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ON THE RESIDUAL FINITENESS 
OF POLYGONAL PRODUCTS OF NILPOTENT GROUPS 

GOANSU KIM AND C. Y. TANG 

ABSTRACT. In general polygonal products of finitely generated torsion-free nilpo-
tent groups amalgamating cyclic subgroups need not be residually finite. In this paper 
we prove that polygonal products of finitely generated torsion-free nilpotent groups 
amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an 
isolated subgroup in the vertex group containing them, are residually finite. We also 
prove that, for finitely generated torsion-free nilpotent groups, if the subgroups gener­
ated by the amalgamated cycles have the same nilpotency classes as their respective 
vertex groups, then their polygonal product is residually finite. 

1. Introduction. Polygonal products of groups were introduced by A. Karrass, 
A. Pietrowski and D. Solitar [8]. They studied the subgroup structure of these products 
and applied the results to the Picard group PSL(2, Z[/]) which is a polygonal product of 
A4, the four group and two copies of S3. In [4], Brunner, Frame, Lee and Wielenberg 
used their results to determine all the torsion-free subgroups of finite index in the Pi-
card group. These products are also discussed by B. Fine in [6]. Allenby and Tang [2] 
studied the residual finiteness of polygonal products. They showed that polygonal prod­
ucts of finitely generated free abelian groups amalgamating cyclic subgroups with trivial 
intersections are residually finite. On the other hand, they constructed an example of 
a polygonal product of four finitely generated torsion-free nilpotent groups of class 2 
amalgamating cyclic subgroups with trivial intersections, which is not residually finite. 
In this example, the amalgamated subgroups are not isolated subgroups [3] of their ver­
tex groups. Moreover, the subgroups generated by the amalgamated subgroups in their 
respective vertex groups do not have the same nilpotency classes as their vertex groups. 
In this paper we show that if the subgroups generated by the two amalgamated cyclic 
subgroups are either isolated subgroups of their respective vertex groups (Theorem 3.6) 
or of the same nilpotency classes as their respective vertex groups (Theorem 4.6) then 
their polygonal products are residually finite. 

The second author gratefully acknowledges the partial support by the Natural Science and Engineering 
Research Council of Canada, Grant No. A-6064. 

Received by the editors August 23, 1990; revised February 13, 1991 . 
AMS subject classification: Primary: 20E06,20E26, 20F18; secondary: 20D40, 20F05. 

Key words and phrases: Generalized free products, polygonal products, nilpotent groups, isolated sub­
groups, subgroup separability. 

© Canadian Mathematical Society 1992. 

390 

https://doi.org/10.4153/CMB-1992-052-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-052-8
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2. Preliminaries. Briefly polygonal products can be described as follows [2]: Let 
P be a polygon. Assign to each vertex v o f P a vertex group Gv and to each edge e, an 
edge group Ge together with monomorphisms \e and pe embedding Ge as a subgroup of 
the two vertex groups at the ends of e. The polygonal product of this system of groups 
is the group G with generators and relations those of the vertex groups together with the 
extra relations obtained by identifying ge\e and gepe for each ge G Ge. 

Throughout this paper, we only consider the case when P is a square. The results can 
be extended to polygons with more than four vertices. However the case of triangles 
can be nasty, because the triangle groups so formed may not contain the vertex groups 
isomorphically (see [9], p. 525). 

We shall adopt the following notations and terminology: 
We use N<f G to denote that N is a normal subgroup of finite index in G. RF means 

residually finite and/, g. means finitely generated. If N<G and G = G/N thenx denotes 
Nx for x G G. If G = A *H B and x G G, then ||JC|| denotes the free product length of x 
in G. Z((G) denotes the /th term of the upper central series of G. For convenience, we let 
Z(G) = Z\ (G). Let H be a subgroup of G, then HG denotes the normal closure of H in G. 

A group G is said to be subgroup separable (LERF) if for every/, g. subgroup H of G 
and every x G G\H there exists N<fG such that x $ H in G = G/N. If H is a subgroup 
of G and for every x G G\H, there exists N<fG such that x $ H in G = G/N, then we 
say G is H-separable. 

A torsion-free group G is said to be potent if, for each positive integer n and each 
1 ^ JC G G, there exists N<fG such that Nx has order exactly n in G/N. 

Free groups and/, g. torsion-free nilpotent groups are potent. 
Let H be a subgroup of G. Then / / is called a retract of G if there exists TV < G such 

ÛL2XG = NHm&NC\H= 1. 
We shall use the following results. 

THEOREM 2.1 ([5], THEOREM 1). The generalized free products of residually finite 
groups amalgamating retracts are RF. 

THEOREM 2.2 ([3], THEOREM 2.5). Let G be af. g. torsion-free nilpotent group. If 
H is an isolated subgroup ofG, then f | £ i Gp H — H for all primes p. 

3. Amalgamating maximal cyclic subgroups. The example given in [2] showed 
that the polygonal products of f.g. torsion-free nilpotent groups amalgamating cyclic 
groups need not be RF. However, under certain conditions, if the amalgamated subgroups 
are maximal cyclic subgroups then we can prove that the polygonal products are RF. 

Throughout the following we shall adopt the following notation. A = (a,b), B = 
(b,c), C = (c,d) and D — {d,a} are torsion-free nilpotent groups with (a) D (b) — 
(b) D (c) = (c) H (d) = (d) D(a) = I. A0, B0, C0, DO art f.g. torsion-free nilpotent 
groups containing A, B, C, D respectively such that AQ PI BQ — (b), Bo H Co = (c), 
C0 H D0 = (d) and D0nA0 = (a). 
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LEMMA 3.1. LetÂo = A0/A
p
0\ B0 = B0/B^t C0 = Co/c{ andD0 = D0/D£. If A, 

B, C, D are isolated subgroups ofAo, Bo, Co, Do respectively then the polygonal product 
Po ofÀo, Bo, Co, Do amalgamating (b), (c), (d) and (â) is RF for almost all primes p. 

PROOF. CASE 1. Let A0 = A, B0 = £, C0 = C and D0 = D. Let Â = A/An, 

B = B/Bn, C = C/C1, and D = DjU1. Let Qn be the polygonal product of Â, £, C, D 

amalgamating (b), (c), (d) and (a). Since A, B, C, D are torsion-free nilpotent groups, 

we have (a) H (b)Â = (c) H (B)è = 1 and (c) H (d)e = (5> n (d)0 = 1. Let É = A *(5) fi 

and F = C *(5) D. Then £ = (6)É • H and F = (<5)̂  • H where H = (â) * (c). Since 

(5)Ê n f l = (d)*" H H = 1, H is a retract of both F and F. By Theorem 2.1, g* is RF. 

CASE 2. Ao, #o, Co, Do not necessarily equal to A, 5, C, D respectively. Let p be a 
prime greater than the nilpotency classes of Ao, Bo, Co, Do respectively; we have A^ HA == 
A*\ £g* H £ = JP \ C{ H C = O7' and D(f HD = D?\ ThusA ^ A/A^, 5 « £/#>*, 
C « C/O7* and D « D/ZF*. Hence, by Case 1, the polygonal product P of Â, B, 
C, D amalgamating (5), (c), (J), (â) is RF. Since Â, 5, C, D are finite, it follows that 

Fo ^ 
(((P *A Âo) *5 F0) *c Co) *£ D0 is RF. • 

LEMMA 3.2. Let G be af.g. torsion-free nilpotent group of class c. Let x,y G G 
such that (x) Pi (v) = 1 and H = (x9y) is an isolated subgroup ofG. If g G G \ (*)(v) 
f/ien, /or every prime p > c, there exists an integer n such that g $ GPn (x)(y). 

PROOF. Since H is isolated, by Theorem 2.2, f|£Li G7"// = # . Thus, if g £ //, 
then there exists n such that g $ GPnH. It follows that g g Gpn(x)(y). Hence we can 
assume g G H\ (x)(y). If// is of nilpotency class m then g = zrfyi where z G Zm-\(H). 
Since f | ^ i Hp" = I, it follows that there exists n such that z& Hp\ We shall show that 
g = zjdy1 & Hpn(x)(y). Suppose g G Hp"(x)(y). Then g = hxsy\ where h e Hp". This 
implies /i = wf • • • wf where w>i,..., wr G H for some r. Let / / = H/Zm-\(H). Then 
ft = j c ^ y ^ . It follows that g = j?y = xW+SyW*. Since Zw_i(#) H (*)()>) = 1, we 
have i = kpn + s andj = £/?n + r. Thus g = ztfy? = /ix5/ implies z = hxsyt~jx~l = 

nyi-kpny-ipn
x-i _ jlx-kpn^xiy-tpn

x-iy g u t t n- s j m pi j e s z ç. ipn contradicting the choice 

of n. Hence g g Hp" (x) (y). Since Gp"r)H = Hp" for p > c, it follows that g g Œ" (x) (y) 
for every prime p> c. m 

DEFINITION 3.3. Let G = G\ *# G2. Let X, F be subgroups of G\, G2 respectively. 
Let !A£ = {(Ni, Mi) ; / G /} be a collection of pairs of normal subgroups of Gi and G2 

satisfying the following conditions. 
(1) Ni<G\,Mi<G2 suchthatiV/nH = M/HH for all i G/, 
(2) M H Z / / = (tyf nX)W-nfl) andAf/H YH = (M/H 3 0 W H / / ) for ail / G /, 
(3) (n"=i A âr njLi Ma.) G fAC for ail au..., <*„ G /, where n is finite, 
(4) n , -6/^^ = X> nteiMiH = H, n&MiY - F and ï\ieIMiH - //, 

(5) Cii&NiXH = XH and fl/e/ MiYH = YH-
Then fAt is called a compatible filter of G with respect to the subgroups X and F. 
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LEMMA 3.4. Let G = G\*H G2. Let X, Y be subgroups ofG\, G2 respectively such 
thatXPiH — YC\H — 1. Let 9^bea compatible filter of G with respect to X and Y. Then, 
for each g e G\(X*Y) with \\g\\ > 1, there exists (N9M) G C\C such that \\gir\\ = \\g\\ 
and g7r $ XTX * Yn where IT is the canonical homomorphism of G onto G = G\ *# G2, 
and where G{ = Gi/N, G2 = G2/MandH = HN/N = HM/M. 

PROOF. We shall only consider the case g = u\v\ - - unvn, where ut G G\ \ H, 
vt G G2\H (other cases being similar). We first note that g = x\y\- • - xnyn where xt G X 
and yi G F if and only if there exist h\, k\,..., hn-\, kn-\,hn G H such that u\ — x\h\, 
vi = h{xy\ku u2 = k\xx2h2, . . . ,«„ = k~\xxnhn and vn = h~lyn. Since g$X*Y, there 
exist je,, yi, hi, ki such that the following is true: 

(1) ux gXH,or 
(1') u\ — x\h\ hvXh\V\ $ YH, or 
(2) u\ — x\h\, h\V\ — y\k\, but k\u2 $-XH,or 

(2;) u\ = x\h\, h\V\ = y\k\, k\u2 = x2h2, b\xth2v2 $ YH, or 

(n) u\ =x\hi,hiv\ =yiki,...,hn-\vn-i = yn-\kn~u butfcn_iw„ #XH,or 
{n') ux -x\h\,h\\\ =yiku...,kn-iun = xnhn, but hnvn g Y. 

Let / be the smallest integer such that (/) (or (/')) is true. Since XHH = YP\H = 1, 
Xj, yj, hj, kj, are all uniquely determined, by properties (4) and (5) of 5\£» there exist 
(N0,M0) (Naj9Maj), (NPj,MPj) G 9i such that fe_i«,- £ NoXH, uj ? Na.H and vj g 
MPjH for each j = 1,.. . ,/z. Let N = N0 H (fljLi Ak,.) H (fljU A/̂ .) and M = M0 H 
( n i l M«.) H (fgU Mft). Then, by property (3) of f*£ (AT, Af) G fA£. Let TT: G - , G. 
Clearly ||g7r|| = ||g|| and, by property (2) of fA£, (X * F)7r = X * ?. If g?r G X * f then 
g7T = wivi • • -M„vn = s\t\ - - -sntn where s, G X and f,- G ?. This implies wi = J in , 
vi = ff ^iivi, U2 = wj"1^^» • • • » «i — wJ~_}{Siri,..., vn = r^tn where r,-, w; G H. Now 
wi = x\h\,h\V\ = y\k\,...,hi-\Vi-\ = ^_ i^_ i . Since X Pi / / = ? n / / = 1, it follows 
that Ji = xu h — h\, h = yu...,n-i = h-u U-\ = Ji-i and w/_i = kt-\. This 
implies M, = wj^Sifi = îç^sifi. Thus ^_i«/ G X// whence fe_iw,- G NXH C A ôX// 
contradicting the choice of No. Hence g7r ^ X * f as required. • 

LEMMA 3.5. Let E$ = Ao *^^ i5o. If (a), (b) are maximal cyclic subgroups of Ao 
and (b), (c) are maximal cyclic subgroups of Bo such that (a, b) and (b, c) are isolated 
in Ao and Bo respectively, then, forp greater than the nilpotency classes ofAo and Bo, 
9{p = {(AQ , #Q ) ; m = 1,2,...} is a compatible filter ofEo = Ao *^) Bo with respect 
to (a) and (c). 

PROOF. Since (a), (b) and (b), (c) maximal cyclic subgroups of A0 and Bo respec­
tively and p is greater than the nilpotency classes of Ao and Bo, it follows that condi­
tions (1), (3) and (4) of Definition 3.3 are satisfied. Now (a, b) and (b, c) are isolated in 
Ao and Bo, whence (2) is satisfied. Also, by Lemma 3.2, condition (5) of Definition 3.3 
is satisfied. Hence 5\£ is a compatible filter of £b = Ao *(£) #0 with respect to (a) and 
(c). 
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THEOREM 3.6. Let Po be the polygonal product ofAo, Bo, Q , D0 amalgamating the 
maximal cyclic subgroups (b), (c), (d) and (a). If the subgroups A, B, C, D are isolated 
in Ao, Bo, Co, Do respectively, then Po is RF. 

PROOF. We note that A, B, C, D isolated in Ao, #o, Co, Do respectively actually 
implies (b), (c), (d), (a) are maximal cyclic subgroups of the groups containing them, 
whence each of these subgroups is isolated in the groups containing them. It follows that 

<n(fe> = Bfn(b) = {if),B£n{c) = (%n(c) = {<f), cfn(d> = D^n(d) = 
(dpm), and D^ D (a) = A{J n (a) — (apm) for each prime p greater than the nilpotency 
classes of Ao, Bo, Co, Do. Thus we can form the polygonal product of Ao/A{j , #o/#o » 
Co/cÇ andD0/D|f amalgamating the subgroups (b)/(k>Pm), (c)/((fm), (d)/(dpm) a n d 

(a)/(apm). Let <\>pm be the canonical homomorphism of Po onto this polygonal product. 
By Lemma 3.1, Po<t>P

m is RF. Thus to prove the theorem, we need only find <j>pm such that, 
for a given l ^ E ^ o , g<t>p* ^ 1. 

Let Eo = A0 *(̂ ) B0, F0 = C0 *<^ D0 and H = (a) * (c). Then P0 = £o *// ^o- Let t 
be the maximum of the nilpotency classes of Ao, #o, Co, DO-

CASE 1. ||g|| = 0. Then g G H. We shall only consider the case g = aaxc^ • • -a""^" 
with the other cases being similar. Choosep > max{|a/|, \/3i\,t ; / = 1,.. . ,n}. Since 
g</>p has the same free product length in (a<j>p) * (c(f)p) as the free product length of g in 
(a) * (c), g</>p ̂  1. 

CASE 2. ||g|| = 1. Without loss of generality, we can assume g G EQ \ H. If g = fc*, 
then we choose/? > max(|fc|, t). Clearly g<j)p ^ 1. Thus we can assume g to be of length 
> 1 in£o = Ao*(6)#o- By Lemma 3.5, 3\£ = {(AQ ,2^ ) ; m = 1,2,...} is a compatible 
filter of Eo with respect to (a) and (c) fovp > t. Thus, by Lemma 3.4, there exists an 
integer m such that g<ppm $ H(f>pm, whence g(j>pm ^ 1. 

CASE 3. ||g|| > 2. Again we shall only consider the case g — e\f\ • • -e^ where 
et € Eo\H and f G Fo\H. As in Case 2, for each /, there exist integers &;, £/, / = 
1, . . . , n, such that e,-^,. ^ #</y, and/i</y, ^ #</y, for sufficiently large prime p. Let 
m = max{&„ £,- ; / = 1, . . . , n}. Then it is clear that g(f)pm ^ 1. 

This completes the proof. • 

4. Other results. In this section, we generalize a result of Allenby and Tang [2]. 
Applying this result, we prove that the polygonal product P0 of Theorem 3.6 is RF if A, 
B, C, D have the same nilpotency classes as Ao, Bo, Co, Do respectively. 

LEMMA 4.1. Let G be af.g. nilpotent group. Let x,h G G such that x is of finite 
order m and h is of infinite order. Then there exists an integer a such that for any integer 
t>\,we can find Nt <f G such that {x){h) (lNt = (hat). 

PROOF. Since G is (h)-separable, and since (JC) is finite, there exists N\ <ty G such 
that (JC) n JVi(fc) = 1. Let Nx H (h) = (ha). Then (x)(h) H Nx = (ha). Now let t > 1. 
Since G = G/T(G) is potent, there exists Mt <f G such that (h) n Mt = (hat). Then 
Nt = Mtn N\ is the required normal subgroup. • 

Applying Lemma 4.1, we immediately have the following result: 
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LEMMA 4.2. Let G\, G2 bef. g. nilpotent groups such that G\ D G2 = (h) where h 
is of infinite order. Let G = G\ * ^ G2. Ifx G G\, y G G2 are of finite orders, then there 
exists an integer a > 0 such that, for every t > I, we can find Nt <ty G andMt <y G with 
(x)(h)nNt = (y)(h)nMt=(hat). 

LEMMA 4.3. Let G\, G2 bef.g. nilpotent groups such that G\ H G2 = (h) where 
h is of infinite order. Let X = (x), H — (h) and Y = (y) where x G G\ and y G G2 
are of finite orders. If $C is the set of all pairs (N,M) such that N <f G\, M <y G2 and 
NHXH = MR YH = (hat), where a is determined by Lemma 4.2 and t ranges over the 
set of all positive integers then fA£ is a compatible filter ofG= G\ */h\ G2 with respect 
to the subgroups X and Y. 

PROOF. It is not difficult to check that conditions (1), (2) and (3) of Definition 3.3 are 
satisfied by lA£.LetJcbeoforderm.Letg G Gi\X#.Thenjtig g Hfori = 0, l , . . . , m - l . 
Now G\ is a / . g. nilpotent group. This implies G\ is subgroup separable. Thus there 
exists N\<fGu such that x1g g N\H for all 1. Let N\ H H = (hk). By Lemma 4.2, there 
exists (N',Mf) G 9£ such that XHHN' = YHHM' = (hak). Let N = Nx n N'. Then 
XHHN = (hak). This implies (N,Mf) G fA£ Since N CNuit follows that g g NXH. 

Hence C\(NM)e9t ̂ ^ ~ ^ ' *n ^ e s a m e w a ^ fîwflefAt MYH = YH. Thus f7\£ satisfies 
condition (5) of Definition 3.3. By a similar argument we can show that fA£ satisfies 
condition (4) of Definition 3.3. Hence fÂ  is a compatible filter of G with respect to X and 
7. • 

We now prove a theorem which generalizes a result of Allenby and Tang (Theo­
rem 4.4 [2]). 

THEOREM 4.4. Let Po be the polygonal product off. g. nilpotent groups A$, Bo, Co, 
Do amalgamating (b), (c), (d) and (a) where AoHBo = (b),BonCo = (c), CoPlDo = (d) 
and D0 HA0 = (a) and (a) H (b) = (b) H (c) = (c) H (d) = (d) H (a) = 1. If a andc 
are of prime orders p and q respectively then Po is RF. 

PROOF. CASE 1. A0, B0, C0 and D0 are finite. Let A = (a, b), B = (b, c)9 C = (c, d) 

and D = (d,a). Let E = A *{b) B. Since (a) H (b)A = (c) n (b)B = 1, it follows that 
E = (b)EH where H = (a) * (c) and H D (&)£ = 1. Thus H is a retract of E. In the same 
way, if we let F = D * ^ C then / / is a retract of F. Since the polygonal product P of 
A, #, C, D is the same as E *# F, by Theorem 2.1, P is RF. Now A, By C, D are finite. It 
follows that P0 = (((P *A A0) *z? £0) * c C0) *D A>) is RF. 

CASE 2. |&| = 00, \d\ = m, where m is finite. Let !7\£ be the compatible filter of 
Eo = Ao*(^)5o with respect to (a) and (c) as determined by Lemma 4.3. Let Âo =Ao/N 
and B0 = B0/M where (N,M) e 5\£ Since (a)nN = (c)HM = 1, |â| = p, \c\ = q. 
Moreover, (b)P\N — (b)HM = (bat) implies that b has the same order in Âo and Bo. 
Furthermore, NH (a)(b) = M f l (c)(b) = (bat) implies (â) H (b) = (c) H (b) = 1. Since 
Co andD0 are RF, there exist L<f C0 and £<yD0 such thatLPi(c)(d) = Kn(a)(d) = I. 
Let Co = Co/Land Do = DQ/K. Then |â| =/?, |d| = minDoand|c| = q, \d\ = m in Co. 
Moreover, (â) fï (d) = (c) D (d) = 1. Thus we can form the polygonal product Po of Âo, 
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BQ, CO and Do amalgamating (/?), (c), (d) and (a). Let </> be the canonical homomorphism 
of P0 onto PQ. By Case 1, P0 is RF. Thus, if, for each 1 ^ g G Po, there exists a <j> such 
that g(f> ^ I then Po = £o *// Fo is RF where Fo = A) *(</> Co-

Subcase (i). g G H. Since Co, Do are RF and a, c, J are all of finite order, there exist 
L <f Co and K <f D0 such that L H (c)(d) = K D (a)(d) = 1. Let (N,M) G fA£ Then 
clearly if we let A0 = A0/N, B0 = B0/M9 C0 = Co/U D0 = D 0 / ^ and let <j> be the 
canonical homomorphism described above, we have g<j> ^ 1. 

Subcase (ii). g e E0\H. If g = bk then, by Lemma 4.2, there exists (JV,Af) G 1A£ 
such that # H (fe)(a) = M H (fc)(c) = (//*') where at > \k\. Let L, K and <t> be as 
defined in Subcase (i), then g<j> = bk $ //, whence g<j> ^ 1. If g is of length > 1 in 
EQ = Ao *^) Po then, by Lemma 3.4, there exists (iV, M) G !A£ such that g7r ^ //7r where 
7T is the canonical homomorphism of Fo = ^o *(b) Bo o n t ° ^o */&) Po where Âo = AQ/N 
and Bo — Bo/M. Let L, # be as in Subcase (i). Then N, M, L, ^ define the required <j> of 
Po onto Po. Moreover gix $ Hn implies g<j> $ //</> whence g<j> ^ 1. 

Subcase (iii). g G FQ\H. Since Co, Do are subgroup separable and (d) is finite, Fo 
is subgroup separable [1]. Thus there exists R<f F0 such that g $ RH. Let L, K be as in 
Subcase (i). Let Li = RHL and K\ = RHK. Then Lx n (c)(d) =Kxn(a){d) = l.Let 
(TV, M) G fA£. Let </> be the canonical homomorphism of Po onto the polygonal product 
ofAo/N9 Bo/M, Co/Li and D 0 / # i . Since (Li, A'i)^ C R and g £ RH, it follows that 
g<j) $ //</>, whence g<j> ^ 1. 

Subcase (iv). g $ Eo U Po- We shall only consider the case g = e\f\ • • • e,/„ where 
e,- E Eo\H and ft G FQ\H (other cases being similar). As in Subcase (ii), for each et, 
there exists (Ni, Mi) G fA£ such that e^t $ FL1Xi where 7r; is the canonical homomorphism 
of Ao *(£,) #o ontoÂo */̂ \ Po where A0 = Ao/Nt, Po = Bo/Mi and (5) = Nt(b) /Nt = 
Mi(b)/M(. As in Subcase (iii), for each/}, there exist L, <f Co and #/ <y Do such that 
L,- H (c)(d) = ^i n (a)(d) = 1 and//#; ^ //#; where 0/ is the canonical homomorphism 
of D0 *(</) Co onto D0 * ^ C0 where C0 = Co/L,-, D0 = D0//f; and (d) = Lt{d)/U = 
KiW/Ki.UxLo = nUUmdKo = f]U^^^Lo<f ^ K0<f D0 and Lo H (c)(d) = 
KoH (a)(d) = 1. Moreover if 0 is the canonical homomorphism of Do * ^ Co onto 
A)*(rf)Q where C0 - C0/Lo,D0 = DQ/ATO and (d) = K0(d)/Ko = Lo(d)/Lo then/tf $ 
HO for all i. Let Â  = fl?= i ̂ - and M = f|?= i M/. Then (Â , M) G fA£ Let <̂  be the canonical 
homomorphism of Po onto the polygonal product ofAo/N, Bo/M, Co/Lo and Do /Ko. 
Then \\g(j>\\ in Po *^ ^o is the same as \\g\\ in Po *// Po, where P0 = ^o/N *N(b)/N Bo/M, 
Fo = F06 and H = HO. Thus ^ ^ 1. 

The remaining cases are: 

CASE 3. \b\ < oo, \d\ = oo. 

CASE 4. \b\ < oo, |J| < oo. 

CASE 5. \b\ = \d\ = oo. 

By suitable modification of the proof of Case 2, we can show that for each of the 
Cases 3, 4, 5 we can construct the required <j> such that g<\> ^ \ for every 1 ^ g G G. 
This completes the proof. • 

We need the following lemma to prove our next result. 
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LEMMA 4.5. Let G be a f.g. torsion-free nilpotent group. Let a,b G G such that 
(a) n(b) = 1. If A is an infinite set of primes and if H — {a, b) has the same nilpotency 
class as G then we have: 

(1) H (xp)G{x) = {x) for every xe G ; 
peA 

(2) f)(a»)G(a)(b) = (a)(b); 
pEA 

(3) f)(tff(b) = (b). 
peA 

PROOF. We first note that, by [7], ifp is a prime greater than the nilpotency class of 
G then for any x,y G G, xPyP = w? for some w G G. Moreover f]peA GP = 1. 

If G is abelian, then the lemma is trivial. So we can assume G and H are of nilpotency 
class c > 1. 

(1) If x G Z(G) then (1) is obviously true. Therefore, let x G ZM (G)\Zi(G), 1 < i < c. 
If v G (xp)G(x) then y = gf ^ ' ^g i • • 'gnlxknP8nXip, for some gi € G and integers &£, 
ip. Clearly [g,x] = 1 modZ, for g G G. Let G = GjZiG). Then y = x^pp+ip where 
mp = k\ + •- • + kn. Since G is a/ , g. torsion-free nilpotent group, m /̂? + ip must be a 
fixed integer a for each p. This implies y = zxa = zxmpP+lp where z G Z,(G). If/? > c 
then y = gf1**1^ • • 'gnl*knPgnXip = wpxip for some w G G. Thus z = wpx~mpp = up 

for some u G G. It follows that if y G (^)G(JC) then yjt_£* = z = up G Gp for each /? > c. 
Therefore, if y G f"VeA(^)G(*) then y G V[peêi{^)G{x). This implies yjc~a G H/XEA G*\ 

p>c p>c 

Since flpeA C77 = 1, it follows that y — xa e (x). This proves (1). 
p>c 

(2) Suppose y G (ap)G(a)(b) then y = gfV , /7gi • • - g~x aknP gna
lptip for some ĝ  G G 

and integers A;*, /̂  andy^. Let G = G/Zc_i(G). Then y = âmpp+ip&p where mp = &i + 
• • • + kn. If y G (aq)G(a)(b) then y = âmqq+iqbiq for some integers ra^, ^ andy^. This 
implies û m ^ - « t f - ^ - . / « G Zc_i(G) H / / Ç Zc_i(iJ). Since / / is of nilpotency class c, 
ZC-\(H) n (#)(£) = 1. This implies ra^/? + /p = m^g + /̂  and^ = j q . Thus, for each p, 
if y G (ap)G(a)(b), thcnjp is a fixed integer, say, a. Therefore, if y G r\P<EA(aP}G(a)(b}> 
by (1), yfc-« G Ç\pe±{ap)G{a) = («). Hence y G («)(*) proving (2). 

The proof of (3) is similar to (2). • 
We are now ready to prove the following theorem. 

THEOREM 4.6. Let Po be the polygonal product of the f. g. torsion-free nilpotent 
groups Ao, Bo, Co, A) amalgamating (b), (c), (d) and (a) where AQC\BQ — (b), BoPiCo = 
(c), CoHDo = (d), DODAQ = (a) and (a)C\{b) = (b)n(c) = {c)n(d) = (d)n(a) = 1. 
If A — (a, b), B = (è, c), C = (c, J) and D = (d, a) have the same nilpotency class as 
Ao, Bo, Co and Do respectively then Po is RF. 

PROOF. Let Â0 = Ao/{ap)A\ B0 = £o /V) 5 ° , Q = C0 / (^)C o and D0 = 
Do/(ap)D°. Since Ao, BQ, CQ and Do are f.g. torsion-free nilpotent groups, it follows 
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that \a\ = \c\ — p and \b\ — \d\ = oo for every prime p. Thus we can form the polyg­
onal product Po of Âo, #o, Co, and Do amalgamating (b), (c), (d) and (â). Let <j>p be 
the canonical homomorphism of Po to Po. By Theorem 4.4, P0 is RF. Thus, if, for each 
1 ^ g e p0 , we can find a prime p such that g(j>p ^ 1 then we have proved Po is RF. As 
before, we let E0 = A0 * w B0, F0 = D0 *(d) C0 and 7/ = (a) * (c). Then P0 = E0 *// Po-
Let 1 ^geP0 = E0*HF0. 

CASE 1. ||g|| = 0. This implies g £ H. We shall only consider the case g = 

a
a\cP\ .. •aanc(5\ other cases being similar. Let p be a prime such that p > |a/|, |/3/|, 

/ = 1, . . . , n. Then g<j>p has the same free product length in (a) * (c) as g in (a) * (c). This 
implies g(j)p ^ 1 as required. 

CASE 2. ||g|| = 1. Without loss of generality we can assume g e EQ\H. If g = bk 

then g(j)p = bk ^ H(f)p for all primes p, whence g<j>p ^ 1 as required. We need only 
consider the case g — u\V\ • • • unvn where w; G Ao\ (fr) and v/ G #o \ (fc), other cases 
being similar. Since g ^ //, as in the proof of Lemma 3.4, there exists ar\ bs\ ci[, btl such 
that one of the following is true: 

(1) u^(a)(b), or 
(10 m = ar»fc\butfc* vi £ (c)(fc), or 
(2) wi = a r i ^ , bs'vx = c'1 ft'1, but ^ w 2 £ (a)(ft), or 

(n) wi = aribs\bSxv\ = cubh,... ,bSn~'vn-i = ctn~xbtn-\ but ^ - ' « n g (a)(b), or 
(n') ux =ar>bs\bs>vl = cllb'\... , 2 / - ^ = ar"Z?\ but ^«vn £ (c). 
Let / be the smallest integer such that (/) (or (/')) is true. Then, by Lemma 4.5, for 

almost all primes/?, b^m g (ap)A°(a)(b), uj g (ap)A°(b) and v,- £ ((?)B»(b) for; = 
1, . . . , n. Since (â) n(b) =. (5) H (c) = 1, as in the proof of Lemma 3.4, we can show 
that, for almost all p, g(j)p $ H(j)p, whence g<j>g ^ 1 as required. 

CASE 3. \\g\\ > 2. Again we only consider the case g = e\f\ • • • e^fn where et G 
Eo\H and fi G Po \ H, other cases being similar. By Case 2, we find a sufficiently large 
prime p such that éi<j>p ^ H(j)p and ft(j)p ^ H(f)p for / = 1, . . . , n. This implies g</>̂  ^ 1 as 
required. 

This completes the proof. • 

REMARK. Theorem 3.4 [2] follows immediately from Theorem 4.6. 
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