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INVEXITY OF SUPREMUM AND INFIMUM FUNCTIONS

NGUYEN XUAN HA AND DO VAN LUU

Under suitable assumptions we establish the formulas for calculating generalised
gradients and generalised directional derivatives in the Clarke sense of the supre-
mum and the infimum of an infinite family of Lipschitz functions. Prom these
results we derive the results ensuring such a supremum or infimum are an invex
function when all functions of the family are invex. Applying these results to a
class of mathematical programs, we obtain necessary and sufficient conditions for
optimality.

1. INTRODUCTION

The theory of invex functions has been extensively studied by many authors (see, for
example, [1, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15]). The works of Hanson [8] and Craven
[10] are the starting points of this theory. This research was inspired by the recent
work of Luu and Ha [12], who proved that the minimum and the maximum of a finite
family of invex functions defined on a Banach space are invex functions under suitable
hypotheses. To study the supremum and the infimum of an infinite family of invex
Lipschitz functions, we need to calculate their Clarke's generalised gradients and gener-
alised directional derivatives. In [9], the subdifferential formulas for such suprema were
derived for an infinite family of convex functions or an infinite family of functions which
are directionally differentiable at the considered point uniformly in all directions..

In this paper we study the supremum and the infimum of infinitely many Lipschitz
functions defined on a finite dimensional space. The remainder of the paper is organised
as follows. After some preliminaries, Sections 3 and 4 are devoted to the discussion
of Clarke's generalised gradients and generalised directional derivatives of infinitely
many Lipschitz functions. Section 5 give some results ensuring suprema and infima of
infinitely many invex Lipschitz functions are invex as well. Finally, in Section 6 applying
the previous results, optimality conditions are established for a class of mathematical
programming problems under suitable invexity hypotheses.
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290 N.X. Ha and D.V. Luu [2]

2. PRELIMINARIES

Let X be a finite dimensional linear space, and let / be a locally Lipschitz function
defined on X. Following [3], the Clarke generalised directional derivative of the function
/ at x € X, with respect to the direction d, is defined as

f°(x; d) = lim sup / ( * + td) ~ /(*) .
xtto

Then the function f°(x;.) is finite, positively homogeneous and subadditive.
The following set is called the Clarke generalised gradient of / at x

df(x) = {x* € X* : (x*,d) < /°(x;d), Vd e X),

where X* is the topological dual of X. Here, X* = X, as X is finite dimension.
Clarke [3] proved that df(x) is nonempty, convex, compact and

,d> (Vd € X).

The set-valued mapping df(.) is upper semicontinuous at x. Moreover,

df{x) = co { lim V/(xi) : z* -> x, XigSlfliS},

where flf stands for the set of nondifferentiable points of / in a neighbourhood U of
x, co indicates the convex hull, and S is any subset of Lebesgue's measure zero in U.

The directional derivative of / at x, with respect to the direction d, is the limit

/•did)-Mm'<*+"?-**>

if it exists.
Recall ([3]) that the locally Lipschitz function / is called regular at x if there

exists the directional derivative f'(x;.) and

Following [15], the locally Lipschitz function / is called invex at x with respect
to a scale function w : X x X -4 X if

(1) nx)-f<ft>f°{x;u>(x,x)) (Vz€X),

which is equivalent to the following

(1') f{x) - f{x) > <C,w(*,5J)> (VC G df(x), Vx e X).
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[3] Supremum and Infimum functions 291

If (1) or (1') holds for all x in a subset U containing x, then / is called invex on U

at x.

Let the locally Lipschitz function / be directionally differentiable at x in all di-

rections. It is obvious that

/ ' ( s ; d )< / ° (3? ;d ) (Vd).

Then, / is called weakly invex on U at x with respect to a scale function w if

f(x)-f(x)>f'(x;u(x,x)) (Vzet/).

Thus, if / is invex on U at x with respect to u>, then it is weakly invex on U at x
with respect to u .

3. GENERALISED GRADIENTS

Let Q be a metrisable compact topological space, and for all a € Q, let fa be a

real-valued function defined on Rn. Prom now on we define the following functions

(2) f{x) = sup fa(x), g(x) = inf/«(*).

Let U be an open subset of R" containing x. Assume that for all a 6 Q, the func-
tion fa is Lipschitzian on U with the same Lipschitz constant K. Due to Rademacher's
theorem, fa is differentiable almost anywhere in U with respect to Lebesgue's measure
on R". In view of the compactness of Q, f(x) and g(x) are finite at each x G R".

Donote by fiQ the set of points of U at which fa is nondifferentiable. Then fiQ

is of Lebesgue's measure zero.

Define the following sets

Qo = {a € Q : /a(s) = sup //j(x) j ,

Note that the aforementional functions / and </ are Lipschitzian on U.

A theorem on Clarke's generalised gradient of the function / defined above can be

stated as follows

THEOREM 3 . 1 . Assume that the mapping a »-+ fQ(x) is continuous, and the
set-valued mapping (a,x) t-¥ dfQ(x) is upper semicontinuous at (a,x) for all a £ QQ.
Then

(3) a/(x)cco( U dfa(x)).
a€Qo

https://doi.org/10.1017/S0004972700020335 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020335
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P R O O F : We begin by establishing the following

(4) a/(x)CCo( (J dfa(x)),

where co indicates the closed convex hull.
In view of [3, Theorem 2.8.6], one gets

8f(x) C co{ .Urn V/aj(xj) : x{ -> x, x{ £ Si, xt <? Qai, on G Q, fai(x) -> / (x)} ,

where Si is an arbitrary subset of U with Lebesgue's measure zero.
Define the set

A = \ lim V/Qi(xj) : Xj —̂  x, Xi & Si, Xi £ fia., a* G <5, faAx) -> f(%) \-

To obtain (4), it is sufficient to verify that

(5) AC [j dfa(x).

Taking £ G A, we have £ = lim V/Q.(x<) in which x< -» x, Xj £ Si, xt 0 fiQ.,
i—¥oo *

Since Q is a metrisable compact topological space, there exists a subsequence
{ctik} of the sequence {a*} such that aifc —¥ ao G <2 as k —> oo. In view of the
continuity of the mapping a >-¥ /Q(x), we obtain that fai (x) -¥ fao(x) as A; -> oo.
Moreover, we also get that fai (x) —¥ f(x) as k —¥ oo. Hence, fQQ{x) = / (x) , which
means that ao G Qo •

Observing ^faik (xtk) G #/aifc (^tfc) (VA;), by virtue of the upper semicontinuity
of the mapping (a, x) >-¥ dfa (x), we contend that

£ = lim Vfaik(xik) G dfao(x),

which gives (5).

Setting /o := sup fa(x), in view of the compactness of Q, /o is finite. We define
aeQ

the set PQ := {a-G Q : fa(x) < fo} • In view of the continuity of the mapping
a H^ /a(^) i the set PQ is an open subset of Q, and hence Q\PQ is a closed subset of
Q. Since Qo — Q \ Po and <2 is compact, it follows that Qo is compact.

Observing that (Kn)* = R", one gets (J dfa(x) C Rn. Making use of the
a€Qo

compactness of Qo and the upper semicontinuity of the mapping a i-» dfa (x), we
claim that the set (J dfa(x) is compact in Rn (see, for example, [2, p. 116]).

aEQo
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It is well known that the convex hull of a compact set in K" is also compact.

Hence, co ( \J dfa(x)\ is compact, and thus co ( (J dfa{x)j is closed. Moreover,

according to the convex analysis,

co( (J a / a ( x ) ) = c o ( | J a / a ( x ) ) = (
aeQo a€Q0 0.6Q0

which together with (4) implies (3). The proof is complete. D

For calculating Clarke's generalised gradient of the function g defined above we
have the following

THEOREM 3 . 2 . Suppose that the mapping a i-> fa(x) is continuous, and the
set-valued mapping (a, 1) i-+ —dfa(x) is upper semicontinuous at (a, x) for all a 6 Qi.
Then,

(6) ty(2) <= co ( U dfa(x)).
a€Qi

PROOF: Observe that

-g(x) = - inf fa(x) = ( )

= {a 6 Q : -fa{x) = sup(-f0{x))\.
0€Q

Due to the hypotheses, the mapping a i-> —fa{x) is continuous, and the set-valued
mapping (a,x) >-> d(-fa)(x) is upper semicontinuous at (a,x) for all a G Q\. Apply-
ing Theorem 3.1 to the functions —fa (a € Q) we obtain

d(-g)(x)Cco(

It follows from the nonsmooth analysis in [3] that

-dg(x) = d(-g)(x) C co ( | J d(-fa)(x))
oeQi

= CO(- U dfa{xj)

= -co( U dfa(x)).
aeQi

Consequently,

9fa(x)).
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4. GENERALISED DIRECTIONAL DERIVATIVES

THEOREM 4 . 1 . Assume that the mapping a i-> fQ(x) is continuous, and the

set-valued mapping (a,x) •-> dfa(x) is upper semicontinuous at (a,x) for all a € Qo-

Then,

(7) /°(3?;d)< sup/°(x;d) (Vd).
a€Qo

Moreover, if for all a € Qo, fQ is regular at x, then f is also regular at x, and

(8) f'(x;d)= sup/ ;(x;d) (Vd),
a6Qo

(9) 9/(x) = co( | J df*{x)).
Q

PROOF: We invoke Theorem 3.1 to deduce that

3/(30 C co ( U df°(x))-
a£Qo

Hence, for every d e l " ,

/°(x; d) = max <*, <0 ̂  max{(e, d> : £ £ co ( | J 3/o(s

= «o,d) / for some & € co ( (J 3/a(x)))
aeQo '

for some £ai G dfai{x), A< ^ 0, i = 1 , . . . , m, a< G Qo, £ «̂ = 1
t=i

= sup max (fQ,d)
a€<Jo£<»€»/a(5)

(10) = s u p / ° ( x ; d ) .
Q

Assume now that for all a 6 Qo, fa is regular at x. By (7), it follows that for

every d G R",

(11) limsup / ( * + *<*)-/£?) ^ / o ( £ . d ) ^ s u p / i ( 5 . d )

UO t a€Qo
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On the other hand, for each a G QQ ,

> l i m . i n f — 7 " = f'afc d)>

which implies that

(12) liminf/(* + t d ) ~ / ( 5 ° ^ sup £(s;d).
tio t aeQo

Combining (11) and (12) yields that the directional derivative of / at x exists

and

(13) f'{x; d) = sup / i ( i ; d), for all d.

It should be noted that in view of (10), one gets

f'(x;d)= max_(£,d)^ max
S^fM «Gco( (J a/Q(x))

a€Qo

^ sup max_ (£a,d)

= sup / ; ( i ; d ) (Vd),

which together with (13) yields that

f'(x;d)= max (£,d) = max

(14) = sup f'a(x;d).
Q

Because of the closeness and the convexity of df(x) and co ( (J dfa(x)), from (14)

we claim (see, for example, [3, Proposition 2.14]) that

9/(5)= co ( (J 0/o(x)).
Q

This concludes the proof.

We now turn to the function g.
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THEOREM 4 . 2 . Assume that the mapping a •-> /Q(x) is continuous, and the set-

valued mapping (a,x) i—> —dfa(x) is upper semicontinuous at (a,x) for all a £ Qi.

Suppose, in addition, that for all a € Q\, the function -fa is regular at x. Then, -g

is regular at x, and

(15) g'(x;d) = amf^(x;d) (Vd),

(16) dg(x) = co[ | J dfa(x)),
Q

PROOF: According to the hypotheses, the mapping a i-» —fQ(x) is continuous,
and the set-valued mapping (a, x) H-> d(-fa)(x) is upper semicontinuous. At this
point we remark that

-g{x) = - inf fa(x) = sup(-/Q(z)) ,

Qt^laeQ: -fa(x) = sup(-//J(x))}.

Note that fa is also directionally differentiable at x in all directions.
Applying Theorem 4.1 to the functions —fa (a € Q\) at x, we claim that the

function —g is regular at x, and

(-g)°(x; d) = -g'(x; d) = sup ( - fa)\x; d)
eQ

(Vd).

Thus, g is directionally differentiable at x in all directions, and

g'(x;d)= inf /;(E;d) (Vd).
aeQi

We now invoke Theorem 4.1 to deduce that

( (J S

Consequently,

dg(x) = -d(-g)(x) = co ( (J 0/o(i)).
0
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5. INVEXITY

We are now in a position to formulate conditions ensuring the supremum of Lips-

chitz invex functions is invex.

THEOREM 5 . 1 . Assume that the mapping a >-> /Q(x) is continuous the map-

pings a i—> f®(x;d) for all d is upper semicontinuous, and the set-valued mapping

(a,x) >-» dfQ{x) is upper semicontinuous at (a,x) (Va € Qo)- Suppose, furthermore,

that for all a £ Qo, fa is invex on U at x with respect to the same scale function

u> : U x U -¥ Rn. Then, the function f defined by (2) is invex on U at x with respect

to the scale function w.

PROOF: Assume the contrary, that the conclusion is false. Then there exists x\ 6
U such that

(17) / ( x 1 ) - / ( x ) < / 0 ( x ; w ( x 1 ) x ) ) .

Due to Theorem 4.1, it follows from (17) that

SUp fQ{xx) - SUp /Q(x) ^ SUp fa{Xi) - SUp /Q(x)
c*€Qo < * G Q O Q6Q a€Q

(18) ^ sup
Q

In view of the compactness of Qo and the upper semicontinuity of the mapping

a i-> f°(x;u(xi,x)), there exists ao € Qo such that

(19) sup ^(X^XLX)) = /^(xiu^x)).

Combining (18) and (19) yields that

SUP [/„(*!) - fa(W)] < flQ{x-M^x)).
aeQo

Consequently,

/«o(*l)-/ao (5) </20 fc"(*l.*)).
which means that fQQ is not invex on U at x with respect to w.

This contradicts the hypothesis. D

THEOREM 5 . 2 . Assume that the mapping a •-> /Q(x) is continuous, and the

set-valued mapping (a, x) •-> dfa(x) is upper semicontinuous at (a,x) for all a g Qo.

Suppose, in addition, that for all a G Qo, fa is regular at x and invex on U at x with
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respect to the same scale function w : U x U —> M". Then the function f defined by

(2) is invex on U at IE with respect to u>.

PROOF: Since for all a e Q 0 , /a is regular at x and invex on U at x with respect
to the same scale function w, it follows that for every x € U,

fa{x) £ fa(*Mx,x)) + fa{x),

which implies that for every a £ Qo,

sup fa(x) ^ sup fa(x) > fe(x;u(x,x)) + fa(x).
aeQ aeQo

Hence,

-(20) SUP/Q(z)^ SUP f'a(x\w(x,x)) + SUP fa(x).
aeQ a^Qo a€Qo

We invoke Theorem 4.1 to deduce that for every x € U,

(21) f'(x;uj(xtx)) = sup f'a(x;u(x,x)).
aeQo

Substituting (21) into (20) yields that

f(x)-f(x)>f'(x;uj(x,x)),

which gives the assertion. Q

Denote by B(x; 6) the open ball of radius 6 > 0 around x.

THEOREM 5 . 3 . Assume that for all x £ U, x ^ x, the mapping a i-> fa{x)

is lower semicontinuous, the mapping a i-> fa(x) is continuous, and the set-valued

mapping (a,x) i-i —dfa(x) is upper semicontinuous at (a,x) (VaeQi ) . Suppose,

furthermore, that for all a G Q\, —fa is regular at x, and fa is weakly invex on U at

x with respect to the same scale function u. Then there exists a number 6 > 0 such

that the function g defined by (2) is weakly invex on B(x; 6)nU afx with respect to

u>.

PROOF: We first observe that for all a € Qi, fa is directionally differentiate at
x in all directions. According to Theorem 4.2, g is also directionally differentiate at
x in all directions.

Assume now the contrary, that the conclusion is false. Then for every 5 > 0 there
exists xi € B(x;6)OU such that

(22) g(x1)-g{x)<g'(x;<j{xux)).
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Taking account of Theorem 4.2, one gets

(23) g'(x;uj(x,x))= inf

Substituting (23) into (22) yields that

which implies that

inf / Q (xx)< inf [/;(x;w(xi,x)

In view of the lower semicontinuity of the mapping a H-> fa(x\), there exists /3 e Q

such that

(24) inf /a f r i ) =// j(*i) ,

whence,

(25) / ^ i ) < jnf^ [^(xja;^!,^) + /Q(x)].

We now show that 0 £ Qi.

Indeed, if /3 £ Q\, then for a fixed a € Q\,

(26) ^ ( i ) - fQ(x) = n > 0.

Because of the continuity of / Q , there exists 8i > 0 such that for every x € B(x; 6\)nU,

(27) /«(*K/«, (* ) + | -

In view of the continuity of fp, there exists 62 > 0 such that for every x € B(x; 62)01/,

(28) ^(x) - I < fp(x).

Taking <5 = min{5i,52), it follows from (26)-(28) that for every x E B(x;6)nU,

fa(x) ^ fa{x) + ̂ < fp(x) - I < fp(x),

which implies that

fa(xi) < fp(xi).
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This conflicts with (24). Consequently, f3 € Qi.

On the other hand, by (25) we obtain

//»(«i) < f'a{x;u){xux)) + fa(x) (Vor e Qi),

which leads to the following

u(xi,x)) +fp(x).

This means that fp is not weakly invex on U at x with respect to u>, which contradicts
the hypothesis. D

COROLLARY 5 . 1 . Assume all the hypotheses of Theorem 5.3 are satisfied. Sup-
pose, furthermore, that the function g defined by (2) is regular at x. Then there exists
a number 6 > 0 such that g is invex on B(x; 6) D U at x with respect to u).

6. APPLICATIONS

Let Q and B be metrisable compact topological spaces, and let /Q (a € Q) and gp
(P € B) be real-valued functions defined on Rn. In this section we shall be concerned
with the following problem

{ minimise inf fa(x),

subject to sup (^(z) ^ 0.
In [13] Luu and Oettli studied a similar problem in rather general setting.

Define the following sets

Qo(x) = [a € Q : /«(*) = mf /7(x)},

B0(x) = {/? € B : gp{x) = suP57(x)}.
7GB

We are now in a position to formulate a necessary optimallity conditions for Problem

(P)-
THEOREM 6 . 1 . Let x be a iocai minimiser of Problem (P). Assume that the

functions fa (a 6 Q) and gp ((3 € B) are Lipschitzian on the same open set U con-
taining x with the'same Lipschitz constants K\ and K2, respectively. Suppose, in
addition, that the following two conditions are satisfied.

(a) The mapping a >-*• /Q(x) is continuous, and the set-valued mapping
{a,x) >-> -dfa(x) is upper semicontinuous at (a,x) for all a 6 Qo(^);

(b) The mapping f3 <-> gp{x) is continuous, and the set-valued mapping
(/?, x) i-» dgp{x) is upper semicontinuous at (f3, x) for all ft e B0(x).
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Then, there exist <7 ̂  0, x ^ 0, cti € Qo{%), ^at ^ 0, i = l , . . . , m , with
m _ I _ _

5D AQ = 1, and 0j G S0(x), /Z* ^ 0, j = 1,. . . ,i with £ £ « , . = 1, tf a n d X are not

both equal to zero, such that

m
(29) 0 €

(30) X sup ^ (x) = 0.
3 ( )

Moreover, assume the following conditions hold

(i) There exists x € U such that sup gp (x) < 0;
peB

(ii) For all /? € BQ(X), the function 5,3 is regular at x and invex on U at 1

with respect to the same scale functions w.
Then a > 0, and it can be taken a — 1.

PROOF: Let /(x) := inf /Q(x) and g(x) := supyn(x). Then, the functions / and
<*eQ pB

~g are Lipschitzian on U with the Lipschitz constant K\ and K2, respectively. Due to
[3, Theorem 6.1.1], there exist Lagrange multipliers a ^ 0 and x ^ 0, not both zero,
such that

(31)

(32)

Observe that (32) leads to (30).

Applying Theorem 3.2 to the function / and Theorem 3.1 to the function g, we

claim that

(33) a/(x)cco( |J dfa(x)),

(34) dg(x)c co ( (J dgp{x)).
/36B0(x)

Substituting (33) and (34) into (31) yields that

0Gaco( U a/a(x))+xco( | J dg0{x)),
() 0€Bo(x)
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which implies tha t there exist oti G Qofe), ^a{ ^ Oi i — l , . . . , m , with ^2^Qi — 1,

and /3j G B0(x), JI0j ^ 0, j = 1,... J, with £ ^ = 1 such tha t

m I

0 G CT^ AQid/Qj(x) +
i=i

For the final assertion of the theorem, we should show that a > 0. Suppose the

contrary, that <r = 0. Since a and x a r e n°t both equal to zero, it follows that x > 0,
and (29) becomes

i

which implies that there exist r}j G dgp^x) (j = 1,. . . ,i) such that

(35)

Define the function

G(x) =5f sup p/3 (a;).

From assumption (i) we can see that

(36) G(x) < 0.

Since for /3 G B0(x), the function gp is regular at x and invex on U at x with
respect to the same scale function w, it follows from Theorem 4.1 and 5.2 that the
function g is regular at x and invex on U at x, that is

(37) g(x)-g(x)>g"(x;Lj(x,x)) (Vx G C/).

Taking account of Theorem 4.1, we get

(38) ffg(x) = co( (J dgp(x)).

Combining (32), (37) and (38) yields that for every x G U,

G{x) = xI sup ^(x) - sup ^ (
lPeB 0&B

= X max

(39) =x max
C6co( |J
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Since £3 V-a Vj 6 co ( U dg@{x)), it follows that for every x G U,
j = \ 3 V/36B0(x) '

e
(40) max ( C , W ( I , I ) ) ^ ( ^ ^ ^-,u;(x,x)) = 0.

C6co( |J 8 ( ) )

Substituting (40) into (39) yields that for every x G U,

G(x) ^ 0,

which conflicts with (36). This completes the proof. D

Let us consider the following problem:

{ minimise sup / ( )

subject to sup gp(x) ^ 0,

where Q, B, fa(a € Q) and gp{fi € B) are as in Problem (P).

For this problem we define the sets

Qi(sc) = \a e Q : fa{x) = sup /7(x)j,

Bi(x) = {(3eB: gp(x) - sup57(x)|.

76Q

sup
76B

Denote by M the feasible set of (Pi):

M = ( i € l " : supff^z) ^ o).
1 /36B J

By an argument analogous to that used for the proof of Theorem 6.1 we obtain the
following

THEOREM 6 . 2 . Let x be a local minimiser of Problem (Pi). Assume that the

functions fa (a € Q) and gp (fi G B) are Lipschitzian on the same open set U contain-

ing x with the same Lipschitz constants K\ and K^, respectively. Suppose, further-

more, that the mappings a •->• /Q(x) and 0 H-> gp(x) are continuous, and the set-valued

mappings (a,x) i-> dfa(x) and (/3,x) *-* dgp(x) are upper semicontinuous at (a,x)

(Va G Qi(x)) and (0,x) (Vy9 G Bi(x)), respectively. Then, there exist W^0,x^0,
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«i G Qi{x), AQi ^ 0, i = l , . . . , m , with £ A Q i = 1, and /?,- € #1(2:), /*«. ^ 0,

j = 1, ...,£, with J Z / ^ . = 1, er and x are aot both equa7 to zero, such that

m I

0 ea^2\aidfai(x) + xJ2V/Sj990j(x),
i = l j=l

X sup ^ ( x ) = 0.

Moreover, assume the following conditions hold

(i) There exists x € U such that sup gp(x) < 0;
0€B

(ii) For all (3 € B\(x), the function gp is regular at x and invex on U at x

with respect to the same scale function UJ .

Then a > 0, and it can be taken a = 1.

Now we shall deal with a sufficient condition for optimality.

THEOREM 6 . 3 . Let x be a feasible point of Problem (Pi). Assume that the

functions fa (a £ Q) and gp (/3 € B) are Lipschitzian on the same open set U con-

taining x with the same Lipschitz constants K\ and K2, respectively; the mappings

& •-> /a(^) and (3 •-» gp(x) are continuous; the set-valued mappings (a,x) •-> dfa(x)

and (P,x) K4 dgp(x) are upper semicontinuous at (a,x) (Va S Qi(x)) and (@,x)

(V/3 € Bi(x)), respectively. Suppose, in addition, that the following conditions are

satisfied.

(a) The functions fa [a £ Qi(x)) and gp (/? € Q2(x)) are regular at x,

and invex on U at x" with respect to the same scale function u>;
m

(b) There are x ^ 0, at € Qi(x), XQi > 0, i = 1, . . . ,m, with ^ A o < = 1,
e _ i=i

and j3j £ B\(x), \ip. ^ 0 , j = 1 , . . . ,£, with J2 fj,p. = 1 such that

m t

(41) 0 € J]Xaidfai(x) + xJ2'p0
»=i j=i

(42) x sup w ( i ) = 0.

Then x is a iocai minimiser for (Pi) .

PROOF: Let f(x) :— sup /a(3;) and g~(x) := sup5/j(a;). Applying Theorem 4.1 we
<3 3 B

claim that / and g are regular at 1 . In view of Theorem 5.2, it follows that / and g

are invex on U at x with respect to the same scale function u>.

https://doi.org/10.1017/S0004972700020335 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020335


[17] Supremum and Infimum functions 305

It follows from (41) that there exist x ^ 0, «i € Qi(x), AQj > 0, £ € dfai(x),
m

i = l , . . . , m , £ A Q i = 1, and /3,- e S i ( x ) , p ^ . ^ 0, rjj £ dg0j{x), j = 1 , . . . , £ ,

^ • t = 1

J2 l^fi • = 1 such that

(43)
t = l

By (42), it follows that

X sup 08(5") = 0.

Hence, for x e MC\U,

SUp /Q(x) - SUP fa(x) ^ | SUP fa{x) - SUp / Q ( l ) | + X [ SUP ^ ( x ) - SUP 00(z) |
a6Q aeQ LQ6Q a€<3 J L/36B 0€B J

(44) ^ <^w(x,x)> + x(T),u(x,x)){Vt 6 9/(x), VT? € dff(x)).

Moreover, taking account of Theorem 4.1, we contend that

(45) 3/(5?) = co ( U 9 /«(^)) '
QgQ!(l)

(46) dg(x)=co( |J
(

Substituting (43), (45) and (46) into (44) yields that

s u p / a ( x ) - sup/Q(x)

t = l

as
m

E
t = l

|J 3/a(5f)),
eQi(^)

Thus x is a local minimiser for (Pi) . U
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