let Iy, ..., I,, be ideals of R. Then we define

o(ly,....I,)=sup e(ly +m’,..., I, + m"). (1.2)

rezzl
In general, (1, . . ., I,) can be infinite. In [3, page 393], we characterised the finiteness
of o(ly,...,1I,). From (1.2), it is clear that if each ideal has finite colength, then
o(ly,...,1I,) exists and it is equal to the usual mixed multiplicity e(/y,...,I,). We

remark that o(/y, ..., I,) coincides with the mixed multiplicity defined by Rees [19,
page 181] and we also refer to o°({y, .. ., I,,) as the Rees mixed multiplicity of I, ..., I,.

Analogous to the generalisation of the notion of multiplicity leading to mixed
multiplicities, we introduced in [4] the notion of Lojasiewicz exponent of n ideals

I,...,1I, in a local ring (R, m) of dimension n (see Section 2 and [5] for details).
We denote this number by Ly(/y, ..., I,). In order to define Ly(I1,...,I,), the ideals
I, ..., I, are not assumed to have finite colength but the condition o°(/y, ..., I;) < cois
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needed. Therefore, if 7 denotes an ideal of R of finite colength and i € {1, ..., n}, then
we define the ith relative Lojasiewicz exponent of I as

LY = Lo,....I,m,...,m),
where [ is repeated i times and m is repeated n — i times. In particular, we have
LY = Lo(1) and £ (1) = ord(]).

Let (R, m) denote an equicharacteristic regular local ring of dimension n > 2 with
residue field k, char(k) = 0. Let I be an ideal of R of finite colength and let us fix an
index i € {1,...,n}. Hickel proved in [12, Théoreme 1.1] that there exists a Zariski
open set U of the Grassmannian Gy (i, n) of subspaces of dimension i of k" such that
Vir,(Mg) does not depend on H for all H € U @, Here we assume that H is the zero
set of the collection of k-linear forms hy, ..., h,;, the quotient ring R/{hy, ..., h,—;)
is denoted by Ry and my is the maximal ideal of Ry. By [6, Lemma 4.9], we have
Lg)(l) = (T/,RH(mH))’l foralli=1,...,n. Weremark that (V,RH(mH))*' is denoted by
VY) in[12] foralli=1,...,n.

Moreover, Hickel proved in [12] that

e(l) < L§'(1)--- LD, (1.3)
We remark that this inequality was generalised in [6, Theorem 4.7]. There now arises
the problem of characterising when equality holds in (1.3) and understanding the
structure of the ideals satisfying that equality. This was already done by Hickel in
dimension n = 2 [12, Proposition 5.1].

In this article, we consider this problem in the case that / is a monomial ideal of
O, or C[[x1,...,x,]] (see Theorem 3.5). We prove that the only monomial ideals that
satisfy the equality e(/) = LBI)(I) . -Lf)")(l) are those such that 7 admits a reduction
generated by homogeneous polynomials. This condition reduces considerably the
possibilities for the shape of the Newton polyhedron of the ideal. As is seen in
Section 3, we translate this problem into a combinatorial problem that, at first sight,
is independent from Lojasiewicz exponents and captures a special class of monomial
ideals.

2. Mixed Lojasiewicz exponents

In this section we recall briefly the notion of mixed L.ojasiewicz exponent and some
basic facts about this concept.

Let (R, m) denote a Noetherian local ring of dimension n > 1 and let /,..., 1, be
ideals of R such that o(1y, ..., I,) < co. Let J be a proper ideal of R. Define

71(11,...,In)=min{V€ZZ()10'(11,...,1,1)20'(11 +Jr,...,1n+.]r)}.

We recall that ({4, . . ., I,) denotes the Rees mixed multiplicity of Iy, ..., I,,, defined
in (1.2).

If we suppose that I} =--- =1, = I for some ideal / of R of finite colength and
we assume that R is formally equidimensional, then we can apply Rees’s multiplicity
theorem (see [11, page 147] or [14, page 222]) to deduce that

ry, ..., 1) =min{r € Zsq : J C I}.
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Derinition 2.1 [5]. Under the above conditions, we define the Lojasiewicz exponent of
L, ..., I, with respect to J, denoted by L;(1,...,1I,), as

rili,.... 1)

Lyl,...,I,) =inf
s>1 Ky

We also refer to the number L;([y,...,1I,) as the mixed fojasiewicz exponent of
L, ..., I, with respect to J. When J = m, we denote this number by Ly({y, ..., I,).

Let us observe that in order to define L;(/y,...,1,), we only need the ring R to
be local and Noetherian and no additional condition on R is assumed. As mentioned
in the Introduction, if I is an ideal of finite colength of R, then we can associate to /
the vector L5(1) = (LY(D),..., L (1)), where L(I) = Lo(,...,I,m,...,m), with |
repeated i times and m repeated n — i times, i = 1, ..., n. The number L(Ji)(l) is defined
analogously, for alli = 1,...,n, and any ideal J of R of finite colength.

The following result is proven in [6, Corollary 4.11].

THEOREM 2.2. Let (R,m) be a quasi-unmixed Noetherian local ring and let 1,J be
ideals of R of finite colength. Let us suppose that the residue field k = R/m is infinite.
Then LP(1) < -+ < L),

Let us fix coordinates xi, ..., x, in C". If k € Z", then we write x* to denote the

>0°
monomial x’f‘ ... X% _If h € 0, and the Taylor expansion of 4 around the origin is given
by h = 3 axx*, then the support of h, denoted by supp(h), is defined as the set of those
k € Z%, such that gy # 0. If 2 # 0, then we define the Newton polyhedron of h, denoted
by I';(h), as the convex hull in RY) of {k + v : k € supp(h), v € R]}. If h = 0, then we
setI' (k) = 0. If I is an ideal of O,, then the Newton polyhedron of I, denoted by I", (1),
is defined as the convex hull of ', (g;) U --- UT (gy), where we assume that gy, ..., g
is a generating system of /. We see immediately that the definition of I',.(/) does not
depend on the chosen generating system of /.

Letus fixasubsetL C {1,...,n},L # 0. Then we denote by R} the set of those k € R"
such that k; = 0 for all j ¢ L. If A denotes any subset of R", then we set A =AN R{.
The cardinal of L will be denoted by |L|.

If 1 is a monomial ideal of O,, then we denote by I* the ideal of O, generated by
the monomials x* € I such that k € R If supp() N R} = 0, then we set [~ = 0. If I is
a monomial ideal of O, of finite colength, then we have I # 0 for all L C {1,...,n},
L+0.

The next result gives a description of the sequence L(/) in terms of I', (/) when /
is a monomial ideal of finite colength of O,,.

TueoreM 2.3 [6]. Let I be a monomial ideal of O, of finite colength. Leti € {1,...,n}.
Then

L)) = max{ord(I") : L C{1,....n), ILl=n—i+1}.
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The following result is motivated by [12, Théoréme 1.1] and, in turn, the case / = m
is the motivation of the problem considered in this article. This result can be seen as
a particular case of [6, Theorem 4.7] (see [6, Corollary 4.8]). We also refer to [12,
Remarque 4.3(3)] for the deduction of inequality (2.1) using different techniques in a
slightly different context.

ProposiTioN 2.4 [6]. Let (R, m) be a quasi-unmixed Noetherian local ring and let I and
J be ideals of R of finite colength. Then

e(l) M )

— < I--- I). 2.1

o) L) L) (2.1)

In the main result, Theorem 3.5, we characterise when equality holds in (2.1) in the

case when [ is a monomial ideal of O, and J is the maximal ideal of O,. As we will
see, Theorem 3.5 can be considered as a purely combinatorial result.

3. Main result

In this section we expose the concepts and results from [21] that we need in the
proof of the main result.

If A is a subset of R”, then we denote by Conv(A) the convex hull of A in R". If
P C R", then we say that P is a polytope when there exists a finite subset A C R” such
that P = Conv(A). If A is contained in Z", then Conv(A) is said to be a lattice polytope.

If P is a polytope in R”, then the dimension of P is defined as the minimum
dimension of an affine subspace containing P.

If P is any subset of R”, then we denote by C[P] the family of polynomial maps
h € C[xy,...,x,] such that supp(h) € P. LetP = (Py,..., P,) be an n-tuple of subsets of
R”". We denote by C,[P] the set of polynomial maps F = (F1,..., F,): C" — C" such
that supp(F;) € P; forall i = 1,...,n. We can identify C,[P] with a finite-dimensional
vector space CV, for a sufficiently large positive integer N, by associating to each map
F € C,[P] the vector formed by the coefficients of F. Under this identification, we
say that a property holds for a generic F € C,[P] when the property holds in a dense
Zariski open subset of CV.

Given a lattice polytope P C R”, then we say that P is cornered when, for all
j=1,...,n, there exists some k € P such that k; =0 (see [21, page 119]). If
P C R, and fp denotes the polynomial obtained as the sum of all terms x* such that
k € PNZ,, then we observe that P is cornered if and only if fp is not divisible by x;
forall j=1,...,n.

Let P =(Py,...,P,) be an n-tuple of lattice polytopes in R”; then P is said to be
cornered when P; is cornered for all i = 1, ...,n. We say that P is nice when F 10)is
finite for a generic map F € C,[P].

If F:C" — C" is a polynomial map such that F~'(0) is finite, then we denote by
m(F) the number of roots of F' counted with multiplicities. That is, if /(F) denotes
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the ideal of C[xy,..., x,] generated by the component functions of F, then, applying
[7, Ch. 4, Corollary 2.5],
C[X], crc xn]

(r

If K CR", then we denote by Vol,(K) the n-dimensional volume of K. Let
Ci,...,C, be n polytopes of R" and let Aj,...,4, € Ryo. Let 4;,C; +---+ 4,C,, =

m(F) = dim¢

{NLky+ -+ Lk, ki €Cii=1,...,n}). Itis a classical result from convex geometry
that Vol,,(4,Cy + - - - + 4,,C,) is a homogeneous polynomial of degree  in the variables
Ay, ..., 4, (see for instance [7, page 337]). The n-dimensional mixed volume of

Cy,...,C, is defined as the coefficient of 4, - - - 4, in the polynomial Vol,,(1,C; + - - - +
A,C,). We denote this number by M(Cy,...,C,). Let us recall some elementary
properties of this number (taken from [20, page 112]; see also [7, Ch. 7, Section 4]):

(1) M(Cy,...,C,)is symmetric and linear in each variable;
2) M(Cy,...,Cy) =0 and M(Cy,...,C,) =0 if and only if dim(};; C;) < || for
some nonempty subset I C {1, ..., n}, where || denotes the cardinal of I;

3) M(Cy,...,Cy,) € Zs, if C; is a lattice polytope, foralli =1,...,n;
@) M(,...,C)=n!Vol,(C) for any polytope C C R".

We refer to [7, 10, 20] for more information about M(Cy,...,C,).

If P is a polytope in R”, then we denote Conv(P U {0}) by P°. If P = (P, ..., P,)
is an n-tuple of polytopes of R", then we define P° = (P, ..., P%). In particular, it
makes sense to speak about the mixed volumes M(P) and M(P°). Let us remark that
PY is always cornered. By [16, Theorem 2.4], if F € C,[P], P is a lattice polytope and
F~1(0) is finite, then m(F) < M(P®). As remarked in [21, page 119], the conditions
‘nice’ and ‘cornered’ on P are independent conditions. The following result tells us
that both properties together in P imply m(F) = M(P°) for a generic F € C,[P].

Tueorem 3.1 [21, page 119]. Let P = (P4, ..., P,) be an n-tuple of lattice polytopes
of RY,. Let us suppose that P is nice and cornered. Then a generic polynomial map
F € C,[P] has exactly M(P°) roots in C", counting multiplicities.

The previous theorem is proven in [21] in a more general context (for polynomial
maps with coefficients in a given algebraically closed field of any characteristic).

LetP=(Py,...,P,)and Q = (Qy,.. ., O,) be n-tuples of polytopes in Rgo. We write
P C Q to denote that P; C Q; foralli = 1,...,n. We also define the n-tuples of subsets
PNnQ=P1NnOy,....,P,NQ,) and Q\P = (Q1\Py,...,0,\P,). fLC{1,...,n},
L # 0, then we set P = (P, NRY,..., P, NRY}).

Next we recall a particular case of a definition introduced in [21, page 120].

Derinirion 3.2. Let P and Q be n-tuples of polytopes in RZ such that Q is nice and
cornered. We say that P counts Q when:

1 PcQ;
(2) Pisnice;
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(3) for any F € C,[Q\P], the map F + F’ has a finite zero set and m(F + F’) =
M(Q°) for a generic F’ € C,[P].

In particular, if P counts Q, then m(F) = M(Q°) for a generic F € C,[P] and
therefore M(P°) = M(Q°) provided that P is also cornered, by Theorem 3.1.

Derinition 3.3 [21, page 124]. Let P = (P4, ..., P,) be an n-tuple of polytopes in R".
The support of P is defined as the set of indices i € {1,...,n} such that P; # 0. We
denote this set by supp(P). Let J C {1,...,n}. Then J is said to be essential for P when
the following conditions hold:

(1) J CsuppP);
) dim(Xje, P =1I-1
(3) for all nonempty proper subsets J* C J, we have dim(} je; Pj) > |J'].

Given a closed subset P C R’ZZO and a vector w € R”, we define £(w, P) = min{{w, k) :
k € P}, where (, ) stands for the standard inner product in R". If £(w, P) > —co, then
we denote by P", or by A(w, P), the subset of P formed by those k € P such that
(w, k) = €£(w, P). The sets of the form A(w, P), for some w € R", are called faces of P.
IfP=(Py,...,P,) is an n-tuple of lattice polytopes contained in RZ ,, then we denote
the n-tuple (PY,..., P)) by P".

Next we state a particular case of [21, Theorem 7] that we need for our purposes (we
remark that this theorem is stated for polynomials with coefficients in any algebraically
closed field). Given two n-tuples of polytopes P and Q of R” such that P C Q, this
result gives a purely combinatorial characterisation of when P counts Q.

>0’

TueoreM 3.4 [21, page 127]. Let P and Q be n-tuples of lattice polytopes contained
in RY, such that P C Q. Let us suppose that Q is nice and cornered and M Q% > 0.
Then P counts Q if and only if supp(P N Q") contains an essential subset for Q" for
all w € R"\Ry.

If I is a monomial ideal of O, of finite colength, then we define
a;(I) = max{ord(*) : Lc{l,...,nL|Ll=n—i+1)

for any i € {1,...,n}. Observe that a;(I) < --- < a,(I) and that the definition of a;(/)
depends only on I'.(/). Therefore, a;(I) = a;(I) for all i = 1,...,n. We also define
the vector a(l) = (a,(I), ..., a,(I)). For example, if I = (xyz, x4, y", 2y € O3, where
3<as<b<c, thena(l)=(3,b,0).

We recall that a;(1) = Lg)(l) for all i = 1,...,n, by Theorem 2.3; however, this
equality is not used in the main result.

If k € R", then we denote by |k| the sum of the coordinates of k.

THEOREM 3.5. Let I be a monomial ideal of finite colength of O,. Then
e(l) < a(l)---ay(l) (3.1

and equality holds if and only if there exist polynomials gy, . .., & € Clxy, ..., X,] such
that g; is homogeneous of degree a;(I), foralli=1,...,n,and I ={g1,..., &)
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Prook. Since e(I) = e(I) and a;(I) = a;(I), for all i = 1,...,n, we can assume that / is
integrally closed. Then I = (x* : k € T'.(I)) (see for instance [14, Proposition 1.4.6]).
Leta; = a;(I)foralli=1,...,n. Let us denote by D; the convex hull in R" of the set

{k € supp(I") : k| = a;,L C{1,...,n},|L|=n—i+ 1}

foralli=1,...,n. By the definition of a;, we have a; = ord(/*) for some L C {1,...,n}
suchthat|L|=n—i+ 1foralli=1,...,n. Inparticular, D; # @ foralli =1,...,n. Let
D denote the n-tuple of polytopes (D, ..., D,).

If @ € Ry, let A(a) denote the convex hull in R” of the set {k € Z%, : |kl = a} and
let A denote the n-tuple of polytopes (A(ay), ..., A(a,)). It is clear that A is nice and
cornered and M(A®) = a; - - -a, > 0. Clearly, we have D C A. We claim that D counts A.
To see this, we will apply Theorem 3.4.

Let us fix a vector w = (wy, ..., w,) € R"\RL, and let wyp = min{wy, ..., w,}. Let
L,, denote the set of indices {i : w; = wp}. It is immediate that £{(w, A(a;)) = ajwp and
Aa;)" = Aaj) N R’Ew for all w e R"™\RY and all j=1,...,n. Then A” = A for all
w € R"\RY. In particular, we have the equality

(A" :we R'\RL ) ={A":LC(l,...,n},L #0}.

Fix a subset L C {1,...,n}, L# 0. Let a =|L| and consider the set of indices
Ju={n+1-a,...,n). Let us show that J; Csupp(D N Al) and J; is an essential
set for AL,

Ifie J., then @ > n—i+ 1 and thus ord(/") < ord(I*) < a; for all L’ C L such that
L'l =n—-1i+ 1. In particular, if L’ C L is any subset such that [L'| =n —i + 1, there
exists some k € supp(I*') C supp(I*) such that |k| = a;. Then D; N A(g;)" # 0 for all
i € J.. That is, we have J. C supp(D N AL). We observe that dim A(a)* = |L| - 1
for all a € Ryp. Moreover, }jc; A(aj)L = (A jes, aj))L. In particular, we have
dim )’ jc;, Ala j)L =|L| — 1. Then we observe that J; satisfies conditions (2) and (3)
of the definition of essential subset for AL (see Definition 3.3). Thus, we deduce that
D counts A, by Theorem 3.4.

In particular, there exist homogeneous polynomials g; € C[D;], i =1,...,n, such
that, for the map G = (g1,...,8,) : C" = C", G"1(0) is finite and m(G) = M(A®) =
ap - - - a,. Since g; is homogeneous, foralli = 1,...,n, and G~1(0) is finite, we conclude

that G'(0) = {0}. Let I(G) be the ideal of O, generated by gi,...,g,. Then I(G) has
finite colength and e(/(G)) = a; - - - a,. If we assume that / is monomial and integrally
closed, then I(G) C I. This implies that a; - - - a, = e(1(G)) > e(I).

Then, by Rees’s multiplicity theorem (see for instance [11, page 147] or [14,
page 222]), the equality e(I(G)) = e(I) holds if and only if / = I={g1,...,8). O

Let G denote a homogeneous polynomial map C" — C" such that G~!(0) = {0}.
Denote by I(G) the ideal of O, generated by the component functions of G. We remark
that the integral closure of /(G) is not always a monomial ideal, as is shown by the map
G : (C%,0) — (C?,0) given by g(x,y) = (xy + x2,y%).

Let I be a monomial ideal of O, of finite colength and let v =(1,...,1) € R". Then
we denote the face A(v,T.(1)) by Ao({). Let us observe that the elements k € I'..(1)
such that |k| = ord(]) are contained in Ay(/).
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Remark 3.6. Let I be a monomial ideal of O, of finite colength satisfying the condition
e(l)=ay - a,, where a; = a;(I), i = 1,...,n. Then, as we have seen in the proof of
Theorem 3.5, the ideal I admits a reduction {g1,---,8n), Where g; is a homogeneous
polynomial of C[xy,..., x,] of degree a; for alli = 1,...,n. Let d = dim Ay(I). Then,
as a consequence of [1, Theorem 2.10], where all the reductions of monomial ideals
are characterised, it follows that a; = --- = ay = a441. In particular, if a; < ap, then
dim Ag(1) = 0, that is, the face A(v,I".(I)) is a vertex.

Let us also observe that, by [1, Theorem 2.10], the condition e(]) = a; - - - a, forces
the face Ay(/) to intersect all faces of I',(/) of dimension n. We conjecture that it is
possible to obtain a characterisation of the condition e(7) = []"_, a;(I) in terms of some
property of the tree determined by the vertices and edges of I',.({).

ExampLE 3.7. Let us consider the ideal of O3 given by I = (x*,y", z¢, xy, xz, yz), where
2<a<b<c. Then a(l) =(2,2,c). Moreover, e(l) =2 +a+ b + c. Observe that
e(I) < 4c and equality holds if and only if a = b = c = 2.

Here we illustrate Remark 3.6. Let us observe that the face Ay(/) contains the
convex hull of the supports of the monomials xy, xz, yz. Hence, dim Ag(/) = 2. Thus, /
does not satisfy the relation e(l) = a;(I)ax(1)as(I) if ¢ > 2, by Remark 3.6.

ExampLE 3.8. Let I be the ideal of O, generated by x*, x{',...,x;", where k € Z!

>0°
k+#0, and ay,...,a, are integers such that |k| <a; <--- <a,. We recall that [k|
denotes the sum of the coordinates of k. Then we have a(l) = (ky + -+ + k,, a», ..., a,)
and e(l) = kjay ---a, + --- + a - - - ay_1k,. Therefore, e(I) = []'_, a;(I) if and only if
ap =--- = ay.

Let Ict(I) denote the log canonical threshold of an ideal I of O, and let u(I) denote
the inverse 1/lct(/), which is also known as the Arnold index of /. By a result of
de Fernex et al. [8, Theorem 1.4], if I is an ideal of O, of finite colength, then
e(I) > (nu(I))" and equality holds if and only if 7 = mS". In particular, using (1.3),

(nu(D))" < e(l) < L) -+ L3 (D).
We recall that, by a result of Howald [13], if / is a monomial ideal, then
pu(l) = minf{a > 0 : av e ' (1)}, 3.2)

where v =(1,...,1) € R". Let us denote the number on the right-hand side of (3.2) by
a(l). Then, as a consequence of (3.1) and [8, Theorem 1.4], we obtain the following
conclusion, which is a combinatorial result.

CoroLLARY 3.9. Let I be a monomial ideal of O,, of finite colength. Then
a(l)---ay(I) 2 (na(l))"

and equality holds if and only if T = m3™",
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