ON THE RESIDUAL FINITENESS OF POLYGONAL PRODUCTS OF NILPOTENT GROUPS

GOANSU KIM AND C. Y. TANG

Abstract

In general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.

1. Introduction. Polygonal products of groups were introduced by A. Karrass, A. Pietrowski and D. Solitar [8]. They studied the subgroup structure of these products and applied the results to the Picard group $\operatorname{PSL}(2, Z[i])$ which is a polygonal product of A_{4}, the four group and two copies of S_{3}. In [4], Brunner, Frame, Lee and Wielenberg used their results to determine all the torsion-free subgroups of finite index in the Pi card group. These products are also discussed by B. Fine in [6]. Allenby and Tang [2] studied the residual finiteness of polygonal products. They showed that polygonal products of finitely generated free abelian groups amalgamating cyclic subgroups with trivial intersections are residually finite. On the other hand, they constructed an example of a polygonal product of four finitely generated torsion-free nilpotent groups of class 2 amalgamating cyclic subgroups with trivial intersections, which is not residually finite. In this example, the amalgamated subgroups are not isolated subgroups [3] of their vertex groups. Moreover, the subgroups generated by the amalgamated subgroups in their respective vertex groups do not have the same nilpotency classes as their vertex groups. In this paper we show that if the subgroups generated by the two amalgamated cyclic subgroups are either isolated subgroups of their respective vertex groups (Theorem 3.6) or of the same nilpotency classes as their respective vertex groups (Theorem 4.6) then their polygonal products are residually finite.

[^0]2. Preliminaries. Briefly polygonal products can be described as follows [2]: Let P be a polygon. Assign to each vertex v of P a vertex group G_{v} and to each edge e, an edge group G_{e} together with monomorphisms λ_{e} and ρ_{e} embedding G_{e} as a subgroup of the two vertex groups at the ends of e. The polygonal product of this system of groups is the group G with generators and relations those of the vertex groups together with the extra relations obtained by identifying $g_{e} \lambda_{e}$ and $g_{e} \rho_{e}$ for each $g_{e} \in G_{e}$.

Throughout this paper, we only consider the case when P is a square. The results can be extended to polygons with more than four vertices. However the case of triangles can be nasty, because the triangle groups so formed may not contain the vertex groups isomorphically (see [9], p. 525).

We shall adopt the following notations and terminology:
We use $N \triangleleft_{f} G$ to denote that N is a normal subgroup of finite index in G. RF means residually finite and f. g. means finitely generated. If $N \triangleleft G$ and $\bar{G}=G / N$ then \bar{x} denotes $N x$ for $x \in G$. If $G=A *_{H} B$ and $x \in G$, then $\|x\|$ denotes the free product length of x in G. $Z_{i}(G)$ denotes the i th term of the upper central series of G. For convenience, we let $Z(G)=Z_{1}(G)$. Let H be a subgroup of G, then H^{G} denotes the normal closure of H in G.

A group G is said to be subgroup separable (LERF) if for every f. g. subgroup H of G and every $x \in G \backslash H$ there exists $N \triangleleft_{f} G$ such that $\bar{x} \notin \bar{H}$ in $\bar{G}=G / N$. If H is a subgroup of G and for every $x \in G \backslash H$, there exists $N \triangleleft_{f} G$ such that $\bar{x} \notin \bar{H}$ in $\bar{G}=G / N$, then we say G is H-separable.

A torsion-free group G is said to be potent if, for each positive integer n and each $1 \neq x \in G$, there exists $N \triangleleft_{f} G$ such that $N x$ has order exactly n in G / N.

Free groups and $f . g$. torsion-free nilpotent groups are potent.
Let H be a subgroup of G. Then H is called a retract of G if there exists $N \triangleleft G$ such that $G=N H$ and $N \cap H=1$.

We shall use the following results.
Theorem 2.1 ([5], Theorem 1). The generalized free products of residually finite groups amalgamating retracts are RF.

Theorem 2.2 ([3], Theorem 2.5). Let G be af.g.torsion-free nilpotent group. If H is an isolated subgroup of G, then $\bigcap_{k=1}^{\infty} G^{p^{k}} H=H$ for all primes p.
3. Amalgamating maximal cyclic subgroups. The example given in [2] showed that the polygonal products of $f . g$. torsion-free nilpotent groups amalgamating cyclic groups need not be RF. However, under certain conditions, if the amalgamated subgroups are maximal cyclic subgroups then we can prove that the polygonal products are RF.

Throughout the following we shall adopt the following notation. $A=\langle a, b\rangle, B=$ $\langle b, c\rangle, C=\langle c, d\rangle$ and $D=\langle d, a\rangle$ are torsion-free nilpotent groups with $\langle a\rangle \cap\langle b\rangle=$ $\langle b\rangle \cap\langle c\rangle=\langle c\rangle \cap\langle d\rangle=\langle d\rangle \cap\langle a\rangle=1 . A_{0}, B_{0}, C_{0}, D_{0}$ are $f . g$. torsion-free nilpotent groups containing A, B, C, D respectively such that $A_{0} \cap B_{0}=\langle b\rangle, B_{0} \cap C_{0}=\langle c\rangle$, $C_{0} \cap D_{0}=\langle d\rangle$ and $D_{0} \cap A_{0}=\langle a\rangle$.

LEMMA 3.1. Let $\bar{A}_{0}=A_{0} / A_{0}^{p^{k}}, \bar{B}_{0}=B_{0} / B_{0}^{p^{k}}, \bar{C}_{0}=C_{0} / C_{0}^{p^{k}}$ and $\bar{D}_{0}=D_{0} / D_{0}^{p^{k}}$. If A, B, C, D are isolated subgroups of $A_{0}, B_{0}, C_{0}, D_{0}$ respectively then the polygonal product \bar{P}_{0} of $\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}, \bar{D}_{0}$ amalgamating $\langle\bar{b}\rangle,\langle\bar{c}\rangle,\langle\bar{d}\rangle$ and $\langle\bar{a}\rangle$ is RF for almost all primes p.

Proof. Case 1. Let $A_{0}=A, B_{0}=B, C_{0}=C$ and $D_{0}=D$. Let $\tilde{A}=A / A^{n}$, $\tilde{B}=B / B^{n}, \tilde{C}=C / C^{n}$, and $\tilde{D}=D / D^{n}$. Let Q_{n} be the polygonal product of $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}$ amalgamating $\langle\tilde{b}\rangle,\langle\tilde{c}\rangle,\langle\tilde{d}\rangle$ and $\langle\tilde{a}\rangle$. Since A, B, C, D are torsion-free nilpotent groups, we have $\langle\tilde{a}\rangle \cap\langle\tilde{b}\rangle^{\tilde{A}}=\langle\tilde{c}\rangle \cap\langle\tilde{b}\rangle^{\tilde{B}}=1$ and $\langle\tilde{c}\rangle \cap\langle\tilde{d}\rangle^{\tilde{C}}=\langle\tilde{a}\rangle \cap\langle\tilde{d}\rangle^{\tilde{D}}=1$. Let $\tilde{E}=\tilde{A} *_{\langle\tilde{b}\rangle} \tilde{B}$ and $\tilde{F}=\tilde{C} *_{\langle\tilde{d}\rangle} \tilde{D}$. Then $\tilde{E}=\langle\tilde{b}\rangle^{\tilde{E}} \cdot \tilde{H}$ and $\tilde{F}=\langle\tilde{d}\rangle^{\tilde{F}} \cdot \tilde{H}$ where $\tilde{H}=\langle\tilde{a}\rangle *\langle\tilde{c}\rangle$. Since $\langle\tilde{b}\rangle^{\tilde{E}} \cap \tilde{H}=\langle\tilde{d}\rangle^{\tilde{F}} \cap \tilde{H}=1, \tilde{H}$ is a retract of both \tilde{E} and \tilde{F}. By Theorem 2.1, Q_{n} is RF.

CASE 2. $A_{0}, B_{0}, C_{0}, D_{0}$ not necessarily equal to A, B, C, D respectively. Let p be a prime greater than the nilpotency classes of $A_{0}, B_{0}, C_{0}, D_{0}$ respectively; we have $A_{0}^{p^{k}} \cap A=$ $A^{p^{k}}, B_{0}^{p^{k}} \cap B=B^{p^{k}}, C_{0}^{p^{k}} \cap C=C^{p^{k}}$ and $D_{0}^{p^{k}} \cap D=D^{p^{k}}$. Thus $\bar{A} \approx A / A^{p^{k}}, \bar{B} \approx B / B^{p^{k}}$, $\bar{C} \approx C / C^{p^{k}}$ and $\bar{D} \approx D / D^{p^{k}}$. Hence, by Case 1 , the polygonal product \bar{P} of \bar{A}, \bar{B}, \bar{C}, \bar{D} amalgamating $\langle\bar{b}\rangle,\langle\bar{c}\rangle,\langle\bar{d}\rangle,\langle\bar{a}\rangle$ is RF. Since $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ are finite, it follows that $\left.\bar{P}_{0} \approx\left(\left(\bar{P} *_{\bar{A}} \bar{A}_{0}\right) *_{\bar{B}} \bar{B}_{0}\right) *_{\bar{C}} \bar{C}_{0}\right) *_{\bar{D}} \bar{D}_{0}$ is RF.

Lemma 3.2. Let G be af.g. torsion-free nilpotent group of class c. Let $x, y \in G$ such that $\langle x\rangle \cap\langle y\rangle=1$ and $H=\langle x, y\rangle$ is an isolated subgroup of G. If $g \in G \backslash\langle x\rangle\langle y\rangle$ then, for every prime $p>c$, there exists an integer n such that $g \notin G^{p^{n}}\langle x\rangle\langle y\rangle$.

Proof. Since H is isolated, by Theorem 2.2, $\bigcap_{n=1}^{\infty} G^{p^{n}} H=H$. Thus, if $g \notin H$, then there exists n such that $g \notin G^{p^{n}} H$. It follows that $g \notin G^{p^{n}}\langle x\rangle\langle y\rangle$. Hence we can assume $g \in H \backslash\langle x\rangle\langle y\rangle$. If H is of nilpotency class m then $g=z x^{i} y^{j}$ where $z \in Z_{m-1}(H)$. Since $\bigcap_{n=1}^{\infty} H^{p^{n}}=1$, it follows that there exists n such that $z \notin H^{p^{n}}$. We shall show that $g=z x^{i} y^{j} \notin H^{p^{n}}\langle x\rangle\langle y\rangle$. Suppose $g \in H^{p^{n}}\langle x\rangle\langle y\rangle$. Then $g=h x^{s} y^{t}$, where $h \in H^{p^{n}}$. This implies $h=w_{1}^{p^{n}} \cdots w_{r}^{p^{n}}$ where $w_{1}, \ldots, w_{r} \in H$ for some r. Let $\bar{H}=H / Z_{m-1}(H)$. Then $\bar{h}=\bar{x}^{k p^{n}} \bar{y}^{\ell p^{n}}$. It follows that $\bar{g}=\bar{x}^{i} \bar{y}^{j}=\bar{x}^{k p^{n}+s} \bar{y}^{\ell p^{n}+t}$. Since $Z_{m-1}(H) \cap\langle x\rangle\langle y\rangle=1$, we have $i=k p^{n}+s$ and $j=\ell p^{n}+t$. Thus $g=z x^{i} y^{j}=h x^{s} y^{t}$ implies $z=h x^{s} y^{t-j} x^{-i}=$ $h x^{i-k p^{n}} y^{-\ell p^{n}} x^{-i}=h x^{-k p^{n}}\left(x^{i} y^{-\ell p^{n}} x^{-i}\right)$. But this implies $z \in H^{p^{n}}$ contradicting the choice of n. Hence $g \notin H^{p^{n}}\langle x\rangle\langle y\rangle$. Since $G^{p^{n}} \cap H=H^{p^{n}}$ for $p>c$, it follows that $g \notin G^{p^{n}}\langle x\rangle\langle y\rangle$ for every prime $p>c$.

DEFINITION 3.3. Let $G=G_{1} *_{H} G_{2}$. Let X, Y be subgroups of G_{1}, G_{2} respectively. Let $\mathcal{N}=\left\{\left(N_{i}, M_{i}\right) ; i \in I\right\}$ be a collection of pairs of normal subgroups of G_{1} and G_{2} satisfying the following conditions.
(1) $N_{i} \triangleleft G_{1}, M_{i} \triangleleft G_{2}$ such that $N_{i} \cap H=M_{i} \cap H$ for all $i \in I$,
(2) $N_{i} \cap X H=\left(N_{i} \cap X\right)\left(N_{i} \cap H\right)$ and $M_{i} \cap Y H=\left(M_{i} \cap Y\right)\left(M_{i} \cap H\right)$ for all $i \in I$,
(3) $\left(\bigcap_{j=1}^{n} N_{\alpha_{j}}, \bigcap_{j=1}^{n} M_{\alpha_{j}}\right) \in \mathcal{N}$ for all $\alpha_{1}, \ldots, \alpha_{n} \in I$, where n is finite,
(4) $\bigcap_{i \in I} N_{i} X=X, \bigcap_{i \in I} N_{i} H=H, \bigcap_{i \in I} M_{i} Y=Y$ and $\bigcap_{i \in I} M_{i} H=H$,
(5) $\bigcap_{i \in I} N_{i} X H=X H$ and $\bigcap_{i \in I} M_{i} Y H=Y H$.

Then \mathcal{N} is called a compatible filter of G with respect to the subgroups X and Y.

Lemma 3.4. Let $G=G_{1} *_{H} G_{2}$. Let X, Y be subgroups of G_{1}, G_{2} respectively such that $X \cap H=Y \cap H=1$. Let \mathcal{N} be a compatible filter of G with respect to X and Y. Then, for each $g \in G \backslash(X * Y)$ with $\|g\| \geq 1$, there exists $(N, M) \in \mathcal{N}$ such that $\|g \pi\|=\|g\|$ and $g \pi \notin X \pi * Y \pi$ where π is the canonical homomorphism of G onto $\bar{G}=\bar{G}_{1} *_{\bar{H}} \bar{G}_{2}$, and where $\bar{G}_{1}=G_{1} / N, \bar{G}_{2}=G_{2} / M$ and $\bar{H}=H N / N=H M / M$.

Proof. We shall only consider the case $g=u_{1} v_{1} \cdots u_{n} v_{n}$, where $u_{i} \in G_{1} \backslash H$, $v_{i} \in G_{2} \backslash H$ (other cases being similar). We first note that $g=x_{1} y_{1} \cdots x_{n} y_{n}$ where $x_{i} \in X$ and $y_{i} \in Y$ if and only if there exist $h_{1}, k_{1}, \ldots, h_{n-1}, k_{n-1}, h_{n} \in H$ such that $u_{1}=x_{1} h_{1}$, $v_{1}=h_{1}^{-1} y_{1} k_{1}, u_{2}=k_{1}^{-1} x_{2} h_{2}, \ldots, u_{n}=k_{n-1}^{-1} x_{n} h_{n}$ and $v_{n}=h_{n}^{-1} y_{n}$. Since $g \notin X * Y$, there exist $x_{i}, y_{i}, h_{i}, k_{i}$ such that the following is true:
(1) $u_{1} \notin X H$, or
(1') $u_{1}=x_{1} h_{1}$ but $h_{1} v_{1} \notin Y H$, or
(2) $u_{1}=x_{1} h_{1}, h_{1} v_{1}=y_{1} k_{1}$, but $k_{1} u_{2} \notin X H$, or
(2') $u_{1}=x_{1} h_{1}, h_{1} v_{1}=y_{1} k_{1}, k_{1} u_{2}=x_{2} h_{2}$, but $h_{2} v_{2} \notin Y H$, or
(n) $u_{1}=x_{1} h_{1}, h_{1} v_{1}=y_{1} k_{1}, \ldots, h_{n-1} v_{n-1}=y_{n-1} k_{n-1}$, but $k_{n-1} u_{n} \notin X H$, or
(n^{\prime}) $u_{1}=x_{1} h_{1}, h_{1} v_{1}=y_{1} k_{1}, \ldots, k_{n-1} u_{n}=x_{n} h_{n}$, but $h_{n} v_{n} \notin Y$.
Let i be the smallest integer such that (i) (or (i^{\prime})) is true. Since $X \cap H=Y \cap H=1$, $x_{j}, y_{j}, h_{j}, k_{j}$, are all uniquely determined, by properties (4) and (5) of \mathcal{N}, there exist $\left(N_{0}, M_{0}\right)\left(N_{\alpha_{j}}, M_{\alpha_{j}}\right),\left(N_{\beta_{j}}, M_{\beta_{j}}\right) \in \mathcal{N}$ such that $k_{i-1} u_{i} \notin N_{0} X H, u_{j} \notin N_{\alpha_{j}} H$ and $v_{j} \notin$ $M_{\beta_{j}} H$ for each $j=1, \ldots, n$. Let $N=N_{0} \cap\left(\bigcap_{j=1}^{n} N_{\alpha_{j}}\right) \cap\left(\bigcap_{j=1}^{n} N_{\beta_{j}}\right)$ and $M=M_{0} \cap$ $\left(\bigcap_{j=1}^{n} M_{\alpha_{j}}\right) \cap\left(\bigcap_{j=1}^{n} M_{\beta_{j}}\right)$. Then, by property (3) of $\mathcal{N},(N, M) \in \mathcal{N}$. Let $\pi: G \rightarrow \bar{G}$. Clearly $\|g \pi\|=\|g\|$ and, by property (2) of $\mathcal{N},(X * Y) \pi=\bar{X} * \bar{Y}$. If $g \pi \in \bar{X} * \bar{Y}$ then $g \pi=\bar{u}_{1} \bar{v}_{1} \cdots \bar{u}_{n} \bar{v}_{n}=\bar{s}_{1} \bar{t}_{1} \cdots \bar{s}_{n} \bar{t}_{n}$ where $\bar{s}_{i} \in \bar{X}$ and $\bar{t}_{i} \in \bar{Y}$. This implies $\bar{u}_{1}=\bar{s}_{1} \bar{r}_{1}$, $\bar{v}_{1}=\bar{r}_{1}^{-1} \bar{t}_{1} \bar{w}_{1}, \bar{u}_{2}=\bar{w}_{1}^{-1} \bar{s}_{2} \bar{r}_{2}, \ldots, \bar{u}_{i}=\bar{w}_{i-1}^{-1} \bar{s}_{i} \bar{r}_{i}, \ldots, \bar{v}_{n}=\bar{r}_{n}^{-1} \bar{t}_{n}$ where $\bar{r}_{i}, \bar{w}_{i} \in \bar{H}$. Now $\bar{u}_{1}=\bar{x}_{1} \bar{h}_{1}, \bar{h}_{1} \bar{v}_{1}=\bar{y}_{1} \bar{k}_{1}, \ldots, \bar{h}_{i-1} \bar{v}_{i-1}=\bar{y}_{i-1} \bar{k}_{i-1}$. Since $\bar{X} \cap \bar{H}=\bar{Y} \cap \bar{H}=1$, it follows that $\bar{s}_{1}=\bar{x}_{1}, \bar{r}_{1}=\bar{h}_{1}, \bar{t}_{1}=\bar{y}_{1}, \ldots, \bar{r}_{i-1}=\bar{h}_{i-1}, \bar{t}_{i-1}=\bar{y}_{i-1}$ and $\bar{w}_{i-1}=\bar{k}_{i-1}$. This implies $\bar{u}_{i}=\bar{w}_{i-1}^{-1} \bar{s}_{i} \bar{r}_{i}=\bar{k}_{i-1}^{-1} \bar{s}_{i} \bar{r}_{i}$. Thus $\bar{k}_{i-1} \bar{u}_{i} \in \bar{X} \bar{H}$ whence $k_{i-1} u_{i} \in N X H \subset N_{0} X H$ contradicting the choice of N_{0}. Hence $g \pi \notin \bar{X} * \bar{Y}$ as required.

LEMMA 3.5. Let $E_{0}=A_{0}{ }^{*}\langle b\rangle$ B_{0}. If $\langle a\rangle,\langle b\rangle$ are maximal cyclic subgroups of A_{0} and $\langle b\rangle,\langle c\rangle$ are maximal cyclic subgroups of B_{0} such that $\langle a, b\rangle$ and $\langle b, c\rangle$ are isolated in A_{0} and B_{0} respectively, then, for p greater than the nilpotency classes of A_{0} and B_{0}, $\mathcal{N}_{p}=\left\{\left(A_{0}^{p^{m}}, B_{0}^{p^{m}}\right) ; m=1,2, \ldots\right\}$ is a compatible filter of $E_{0}=A_{0} *_{\langle b\rangle} B_{0}$ with respect to $\langle a\rangle$ and $\langle c\rangle$.

Proof. Since $\langle a\rangle,\langle b\rangle$ and $\langle b\rangle,\langle c\rangle$ maximal cyclic subgroups of A_{0} and B_{0} respectively and p is greater than the nilpotency classes of A_{0} and B_{0}, it follows that conditions (1), (3) and (4) of Definition 3.3 are satisfied. Now $\langle a, b\rangle$ and $\langle b, c\rangle$ are isolated in A_{0} and B_{0}, whence (2) is satisfied. Also, by Lemma 3.2, condition (5) of Definition 3.3 is satisfied. Hence \mathcal{N}_{p} is a compatible filter of $E_{0}=A_{0} *_{\langle b\rangle} B_{0}$ with respect to $\langle a\rangle$ and $\langle c\rangle$.

THEOREM 3.6. Let P_{0} be the polygonal product of $A_{0}, B_{0}, C_{0}, D_{0}$ amalgamating the maximal cyclic subgroups $\langle b\rangle,\langle c\rangle,\langle d\rangle$ and $\langle a\rangle$. If the subgroups A, B, C, D are isolated in $A_{0}, B_{0}, C_{0}, D_{0}$ respectively, then P_{0} is RF .

Proof. We note that A, B, C, D isolated in $A_{0}, B_{0}, C_{0}, D_{0}$ respectively actually implies $\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a\rangle$ are maximal cyclic subgroups of the groups containing them, whence each of these subgroups is isolated in the groups containing them. It follows that $A_{0}^{p^{m}} \cap\langle b\rangle=B_{0}^{p^{m}} \cap\langle b\rangle=\left\langle b^{p^{m}}\right\rangle, B_{0}^{p^{m}} \cap\langle c\rangle=C_{0}^{p^{m}} \cap\langle c\rangle=\left\langle c^{p^{m}}\right\rangle, C_{0}^{p^{m}} \cap\langle d\rangle=D_{0}^{p^{m}} \cap\langle d\rangle=$ $\left\langle d^{p^{m}}\right\rangle$, and $D_{0}^{p^{m}} \cap\langle a\rangle=A_{0}^{p^{m}} \cap\langle a\rangle=\left\langle a^{p^{m}}\right\rangle$ for each prime p greater than the nilpotency classes of $A_{0}, B_{0}, C_{0}, D_{0}$. Thus we can form the polygonal product of $A_{0} / A_{0}^{p^{m}}, B_{0} / B_{0}^{p^{m}}$, $C_{0} / C_{0}^{p^{m}}$ and $D_{0} / D_{0}^{p^{m}}$ amalgamating the subgroups $\langle b\rangle /\left\langle b^{p^{m}}\right\rangle,\langle c\rangle /\left\langle c^{p^{m}}\right\rangle,\langle d\rangle /\left\langle d^{p^{m}}\right\rangle$ and $\langle a\rangle /\left\langle a^{p^{m}}\right\rangle$. Let $\phi_{p^{m}}$ be the canonical homomorphism of P_{0} onto this polygonal product. By Lemma 3.1, $P_{0} \phi_{p^{m}}$ is RF. Thus to prove the theorem, we need only find $\phi_{p^{m}}$ such that, for a given $1 \neq g \in P_{0}, g \phi_{p^{m}} \neq 1$.

Let $E_{0}=A_{0} *_{\langle b\rangle} B_{0}, F_{0}=C_{0} *_{\langle d\rangle} D_{0}$ and $H=\langle a\rangle *\langle c\rangle$. Then $P_{0}=E_{0} *_{H} F_{0}$. Let t be the maximum of the nilpotency classes of $A_{0}, B_{0}, C_{0}, D_{0}$.

CASE 1. $\|g\|=0$. Then $g \in H$. We shall only consider the case $g=a^{\alpha_{1}} c^{\beta_{1}} \cdots a^{\alpha_{n}} c^{\beta_{n}}$ with the other cases being similar. Choose $p>\max \left\{\left|\alpha_{i}\right|,\left|\beta_{i}\right|, t ; i=1, \ldots, n\right\}$. Since $g \phi_{p}$ has the same free product length in $\left\langle a \phi_{p}\right\rangle *\left\langle c \phi_{p}\right\rangle$ as the free product length of g in $\langle a\rangle *\langle c\rangle, g \phi_{p} \neq 1$.

CASE 2. $\|g\|=1$. Without loss of generality, we can assume $g \in E_{0} \backslash H$. If $g=b^{k}$, then we choose $p>\max (|k|, t)$. Clearly $g \phi_{p} \neq 1$. Thus we can assume g to be of length ≥ 1 in $E_{0}=A_{0} *_{\langle b\rangle} B_{0}$. By Lemma 3.5, $\mathcal{N}_{p}=\left\{\left(A_{0}^{p^{m}}, B_{0}^{p^{m}}\right) ; m=1,2, \ldots\right\}$ is a compatible filter of E_{0} with respect to $\langle a\rangle$ and $\langle c\rangle$ for $p>t$. Thus, by Lemma 3.4, there exists an integer m such that $g \phi_{p^{m}} \notin H \phi_{p^{m}}$, whence $g \phi_{p^{m}} \neq 1$.

CASE 3 . $\|g\| \geq 2$. Again we shall only consider the case $g=e_{1} f_{1} \cdots e_{n} f_{n}$ where $e_{i} \in E_{0} \backslash H$ and $f_{i} \in F_{0} \backslash H$. As in Case 2, for each i, there exist integers $k_{i}, \ell_{i}, i=$ $1, \ldots, n$, such that $e_{i} \phi_{p^{k_{i}}} \notin H \phi_{p^{k_{i}}}$ and $f_{i} \phi_{p^{\varepsilon_{i}}} \notin H \phi_{p^{\ell_{i}}}$ for sufficiently large prime p. Let $m=\max \left\{k_{i}, \ell_{i} ; i=1, \ldots, n\right\}$. Then it is clear that $g \phi_{p^{m}} \neq 1$.

This completes the proof.
4. Other results. In this section, we generalize a result of Allenby and Tang [2]. Applying this result, we prove that the polygonal product P_{0} of Theorem 3.6 is RF if A, B, C, D have the same nilpotency classes as $A_{0}, B_{0}, C_{0}, D_{0}$ respectively.

Lemma 4.1. Let G be af.g. nilpotent group. Let $x, h \in G$ such that x is of finite order m and h is of infinite order. Then there exists an integer α such that for any integer $t \geq 1$, we can find $N_{t} \triangleleft_{f} G$ such that $\langle x\rangle\langle h\rangle \cap N_{t}=\left\langle h^{\alpha t}\right\rangle$.

Proof. Since G is $\langle h\rangle$-separable, and since $\langle x\rangle$ is finite, there exists $N_{1} \triangleleft_{f} G$ such that $\langle x\rangle \cap N_{1}\langle h\rangle=1$. Let $N_{1} \cap\langle h\rangle=\left\langle h^{\alpha}\right\rangle$. Then $\langle x\rangle\langle h\rangle \cap N_{1}=\left\langle h^{\alpha}\right\rangle$. Now let $t \geq 1$. Since $\bar{G}=G / \tau(G)$ is potent, there exists $M_{t} \triangleleft_{f} G$ such that $\langle\bar{h}\rangle \cap \bar{M}_{t}=\left\langle\bar{h}^{\alpha t}\right\rangle$. Then $N_{t}=M_{t} \cap N_{1}$ is the required normal subgroup.

Applying Lemma 4.1, we immediately have the following result:

LEmMA 4.2. Let G_{1}, G_{2} be f.g. nilpotent groups such that $G_{1} \cap G_{2}=\langle h\rangle$ where h is of infinite order. Let $G=G_{1} *_{\langle h\rangle} G_{2}$. If $x \in G_{1}, y \in G_{2}$ are of finite orders, then there exists an integer $\alpha>0$ such that, for every $t \geq 1$, we can find $N_{t} \triangleleft_{f} G$ and $M_{t} \triangleleft_{f} G$ with $\langle x\rangle\langle h\rangle \cap N_{t}=\langle y\rangle\langle h\rangle \cap M_{t}=\left\langle h^{\alpha t}\right\rangle$.

LEMMA 4.3. Let G_{1}, G_{2} be f.g. nilpotent groups such that $G_{1} \cap G_{2}=\langle h\rangle$ where h is of infinite order. Let $X=\langle x\rangle, H=\langle h\rangle$ and $Y=\langle y\rangle$ where $x \in G_{1}$ and $y \in G_{2}$ are of finite orders. If \mathcal{N} is the set of all pairs (N, M) such that $N \triangleleft_{f} G_{1}, M \triangleleft_{f} G_{2}$ and $N \cap X H=M \cap Y H=\left\langle h^{\alpha t}\right\rangle$, where α is determined by Lemma 4.2 and t ranges over the set of all positive integers then \mathcal{N} is a compatible filter of $G=G_{1}{ }_{\langle h\rangle} G_{2}$ with respect to the subgroups X and Y.

Proof. It is not difficult to check that conditions (1), (2) and (3) of Definition 3.3 are satisfied by \mathcal{N}. Let x be of order m. Let $g \in G_{1} \backslash X H$. Then $x^{i} g \notin H$ for $i=0,1, \ldots, m-1$. Now G_{1} is a $f . g$. nilpotent group. This implies G_{1} is subgroup separable. Thus there exists $N_{1} \triangleleft_{f} G_{1}$, such that $x^{i} g \notin N_{1} H$ for all i. Let $N_{1} \cap H=\left\langle h^{k}\right\rangle$. By Lemma 4.2, there exists $\left(N^{\prime}, M^{\prime}\right) \in \mathcal{N}$ such that $X H \cap N^{\prime}=Y H \cap M^{\prime}=\left\langle h^{\alpha k}\right\rangle$. Let $N=N_{1} \cap N^{\prime}$. Then $X H \cap N=\left\langle h^{\alpha k}\right\rangle$. This implies $\left(N, M^{\prime}\right) \in \mathcal{N}$. Since $N \subset N_{1}$, it follows that $g \notin N X H$. Hence $\bigcap_{(N, M) \in \mathcal{N}} N X H=X H$. In the same way $\bigcap_{(N, M) \in \mathcal{N}} M Y H=Y H$. Thus \mathcal{N} satisfies condition (5) of Definition 3.3. By a similar argument we can show that \mathcal{N} satisfies condition (4) of Definition 3.3. Hence \mathcal{N} is a compatible filter of G with respect to X and Y.

We now prove a theorem which generalizes a result of Allenby and Tang (Theorem 4.4 [2]).

THEOREM 4.4. Let P_{0} be the polygonal product off.g. nilpotent groups A_{0}, B_{0}, C_{0}, D_{0} amalgamating $\langle b\rangle,\langle c\rangle,\langle d\rangle$ and $\langle a\rangle$ where $A_{0} \cap B_{0}=\langle b\rangle, B_{0} \cap C_{0}=\langle c\rangle, C_{0} \cap D_{0}=\langle d\rangle$ and $D_{0} \cap A_{0}=\langle a\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle b\rangle \cap\langle c\rangle=\langle c\rangle \cap\langle d\rangle=\langle d\rangle \cap\langle a\rangle=1$. If a and c are of prime orders p and q respectively then P_{0} is RF.

Proof. Case 1. $\quad A_{0}, B_{0}, C_{0}$ and D_{0} are finite. Let $A=\langle a, b\rangle, B=\langle b, c\rangle, C=\langle c, d\rangle$ and $D=\langle d, a\rangle$. Let $E=A *_{\langle b\rangle} B$. Since $\langle a\rangle \cap\langle b\rangle^{A}=\langle c\rangle \cap\langle b\rangle^{B}=1$, it follows that $E=\langle b\rangle^{E} H$ where $H=\langle a\rangle *\langle c\rangle$ and $H \cap\langle b\rangle^{E}=1$. Thus H is a retract of E. In the same way, if we let $F=D *_{\langle d\rangle} C$ then H is a retract of F. Since the polygonal product P of A, B, C, D is the same as $E *_{H} F$, by Theorem 2.1, P is RF. Now A, B, C, D are finite. It follows that $\left.P_{0}=\left(\left(\left(P *_{A} A_{0}\right) *_{B} B_{0}\right) *_{C} C_{0}\right) *_{D} D_{0}\right)$ is RF.

CASE 2. $|b|=\infty,|d|=m$, where m is finite. Let \mathcal{N} be the compatible filter of $E_{0}=A_{0}{ }_{\langle b\rangle} B_{0}$ with respect to $\langle a\rangle$ and $\langle c\rangle$ as determined by Lemma 4.3. Let $\bar{A}_{0}=A_{0} / N$ and $\bar{B}_{0}=B_{0} / M$ where $(N, M) \in \mathcal{N}$. Since $\langle a\rangle \cap N=\langle c\rangle \cap M=1,|\bar{a}|=p,|\bar{c}|=q$. Moreover, $\langle b\rangle \cap N=\langle b\rangle \cap M=\left\langle b^{\alpha t}\right\rangle$ implies that \bar{b} has the same order in \bar{A}_{0} and \bar{B}_{0}. Furthermore, $N \cap\langle a\rangle\langle b\rangle=M \cap\langle c\rangle\langle b\rangle=\left\langle b^{\alpha t}\right\rangle$ implies $\langle\bar{a}\rangle \cap\langle\bar{b}\rangle=\langle\bar{c}\rangle \cap\langle\bar{b}\rangle=1$. Since C_{0} and D_{0} are RF, there exist $L \triangleleft_{f} C_{0}$ and $K \triangleleft_{f} D_{0}$ such that $L \cap\langle c\rangle\langle d\rangle=K \cap\langle a\rangle\langle d\rangle=1$. Let $\bar{C}_{0}=C_{0} / L$ and $\bar{D}_{0}=D_{0} / K$. Then $|\bar{a}|=p,|\bar{d}|=m$ in \bar{D}_{0} and $|\bar{c}|=q,|\bar{d}|=m$ in \bar{C}_{0}. Moreover, $\langle\bar{a}\rangle \cap\langle\bar{d}\rangle=\langle\bar{c}\rangle \cap\langle\bar{d}\rangle=1$. Thus we can form the polygonal product \bar{P}_{0} of \bar{A}_{0},
\bar{B}_{0}, \bar{C}_{0} and \bar{D}_{0} amalgamating $\langle\bar{b}\rangle,\langle\bar{c}\rangle,\langle\bar{d}\rangle$ and $\langle\bar{a}\rangle$. Let ϕ be the canonical homomorphism of P_{0} onto \bar{P}_{0}. By Case $1, \bar{P}_{0}$ is RF. Thus, if, for each $1 \neq g \in P_{0}$, there exists a ϕ such that $g \phi \neq 1$ then $P_{0}=E_{0} *_{H} F_{0}$ is RF where $F_{0}=D_{0} *_{\langle d\rangle} C_{0}$.

Subcase (i). $g \in H$. Since C_{0}, D_{0} are RF and a, c, d are all of finite order, there exist $L \triangleleft_{f} C_{0}$ and $K \triangleleft_{f} D_{0}$ such that $L \cap\langle c\rangle\langle d\rangle=K \cap\langle a\rangle\langle d\rangle=1$. Let $(N, M) \in \mathcal{N}$. Then clearly if we let $\bar{A}_{0}=A_{0} / N, \bar{B}_{0}=B_{0} / M, \bar{C}_{0}=C_{0} / L, \bar{D}_{0}=D_{0} / K$ and let ϕ be the canonical homomorphism described above, we have $g \phi \neq 1$.

Subcase (ii). $g \in E_{0} \backslash H$. If $g=b^{k}$ then, by Lemma 4.2, there exists $(N, M) \in \mathcal{N}$ such that $N \cap\langle b\rangle\langle a\rangle=M \cap\langle b\rangle\langle c\rangle=\left\langle b^{\alpha t}\right\rangle$ where $\alpha t>|k|$. Let L, K and ϕ be as defined in Subcase (i), then $g \phi=\bar{b}^{k} \notin \bar{H}$, whence $g \phi \neq 1$. If g is of length ≥ 1 in $E_{0}=A_{0}{ }_{(b\rangle} B_{0}$ then, by Lemma 3.4, there exists $(N, M) \in \mathcal{N}$ such that $g \pi \notin H \pi$ where π is the canonical homomorphism of $E_{0}=A_{0} *_{\langle b\rangle} B_{0}$ onto $\bar{A}_{0} *_{\langle\bar{b}\rangle} \bar{B}_{0}$ where $\bar{A}_{0}=A_{0} / N$ and $\bar{B}_{0}=B_{0} / M$. Let L, K be as in Subcase (i). Then N, M, L, K define the required ϕ of P_{0} onto \bar{P}_{0}. Moreover $g \pi \notin H \pi$ implies $g \phi \notin H \phi$ whence $g \phi \neq 1$.

Subcase (iii). $g \in F_{0} \backslash H$. Since C_{0}, D_{0} are subgroup separable and $\langle d\rangle$ is finite, F_{0} is subgroup separable [1]. Thus there exists $R \triangleleft_{f} F_{0}$ such that $g \notin \mathrm{RH}$. Let L, K be as in Subcase (i). Let $L_{1}=R \cap L$ and $K_{1}=R \cap K$. Then $L_{1} \cap\langle c\rangle\langle d\rangle=K_{1} \cap\langle a\rangle\langle d\rangle=1$. Let $(N, M) \in \mathcal{N}$. Let ϕ be the canonical homomorphism of P_{0} onto the polygonal product of $A_{0} / N, B_{0} / M, C_{0} / L_{1}$ and D_{0} / K_{1}. Since $\left\langle L_{1}, K_{1}\right\rangle^{F_{0}} \subseteq R$ and $g \notin R H$, it follows that $g \phi \notin H \phi$, whence $g \phi \neq 1$.

Subcase (iv). $g \notin E_{0} \cup F_{0}$. We shall only consider the case $g=e_{1} f_{1} \cdots e_{n} f_{n}$ where $e_{i} \in E_{0} \backslash H$ and $f_{i} \in F_{0} \backslash H$ (other cases being similar). As in Subcase (ii), for each e_{i}, there exists $\left(N_{i}, M_{i}\right) \in \mathcal{N}$ such that $e_{i} \pi_{i} \notin H_{\pi_{i}}$ where π_{i} is the canonical homomorphism of $A_{0} *_{\langle b\rangle} B_{0}$ onto $\tilde{A}_{0} *_{\langle\tilde{b}\rangle} \tilde{B}_{0}$ where $\tilde{A}_{0}=A_{0} / N_{i}, \tilde{B}_{0}=B_{0} / M_{i}$ and $\langle\tilde{b}\rangle=N_{i}\langle b\rangle / N_{i}=$ $M_{i}\langle b\rangle / M_{i}$. As in Subcase (iii), for each f_{i}, there exist $L_{i} \triangleleft_{f} C_{0}$ and $K_{i} \triangleleft_{f} D_{0}$ such that $L_{i} \cap\langle c\rangle\langle d\rangle=K_{i} \cap\langle a\rangle\langle d\rangle=1$ and $f_{i} \theta_{i} \notin H \theta_{i}$ where θ_{i} is the canonical homomorphism of $D_{0}{ }^{*}\langle d\rangle$ C C_{0} onto $\tilde{D}_{0}{ }^{*}\langle\tilde{d}\rangle, \tilde{C}_{0}$ where $\tilde{C}_{0}=C_{0} / L_{i}, \tilde{D}_{0}=D_{0} / K_{i}$ and $\langle\tilde{d}\rangle=L_{i}\langle d\rangle / L_{i}=$ $K_{i}\langle d\rangle / K_{i}$. Let $L_{0}=\bigcap_{i=1}^{n} L_{i}$ and $K_{0}=\bigcap_{i=1}^{n} K_{i}$. Then $L_{0} \triangleleft_{f} C_{0}, K_{0} \triangleleft_{f} D_{0}$ and $L_{0} \cap\langle c\rangle\langle d\rangle=$ $K_{0} \cap\langle a\rangle\langle d\rangle=1$. Moreover if θ is the canonical homomorphism of $D_{0} *_{\langle d\rangle} C_{0}$ onto $\bar{D}_{0}{ }_{\langle\bar{d}\rangle} \bar{C}_{0}$ where $\bar{C}_{0}=C_{0} / L_{0}, \bar{D}_{0}=D_{0} / K_{0}$ and $\langle\bar{d}\rangle=K_{0}\langle d\rangle / K_{0}=L_{0}\langle d\rangle / L_{0}$ then $f_{i} \theta \notin$ $H \theta$ for all i. Let $N=\bigcap_{i=1}^{n} N_{i}$ and $M=\bigcap_{i=1}^{n} M_{i}$. Then $(N, M) \in \mathcal{N}$. Let ϕ be the canonical homomorphism of P_{0} onto the polygonal product of $A_{0} / N, B_{0} / M, C_{0} / L_{0}$ and D_{0} / K_{0}. Then $\|g \phi\|$ in $\bar{E}_{0} *_{\bar{H}} \bar{F}_{0}$ is the same as $\|g\|$ in $E_{0} *_{H} F_{0}$, where $\bar{E}_{0}=A_{0} / N *_{N\langle b\rangle / N} B_{0} / M$, $\bar{F}_{0}=F_{0} \theta$ and $\bar{H}=H \theta$. Thus $g \phi \neq 1$.

The remaining cases are:
Case 3. $|b|<\infty,|d|=\infty$.
Case 4. $|b|<\infty,|d|<\infty$.
Case 5. $|b|=|d|=\infty$.
By suitable modification of the proof of Case 2, we can show that for each of the Cases $3,4,5$ we can construct the required ϕ such that $g \phi \neq 1$ for every $1 \neq g \in G$. This completes the proof.

We need the following lemma to prove our next result.

Lemma 4.5. Let G be af.g. torsion-free nilpotent group. Let $a, b \in G$ such that $\langle a\rangle \cap\langle b\rangle=1$. If Δ is an infinite set of primes and if $H=\langle a, b\rangle$ has the same nilpotency class as G then we have:

$$
\begin{gather*}
\bigcap_{p \in \Delta}\left\langle x^{p}\right\rangle^{G}\langle x\rangle=\langle x\rangle \text { for every } x \in G ; \tag{1}\\
\bigcap_{p \in \Delta}\left\langle a^{p}\right\rangle^{G}\langle a\rangle\langle b\rangle=\langle a\rangle\langle b\rangle \tag{2}\\
\bigcap_{p \in \Delta}\left\langle a^{p}\right\rangle^{G}\langle b\rangle=\langle b\rangle \tag{3}
\end{gather*}
$$

Proof. We first note that, by [7], if p is a prime greater than the nilpotency class of G then for any $x, y \in G, x^{p} y^{p}=w^{p}$ for some $w \in G$. Moreover $\bigcap_{p \in \Delta} G^{p}=1$.

If G is abelian, then the lemma is trivial. So we can assume G and H are of nilpotency class $c>1$.
(1) If $x \in Z(G)$ then (1) is obviously true. Therefore, let $x \in Z_{i+1}(G) \backslash Z_{i}(G), 1 \leq i<c$. If $y \in\left\langle x^{p}\right\rangle^{G}\langle x\rangle$ then $y=g_{1}^{-1} x^{k_{1} p} g_{1} \cdots g_{n}^{-1} x^{k_{n} p} g_{n} x^{i_{p}}$, for some $g_{\ell} \in G$ and integers k_{ℓ}, i_{p}. Clearly $[g, x] \equiv 1 \bmod Z_{i}$ for $g \in G$. Let $\bar{G}=G / Z_{i}(G)$. Then $\bar{y}=\bar{x}^{m_{p} p+i_{p}}$ where $m_{p}=k_{1}+\cdots+k_{n}$. Since \bar{G} is a f. g. torsion-free nilpotent group, $m_{p} p+i_{p}$ must be a fixed integer α for each p. This implies $y=z x^{\alpha}=z x^{m_{p} p+i_{p}}$ where $z \in Z_{i}(G)$. If $p>c$ then $y=g_{1}^{-1} x^{k_{1} p} g_{1} \cdots g_{n}^{-1} x^{k_{n} p} g_{n} x^{i_{p}}=w^{p} x^{i_{p}}$ for some $w \in G$. Thus $z=w^{p} x^{-m_{p} p}=u^{p}$ for some $u \in G$. It follows that if $y \in\left\langle x^{p}\right\rangle^{G}\langle x\rangle$ then $y x^{-\alpha}=z=u^{p} \in G^{p}$ for each $p>c$. Therefore, if $y \in \bigcap_{p \in \Delta}\left\langle x^{p}\right\rangle^{G}\langle x\rangle$ then $y \in \bigcap_{\substack{p \in \Delta \\ p>c}}\left\langle x^{p}\right\rangle^{G}\langle x\rangle$. This implies $y x^{-\alpha} \in \bigcap_{\substack{p \in \Delta \\ p>c}} G^{p}$. Since $\bigcap_{p \in \Delta} G^{p}=1$, it follows that $y=x^{\alpha} \in\langle x\rangle$. This proves (1).
(2) Suppose $y \in\left\langle a^{p}\right\rangle^{G}\langle a\rangle\langle b\rangle$ then $y=g_{1}^{-1} a^{k_{1} p} g_{1} \cdots g_{n}^{-1} a^{k_{n} p} g_{n} a^{i_{p}} b^{j_{p}}$ for some $g_{\ell} \in G$ and integers k_{ℓ}, i_{p} and j_{p}. Let $\bar{G}=G / Z_{c-1}(G)$. Then $\bar{y}=\bar{a}^{m_{p} p+i_{p}} \bar{b}^{j_{p}}$ where $m_{p}=k_{1}+$ $\cdots+k_{n}$. If $y \in\left\langle a^{q}\right\rangle^{G}\langle a\rangle\langle b\rangle$ then $\bar{y}=\bar{a}^{m_{q} q+i_{q}} \bar{b}^{j_{q}}$ for some integers m_{q}, i_{q} and j_{q}. This implies $a^{m_{p} p+i_{p}-m_{q} q-i_{q}} b^{j_{p}-j_{q}} \in Z_{c-1}(G) \cap H \subseteq Z_{c-1}(H)$. Since H is of nilpotency class c, $Z_{c-1}(H) \cap\langle a\rangle\langle b\rangle=1$. This implies $m_{p} p+i_{p}=m_{q} q+i_{q}$ and $j_{p}=j_{q}$. Thus, for each p, if $y \in\left\langle a^{p}\right\rangle^{G}\langle a\rangle\langle b\rangle$, then j_{p} is a fixed integer, say, α. Therefore, if $y \in \bigcap_{p \in \Delta}\left\langle a^{p}\right\rangle^{G}\langle a\rangle\langle b\rangle$, by (1), $y b^{-\alpha} \in \bigcap_{p \in \Delta}\left\langle a^{p}\right\rangle^{G}\langle a\rangle=\langle a\rangle$. Hence $y \in\langle a\rangle\langle b\rangle$ proving (2).

The proof of (3) is similar to (2).
We are now ready to prove the following theorem.
THEOREM 4.6. Let P_{0} be the polygonal product of the f.g.torsion-free nilpotent groups $A_{0}, B_{0}, C_{0}, D_{0}$ amalgamating $\langle b\rangle,\langle c\rangle,\langle d\rangle$ and $\langle a\rangle$ where $A_{0} \cap B_{0}=\langle b\rangle, B_{0} \cap C_{0}=$ $\langle c\rangle, C_{0} \cap D_{0}=\langle d\rangle, D_{0} \cap A_{0}=\langle a\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle b\rangle \cap\langle c\rangle=\langle c\rangle \cap\langle d\rangle=\langle d\rangle \cap\langle a\rangle=1$. If $A=\langle a, b\rangle, B=\langle b, c\rangle, C=\langle c, d\rangle$ and $D=\langle d, a\rangle$ have the same nilpotency class as A_{0}, B_{0}, C_{0} and D_{0} respectively then P_{0} is RF .

Proof. Let $\bar{A}_{0}=A_{0} /\left\langle a^{p}\right\rangle^{A_{0}}, \bar{B}_{0}=B_{0} /\left\langle c^{p}\right\rangle^{B_{0}}, \bar{C}_{0}=C_{0} /\left\langle c^{p}\right\rangle^{C_{0}}$ and $\bar{D}_{0}=$ $D_{0} /\left\langle a^{p}\right\rangle^{D_{0}}$. Since A_{0}, B_{0}, C_{0} and D_{0} are $f . g$. torsion-free nilpotent groups, it follows
that $|\bar{a}|=|\bar{c}|=p$ and $|\bar{b}|=|\bar{d}|=\infty$ for every prime p. Thus we can form the polygonal product \bar{P}_{0} of $\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}$, and \bar{D}_{0} amalgamating $\langle\bar{b}\rangle,\langle\bar{c}\rangle,\langle\bar{d}\rangle$ and $\langle\bar{a}\rangle$. Let ϕ_{p} be the canonical homomorphism of P_{0} to \bar{P}_{0}. By Theorem 4.4, \bar{P}_{0} is RF. Thus, if, for each $1 \neq g \in P_{0}$, we can find a prime p such that $g \phi_{p} \neq 1$ then we have proved P_{0} is RF. As before, we let $E_{0}=A_{0} *_{\langle b\rangle} B_{0}, F_{0}=D_{0}{ }_{\langle d\rangle} C_{0}$ and $H=\langle a\rangle *\langle c\rangle$. Then $P_{0}=E_{0} *_{H} F_{0}$. Let $1 \neq g \in P_{0}=E_{0} *_{H} F_{0}$.

CASE 1 . $\|g\|=0$. This implies $g \in H$. We shall only consider the case $g=$ $a^{\alpha_{1}} c^{\beta_{1}} \cdots a^{\alpha_{n}} c^{\beta_{n}}$, other cases being similar. Let p be a prime such that $p>\left|\alpha_{i}\right|,\left|\beta_{i}\right|$, $i=1, \ldots, n$. Then $g \phi_{p}$ has the same free product length in $\langle\bar{a}\rangle *\langle\bar{c}\rangle$ as g in $\langle a\rangle *\langle c\rangle$. This implies $g \phi_{p} \neq 1$ as required.

CASE 2. $\|g\|=1$. Without loss of generality we can assume $g \in E_{0} \backslash H$. If $g=b^{k}$ then $g \phi_{p}=\bar{b}^{k} \notin H \phi_{p}$ for all primes p, whence $g \phi_{p} \neq 1$ as required. We need only consider the case $g=u_{1} v_{1} \cdots u_{n} v_{n}$ where $u_{i} \in A_{0} \backslash\langle b\rangle$ and $v_{i} \in B_{0} \backslash\langle b\rangle$, other cases being similar. Since $g \notin H$, as in the proof of Lemma 3.4, there exists $a^{r_{i}}, b^{s_{i}}, c^{\ell_{i}}, b^{t_{i}}$ such that one of the following is true:
(1) $u_{1} \notin\langle a\rangle\langle b\rangle$, or
(1') $u_{1}=a^{r_{1}} b^{s_{1}}$, but $b^{s_{1}} v_{1} \notin\langle c\rangle\langle b\rangle$, or
(2) $u_{1}=a^{r_{1}} b^{s_{1}}, b^{s_{1}} v_{1}=c^{\ell_{1}} b^{t_{1}}$, but $b^{t_{1}} u_{2} \notin\langle a\rangle\langle b\rangle$, or
(n) $u_{1}=a^{r_{1}} b^{s_{1}}, b^{s_{1}} v_{1}=c^{\ell_{1}} b^{t_{1}}, \ldots, b^{s_{n-1}} v_{n-1}=c^{\ell_{n-1}} b^{t_{n-1}}$, but $b^{t_{n-1}} u_{n} \notin\langle a\rangle\langle b\rangle$, or
$\left(n^{\prime}\right) u_{1}=a^{r_{1}} b^{s_{1}}, b^{s_{1}} v_{1}=c^{\ell_{1}} b^{t_{1}}, \ldots, b^{t_{n-1}} u_{n}=a^{r_{n}} b^{s_{n}}$, but $b^{s_{n}} v_{n} \notin\langle c\rangle$.
Let i be the smallest integer such that (i) (or $\left(i^{\prime}\right)$) is true. Then, by Lemma 4.5, for almost all primes $p, b^{t_{i-1}} u_{i} \notin\left\langle a^{p}\right\rangle^{A_{0}}\langle a\rangle\langle b\rangle, u_{j} \notin\left\langle a^{p}\right\rangle^{A_{0}}\langle b\rangle$ and $v_{j} \notin\left\langle c^{p}\right\rangle^{B_{0}}\langle b\rangle$ for $j=$ $1, \ldots, n$. Since $\langle\bar{a}\rangle \cap\langle\bar{b}\rangle=\langle\bar{b}\rangle \cap\langle\bar{c}\rangle=1$, as in the proof of Lemma 3.4, we can show that, for almost all $p, g \phi_{p} \notin H \phi_{p}$, whence $g \phi_{g} \neq 1$ as required.

CASE 3 . $\|g\| \geq 2$. Again we only consider the case $g=e_{1} f_{1} \cdots e_{n} f_{n}$ where $e_{i} \in$ $E_{0} \backslash H$ and $f_{i} \in F_{0} \backslash H$, other cases being similar. By Case 2 , we find a sufficiently large prime p such that $e_{i} \phi_{p} \notin H \phi_{p}$ and $f_{i} \phi_{p} \notin H \phi_{p}$ for $i=1, \ldots, n$. This implies $g \phi_{p} \neq 1$ as required.

This completes the proof.
REMARK. Theorem 3.4 [2] follows immediately from Theorem 4.6.

References

1. R. B. J. T. Allenby and R. J. Gregorac, On locally extended residually finite groups, Lecture notes in Math. 319 Springer Verlag, New York, (1973), 9-17.
2. R. B. J. T. Allenby and C. Y. Tang, On the residual finiteness of certain polygonal products, Canad. Math. Bull. (1) 32(1989), 11-17.
3. G. Baumslag, Lecture notes on nilpotent groups, Amer. Math. Soc., C.B.M.S. Regional Conf. Ser. in Math. 2, 1971.
4. A. M. Brunner, M. L. Frame, Y. W. Lee and N. J. Wielenberg, Classifying the torsion-free subgroups of the Picard group, Trans. Amer. Math. Soc. 282(1984), 205-235.
5. J. Boler and B. Evans, The free product of residually finite groups amalgamated along retracts is residually finite, Proc. Amer. Math. Soc. 37(1973), 50-52.
6. B. Fine, Algebraic theory of the Bianchi groups, Marcel Dekker Inc., New York, 1989.
7. G. Higman, A remark on finitely generated nilpotent groups, Proc. Amer. Math. Soc. 6(1955), 284-285.
8. A. Karrass, A. Pietrowski and D. Solitar, The subgroups of polygonal products of groups, unpublished manuscript.
9. B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London, (A) 246(1954), 503-554.

Kangnung National University
Kangnung, 210-702
Korea

University of Waterloo
Waterloo, Ontario

[^0]: The second author gratefully acknowledges the partial support by the Natural Science and Engineering Research Council of Canada, Grant No. A-6064.

 Received by the editors August 23, 1990; revised February 13, 1991.
 AMS subject classification: Primary: 20E06, 20E26, 20F18; secondary: 20D40, 20 F 05.
 Key words and phrases: Generalized free products, polygonal products, nilpotent groups, isolated subgroups, subgroup separability.
 (c) Canadian Mathematical Society 1992.

