A COMMUTATIVITY THEOREM FOR SEMIPRIME RINGS

Hazar Abu-Khuzam

Let R be a semiprime ring in which for each x in R there exists a positive integer $n=n(x)>1$ such that $(x y)^{n}=x^{n} y^{n}$ for all y in R. Then R is commutative.

A theorem of Herstein [3] states that a ring R which satisfies the identity $(x y)^{n}=x^{n} y^{n}$, where n is a fixed positive integer greater than l, must have nil commutator ideal. In [2] Bell proved that if R is an n-torsion-free ring with identity 1 and satisfies the two identities $(x y)^{n}=x^{n} y^{n}$ and $(x y)^{n+1}=x^{n+1} y^{n+1}$, then R is commutative. Recently, the author [1] proved that if R is $n(n-1)$-torsion-free ring with 1 and satisfies the identity $(x y)^{n}=x^{n} y^{n}$, then R is commutative. In this note, we consider rings which satisfy $(x y)^{n}=x^{n} y^{n}$ where n is a positive integer depending on x. In this direction we prove the following theorem which generalizes the above result of Herstein.

THEOREM. Let R be a semiprime ring in which, for each x in R, there exists an integer $n=n(x)>1$ such that $(x y)^{n}=x^{n} y^{n}$ for all y in R. Then R is conmutative.

In preparation for the proof of our main theorem, we first prove the following lemmas. Throughout, R will denote an associative ring.

LEMMA 1. If R is a semiprime ring in which, for each x in R,
there exists a positive integer $n=n(x)>1$ such that $(x y)^{n}=x^{n} y^{n}$ for all y in R, then R has no nonzero nilpotent elements.

Proof. Let $a \in R$ such that $a^{2}=0$. Using the hypothesis, there exists an integer $n=n(a)>1$ such that $(a x)^{n}=a^{n} x^{n}$ for all x in R. This implies that $(a x)^{n}=0$ for all x in R. If $a R \neq 0$, then the above shows that $a R$ is a nonzero nil right ideal satisfying the identity $y^{n}=0$ for all y in $a R$. So by Lemma 2.1.1 of [5], R has a nonzero nilpotent ideal. This is a contradiction since R is semiprime. Thus $a R=0$, and hence $a R a=0$. This implies that $a=0$ since R is semiprime.

LEMMA 2. If R is a prime ring in which, for each x in R, there exists an integer $n=n(x)>1$ such that $(x y)^{n}=x^{n} y^{n}$ for all y in R, then R has no zero divisors.

Proof. By Lemma l above, R has no nonzero nilpotent elements. So by Lemma 1.1.1 of [5], R has no zero divisors since it is prime with no nonzero nilpotent elements.

LEMMA 3. If R is a prime ring in which, for each x in R, there exists an integer $n=n(x)>1$ such that $(x y)^{n}=x^{n} y^{n}$ for all y in R, then for each x in R, there exists an integer $n=n(x)>1$ such that
(i) $\left(x^{k} y\right)^{n}=x^{k n} y^{n}$, for all y in R and all integers $k \geq 1$, and
(ii) $\left(y x^{k}\right)^{n}=x^{k(n-1)} y^{n} x^{k}$, for all $y \in R$ and all integers $k \geq 1$.

Proof. Part (i) can easily be proved by induction on k. To prove (ii), let $n=n(x)>1$ such that $\left(x^{k} y\right)^{n}=x^{k n} y^{n}$, for all y in R and all integers $k \geq 1$. Note that $x^{k}\left(y x^{k}\right)^{n}=\left(x^{k} y\right)^{n} x^{k}=x^{k n} y^{n} x^{k}$, and hence $x^{k}\left(\left(y x^{k}\right)^{n}-x^{k(n-1)} y^{n} x^{k}\right)=0$, and now part (ii) of the lemma follows since, by Lemma 2, R has no zero divisors.

Proof of the theorem. Since R is a semiprime ring then it is
isomorphic to a subdirect sum of prime rings R_{α} each of which, as a homomorphic image of R, satisfies the hypothesis of the theorem. So we may assume that R is prime. Let x and y be any two nonzero elements of R. Then by Lemma 3 (i), there exist positive integers $n=n(x)>1$, and $m=m(y)>1$ such that
(1) $\quad\left(x^{k} z\right)^{n}=x^{k n} z^{n}$, for all z in R and all integers $k \geq 1$,
(2) $\left(y^{k} z\right)^{m}=y^{k m} z^{m}$, for all z in R and all integers $k \geq 1$.

Using (2) and Lemma 3 (ii) we get

$$
\begin{equation*}
(y x)^{m n}=\left((y x)^{m}\right)^{n}=\left(y^{m} x^{m}\right)^{n}=x^{m(n-1)} y^{m} x^{m} \tag{3}
\end{equation*}
$$

From Lemma 3 (ii), $(y x)^{n}=x^{n-1} y^{n} x$, and hence
(4) $\left((y x)^{n}\right)^{m}=\left(x^{n-1} y^{n} x\right)^{m}=x^{n-1} y^{n} x \cdot x^{n-1} y^{n} x \ldots x^{n-1} y^{n} x$

$$
=x^{n-1}\left(y^{n} x^{n}\right)^{m-1} y^{n} x
$$

Thus, using (4) and (2),

$$
(y x)^{n m_{x} n-1}=\left(x^{n-1}\left(y^{n} x^{n}\right)^{m-1} y^{n} x\right) x^{n-1}=x^{n-1}\left(y^{n} x^{n}\right)^{m}=x^{n-1} y^{n m} x^{n m}
$$

Thus,

$$
\left[(y x)^{n m}-x^{n-1} y^{n m} x^{n m-(n-1)}\right] x^{n-1}=0
$$

Using Lemma 2, R has no zero divisors, and hence

$$
\begin{equation*}
(y x)^{n m}=x^{n-1} y^{n m} x^{n m-(n-1)} \tag{5}
\end{equation*}
$$

Now (3) and (5) imply that

$$
\begin{equation*}
x^{n-1} y^{n m} x^{n m-(n-1)}=x^{m(n-1)} y_{x}^{m n_{x}^{m}} \tag{6}
\end{equation*}
$$

Clearly $m(n-1)>(n-1)$, and $n m-(n-1)=n(m-1)+1>m$ since $m \geq 2$, and $n \geq 2$. So (6) implies that

$$
\begin{equation*}
x^{n-1}\left[y^{n m} x^{n m-m-n+1}-x^{n m-m-n+1} y^{n m}\right] x^{m}=0 \tag{7}
\end{equation*}
$$

Since R has no zero divisors, (7) implies that

$$
y^{n m_{x} n m-m-n+1}=x^{n m-m-n+1} y^{n m}
$$

and hence for any two elements x and y in R, there exist two positive
integers $p=p(x, y) \geq 1$ and $q=q(x, y) \geq 1$ such that $y^{p} x^{q}=x^{q} y^{p}$, and therefore R is commutative by a theorem of Herstein [4].

COROLLARY. If R is a ring in which, for each x in R, there exists an integer $n=n(x)>1$ such that $(x y)^{n}=x^{n} y^{n}$ for each $y \in R$, then the commutator ideal of R is nil.

Proof. To prove that the commutator ideal of R is nil it is enough to show that if R has no nonzero nil ideals then it is commutative. So we suppose that R has no nonzero nil ideals. Then R is a subdirect product of prime rings each of which, as a homomorphic image of R, satisfies the hypothesis of the corollary. So R is commutative by the above theorem.

References

[1] Hazar Abu-Khuzam, "A commutativity theorem for rings", Math. Japon. 25 (1980), 593-595.
[2] Howard E. Bell, "On the power map and ring commutativity", Canad. Math. Buてl. 21 (1978), 399-404.
[3] I.N. Herstein, "Power maps in rings", Michigan Math. J. 8 (1961), 29-32.
[4] I.N. Herstein, "A commutativity theorem", J. Algebra 38 (1976), 112-118.
[5] I.N. Herstein, Rings with invoZution (University of Chicago Press, Chicago, London, 1976).

Department of Mathematics, University of Petroleum and Minerals, UPM Box 376, Dhahran, Saudi Arabia.

