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ON THE RESIDUAL FINITENESS
OF POLYGONAL PRODUCTS OF NILPOTENT GROUPS

GOANSU KIM AND C. Y. TANG

ABSTRACT.  In general polygonal products of finitely generated torsion-free nilpo-
tent groups amalgamating cyclic subgroups need not be residually finite. In this paper
we prove that polygonal products of finitely generated torsion-free nilpotent groups
amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an
isolated subgroup in the vertex group containing them, are residually finite. We also
prove that, for finitely generated torsion-free nilpotent groups, if the subgroups gener-
ated by the amalgamated cycles have the same nilpotency classes as their respective
vertex groups, then their polygonal product is residually finite.

1. Introduction. Polygonal products of groups were introduced by A. Karrass,
A. Pietrowski and D. Solitar [8]. They studied the subgroup structure of these products
and applied the results to the Picard group PSL(2, Z[i]) which is a polygonal product of
Ay, the four group and two copies of S3. In [4], Brunner, Frame, Lee and Wielenberg
used their results to determine all the torsion-free subgroups of finite index in the Pi-
card group. These products are also discussed by B. Fine in [6]. Allenby and Tang [2]
studied the residual finiteness of polygonal products. They showed that polygonal prod-
ucts of finitely generated free abelian groups amalgamating cyclic subgroups with trivial
intersections are residually finite. On the other hand, they constructed an example of
a polygonal product of four finitely generated torsion-free nilpotent groups of class 2
amalgamating cyclic subgroups with trivial intersections, which is not residually finite.
In this example, the amalgamated subgroups are not isolated subgroups [3] of their ver-
tex groups. Moreover, the subgroups generated by the amalgamated subgroups in their
respective vertex groups do not have the same nilpotency classes as their vertex groups.
In this paper we show that if the subgroups generated by the two amalgamated cyclic
subgroups are either isolated subgroups of their respective vertex groups (Theorem 3.6)
or of the same nilpotency classes as their respective vertex groups (Theorem 4.6) then
their polygonal products are residually finite.
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2. Preliminaries. Briefly polygonal products can be described as follows [2]: Let
P be a polygon. Assign to each vertex v of P a vertex group G, and to each edge e, an
edge group G, together with monomorphisms A, and p, embedding G, as a subgroup of
the two vertex groups at the ends of e. The polygonal product of this system of groups
is the group G with generators and relations those of the vertex groups together with the
extra relations obtained by identifying g. A, and g.p, for each g, € G,.

Throughout this paper, we only consider the case when P is a square. The results can
be extended to polygons with more than four vertices. However the case of triangles
can be nasty, because the triangle groups so formed may not contain the vertex groups
isomorphically (see [9], p. 525).

We shall adopt the following notations and terminology:

We use N < G to denote that N is a normal subgroup of finite index in G. RF means
residually finite and f. g. means finitely generated. If N<G and G = G/ N then x denotes
Nxforx € G.If G = A%y B and x € G, then ||x|| denotes the free product length of x
in G. Z;(G) denotes the ith term of the upper central series of G. For convenience, we let
Z(G) = Z(G). Let H be a subgroup of G, then H® denotes the normal closure of H in G.

A group G is said to be subgroup separable (LERF) if for every f. g. subgroup H of G
and every x € G\ H there exists N<; G such that ¥ ¢ Hin G = G/N.If H is a subgroup
of G and for every x € G \ H, there exists N <, G such that X ¢ H in G = G /N, then we
say G is H-separable.

A torsion-free group G is said to be potent if, for each positive integer n and each
1 # x € G, there exists N <y G such that Nx has order exactly nin G/N.

Free groups and f. g. torsion-free nilpotent groups are potent.

Let H be a subgroup of G. Then H is called a retract of G if there exists N < G such
that G=NHand NNH = 1.

We shall use the following results.

THEOREM 2.1 ([5], THEOREM 1). The generalized free products of residually finite
groups amalgamating retracts are RF.

THEOREM 2.2 ([3], THEOREM 2.5). Let G be af.g. torsion-free nilpotent group. If
H is an isolated subgroup of G, then (i, G'H=H for all primes p.

3. Amalgamating maximal cyclic subgroups. The example given in [2] showed
that the polygonal products of f. g. torsion-free nilpotent groups amalgamating cyclic
groups need not be RF. However, under certain conditions, if the amalgamated subgroups
are maximal cyclic subgroups then we can prove that the polygonal products are RF.

Throughout the following we shall adopt the following notation. A = (a,b), B =
(b,c), C = {c,d) and D = (d,a) are torsion-free nilpotent groups with (a) N (b) =
(b) N {c) = {¢) N{d) = (d)N{a) = 1. Ay, By, Co, Dy are f. g. torsion-free nilpotent
groups containing A, B, C, D respectively such that Ag N By = (b), By N Cy = {(c),
C() ﬁDo = <d> and DO on = (a)
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LEMMA3.1. Let Ay = Ag/AZ, By = Bo/B, Co = Co/C}} and Dy = Do/ DY . If A,
B, C, D are isolated subgroups of Ay, By, Co, Dy respectively then the polygonal product
Py of Ay, By, Co, Dy amalgamating (b), (¢), (d) and (@) is RF for almost all primes p.

PROOF. CASE 1. LetAg = A, By = B,Cy = Cand Dy = D. Let A = A/A",
B=B/B",C=C/C" and D = D/D". Let Q, be the polygonal product of A, B, C, D
amalgamating (b), (¢), (d) and (d). Since A, B, C, D are torsion-free nilpotent groups,
we have (@) N (B)A = ()N (B)8 = 1 and (&) N (d)C = ()N (d)P? = 1. LetE = Ax B
andF:C‘*()DThnE—(b> -Hand F = (d)F - A where H = (@)  (¢). Since

(BYEMH = (d)F NH = 1, H is a retract of both E and F. By Theorem 2.1, Q, is RF.

CASE 2. Ay, By, Co, Dy not necessarily equal to A, B, C, D respectively. Let p be a
prime greater than the nilpotency classes of Ao, By, Co, Do respectively; we have Agkm =
AP B NB =B, CNC=C"and D] ND = D' . Thus A ~ A/A", B ~ B/B"",
C ~ C/C" and D ~ D/D". Hence, by Case 1, the polygonal product P of A, B,
C, D amalgamating (b), (¢), (d), (a) is RF. Since A, B, C, D are finite, it follows that
P()N (((P*AA()) *p Bo) *e C()) *DDO is RF. ]

LEMMA 3.2. Let G be a f. g. torsion-free nilpotent group of class c. Let x,y € G
such that (x) N (y) = 1 and H = (x,y) is an isolated subgroup of G. If g € G \ (x)(y)
then, for every prime p > c, there exists an integer n such that g ¢ G”" (x)(y).

PROOE. Since H is isolated, by Theorem 2.2, N3, G""H = H. Thus, if g & H,
then there exists n such that g ¢ G”"H. It follows that g & G*"(x)(y). Hence we can
assume g € H \ (x)(y). If H is of nilpotency class m then g = zx'y’ where z € Z,,—|(H).
Since N2, HP" = 1, it follows that there exists n such that z ¢ HP". We shall show that
g = 'y & HP"(x)(y). Suppose g € H”"(x)(y). Then g = hx’y', where h € HP". This
implies h = w’l’" ..-w¥ where wy,...,w, € H for some r. Let H = H/Z,_(H). Then
h = #"5%". It follows that § = &y = #P"*§P"*, Since Z,,_1(H) N (x)(y) = 1, we
have i = kp" +sandj = £p" +t. Thus g = zx'y = hx’y' implies z = hx’y" x™' =
hxi ="yt x=i = phx=%" (dy= " x~1). But this implies z € H”" contradicting the choice
of n. Hence g & HP" (x)(y). Since G” MH = HP" for p > c, it follows that g & G”"(x)(y)
for every prime p > c. "

DEFINITION 3.3. Let G = G) *y G. Let X, Y be subgroups of G|, G, respectively.
Let N = {(N,~, M),iel } be a collection of pairs of normal subgroups of G| and G,
satisfying the following conditions.

(1) N; <Gy, M; <Gy suchthat ;N H = M;NHforalli €1,

(2) NNNXH=NN;NX)(N;NH)and M; "YH = (M; N Y)(M; " H) foralli € I,

3) (ﬂ;’zl N, (= Maj) € N forall ay, ..., a, €I, where n is finite,

4 NiagNiX = X, Niet NiH = H, iy M;Y = Y and N;e; MiH = H,

(5) NierN:XH = XH and ;c; M;YH = YH.

Then N is called a compatible filter of G with respect to the subgroups X and Y.
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LEMMA 3.4. Let G = G xg G,. Let X, Y be subgroups of Gy, G, respectively such
that XNH = YNH = 1. Let N be a compatible filter of G with respect to X and Y. Then,
foreach g € G\ (X x Y) with ||g|| > 1, there exists (N,M) € N_ such that ||gn|| = ||g||
and gn ¢ X7 x Y where  is the canonical homomorphism of G onto G = Gy x5 G,,
and where Gy = G| /N, G, = G,/M and H = HN /N = HM /M.

PROOF. We shall only consider the case g = ujv; - - - upvy, where u; € Gy \ H,
vi € Gy \H (other cases being similar). We first note that g = x;y; - - - x,y, Where x; € X
and y; € Y if and only if there exist hy,ky, ..., n—1,kn—1,hn € H such that u; = xhy,
vi = hilyiky, up = k{oho, .. uy = kit Xk, and v, = iy ly,. Since g € X + Y, there
exist x;, y;, h;, k; such that the following is true:

(1) u; € XH, or

(1/) u; = x1h; but hyvy ¢ YH, or

(2) u; = x1hy, hyvy = y1ky, but kjup ¢XH, or

(2’) uy = x1hy, hivy = y1ky, kiup = xphp, but hyv, ¢ YH, or

(n) uy = x1hy;, hvi = y1k1, ey V1 = y,,Alk _1, butk,_qu, ¢XH, or

(n') u; = x1hy, vy = ik, ..., kn—1un = x,h,, but h,v, ¢ Y.
Let i be the smallest integer such that (i) (or (') is true. Since XNH = YNH = 1,
X, ¥j, hj, kj, are all uniquely determined, by properties (4) and (5) of A, there exist
(No, Mo) (Nejy Mo,), (N5, Mg) € N such that ki_ju; ¢ NoXH, u; & NyH and v; ¢
Mg H foreachj = 1,...,n. Let N = No N (= Noy) N (M= Np) and M = Mo 1
(N1 Mo,) O (M=) Mg,). Then, by property (3) of AL, (V,M) € N Let ;G — G.
Clearly ||gn|| = ||g|| and, by property (2) of A[, X x Y)m = X x Y. If gr € X * ¥ then
8T = @iV -+ lyVy = 511 -+ 5ul, where §; € X and 7; € Y. This implies #; = 57,
b = FBw, fly = Wi lSR,. .. 0 = W4T, .., Vy = F, T, where i, w; € H. Now
U = ilﬁl, h_1\7| = )71121, - ,ﬁ,;lﬁi_l = )_7,‘_1]2;1. Since XNH=YNHA= 1, it follows
that 51 = %1, | = ﬁ], I = Py, i) = fli_l, fiy = yi1 and wy_; = E,;l. This
implies #; = w57 = k57 Thus k,_1i#i; € XH whence ki_ju; € NXH C NoXH
contradicting the choice of Ny. Hence gm ¢ X * Y as required. .

LEMMA 3.5. Let Ey = Ao *4y Bo. If (a), (b) are maximal cyclic subgroups of Ao
and (b), (c) are maximal cyclic subgroups of By such that (a,b) and (b, c) are isolated
in Ag and By respectively, then, for p greater than the nilpotency classes of Ag and By,
N, = {(Aﬁm,Bﬁm) ;m=1,2,...} is a compatible filter of Eg = Ao *y Bo with respect
to {(a) and (c).

PROOF.  Since (a), (b) and (b), (c) maximal cyclic subgroups of Ay and By respec-
tively and p is greater than the nilpotency classes of Ap and By, it follows that condi-
tions (1), (3) and (4) of Definition 3.3 are satisfied. Now (a, b) and (b, c) are isolated in
Ap and By, whence (2) is satisfied. Also, by Lemma 3.2, condition (5) of Definition 3.3
is satisfied. Hence A}, is a compatible filter of Ey = Ag *») Bo with respect to (a) and

{c). n
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THEOREM 3.6. Let Py be the polygonal product of Ay, By, Co, Dy amalgamating the
maximal cyclic subgroups (b), (c), (d) and (a). If the subgroups A, B, C, D are isolated
in Ao, By, Co, Dy respectively, then Py is RF.

PROOE. We note that A, B, C, D isolated in Ay, By, Cy, Do respectively actually
implies (b), (c), (d), (a) are maximal cyclic subgroups of the groups containing them,
whence each of these subgroups is isolated in the groups containing them. It follows that
AT N(b) = By N(b) = (W), By N{e) = € N(e) = ("), & N(d) = D' N(d) =
(@"), and D N (a) = AF" N (a) = (a’") for each prime p greater than the nilpotency
classes of Ag, By, Co, Do. Thus we can form the polygonal product of Ao/ Aﬁm, Boy/ B‘Sm,
Co/C%" and Dy /D% amalgamating the subgroups (b)/(b”"), (¢)/(c""), (d)/(d"") and
(a)/{(a”"). Let ¢pm be the canonical homomorphism of Py onto this polygonal product.
By Lemma 3.1, Py¢,~ is RF. Thus to prove the theorem, we need only find ¢~ such that,
fora given 1 # g € Py, gppm # 1.

Let Ey = Ap * () By, Fy = Cy *(4) Dy and H = (a) * <C> Then Py = Ey %y Fy. Let ¢
be the maximum of the nilpotency classes of Ag, By, Co, Do.

CASEl. ||g|| = 0.Theng € H. We shall only consider the case g = a®'¢® - - - a%c%
with the other cases being similar. Choose p > max{|a;|,|3i|,¢ ; i = 1,...,n}. Since
g¢p has the same free product length in (a¢,) * (c¢,) as the free product length of g in
(a) *(c), gpp # 1.

CASE2. |g|| = 1. Without loss of generality, we can assume g € Ey \ H. If g = b,
then we choose p > max(|k|, 7). Clearly g¢, # 1. Thus we can assume g to be of length
> 1in Eg = Ag* () Bo. By Lemma 3.5, A\, = {(Apm,Bﬁm) ;m=1,2,...}isacompatible
filter of Ey with respect to (a) and (c) for p > t. Thus, by Lemma 3.4, there exists an
integer m such that gé,m & Ho,m, whence gopm # 1.

CASE 3. ||g|| > 2. Again we shall only consider the case g = e\f] - - - e,f, where
e; € Eg \Hand f; € Fy \ H. As in Case 2, for each i, there exist integers k;, £;, i =
1,...,n, such that €;¢, =4 H¢,, and fi¢,, =4 H¢,, for sufficiently large prime p. Let
m = max{k;, {; ; i = 1,...,n}. Then it is clear that g¢,» # 1.

This completes the proof. n

4. Other results. In this section, we generalize a result of Allenby and Tang [2].
Applying this result, we prove that the polygonal product Py of Theorem 3.6 is RF if A,
B, C, D have the same nilpotency classes as Ao, By, Cyp, Dy respectively.

LEMMA 4.1. Let G be a f.g. nilpotent group. Let x,h € G such that x is of finite
order m and h is of infinite order. Then there exists an integer o such that for any integer
t > 1, we can find N, <y G such that (x)(h) NN, = (h*").

PROOF.  Since G is (h)-separable, and since (x) is finite, there exists N; <y G such
that (x) NNy (h) = 1. Let N; N\ (h) = (h*). Then (x)(h) "Ny = (h*). Now let > 1.
Since G = G/7(G) is potent, there exists M, <y G such that (h) N M, = (h*"). Then
N; = M, N Nj is the required normal subgroup. n

Applying Lemma 4.1, we immediately have the following result:
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LEMMA 4.2. Let Gy, G be f.g. nilpotent groups such that Gy N\ G, = (h) where h
is of infinite order. Let G = Gy xy) Ga. If x € Gy, y € G, are of finite orders, then there
exists an integer a > 0 such that, for every t > 1, we can find N; < G and M, < G with
(x)(h) ANy = (y)(h) "M, = (h™).

LEMMA 4.3. Let Gy, G, be f.g. nilpotent groups such that Gy N\ G, = (h) where
h is of infinite order. Let X = (x), H = (h) and Y = (y) where x € Gy andy € G,
are of finite orders. If N is the set of all pairs (N, M) such that N < G, M < G and
NNXH = MNYH = (h™), where « is determined by Lemma 4.2 and t ranges over the
set of all positive integers then N is a compatible filter of G = G, * ) G2 with respect
to the subgroups X and Y.

PROOE. Itis not difficult to check that conditions (1), (2) and (3) of Definition 3.3 are
satisfied by . Let x be of order m. Let g € G;\XH. Thenx'g ¢ Hfori =0, 1,...,m—1.
Now G is a f. g. nilpotent group. This implies G; is subgroup separable. Thus there
exists N1 < Gy, such that x'g & N H for all i. Let Ny N H = (h*). By Lemma 4.2, there
exists (N',M") € N\ such that XHNN' = YHNM' = (h®). Let N = Ny N\ N'. Then
XHNN = (h*). This implies (N, M) € A[. Since N C Ny, it follows that g ¢ NXH.
Hence ﬂ(NM)GM NXH = XH. In the same way (\(y e MYH = YH. Thus A satisfies
condition (5) of Definition 3.3. By a similar argument we can show that A satisfies
condition (4) of Definition 3.3. Hence \_ is a compatible filter of G with respect to X and
Y. ]

We now prove a theorem which generalizes a result of Allenby and Tang (Theo-
rem 4.4 [2]).

THEOREM 4.4. Let Py be the polygonal product of f. g. nilpotent groups Ao, By, Co,
Do amalgamating (b), (c), (d) and (a) where AoNBy = (b), ByNCy = (c), CoNDy = (d)
and Do N Ay = (a) and (a) N (b) = (b)N{c) = (c)N(d) = (d)N{a) = 1. Ifaand c
are of prime orders p and q respectively then Py is RF.

PROOF. CASE 1. Ag, By, Co and Dy are finite. Let A = (a,b), B = (b,c), C = (c,d)
and D = (d,a). Let E = A x4, B. Since (a) N (b)* = (c) N (b)® = 1, it follows that
E = (b)EH where H = (a) * (c) and HN (b)E = 1. Thus H is a retract of E. In the same
way, if we let F = D x4 C then H is a retract of F. Since the polygonal product P of
A, B, C, D is the same as E g F, by Theorem 2.1, P is RF. Now A, B, C, D are finite. It

follows that Py = (((P %4 Ag) *p Bo) *C Co) *p Do) is RF.

CASE 2. |b| = 00, |d| = m, where m is finite. Let A\ be the compatible filter of
Ey = Ag () Bo withrespect to (a) and (c) as determined by Lemma 4.3. Let Ag = Ao /N
and By = By/M where (N,M) € N\ Since (a) "N = (c)NM = 1,|a] = p, || = q.
Moreover, (b) "N = (b) "M = (b*') implies that b has the same order in Ay and By.
Furthermore, N N {(a)(b) = MM (c)(b) = (b**) implies (@) N (b) = (¢)N(b) = 1. Since
Co and Dy are RF, there exist L < Co and K <y Dy such that LN (c)(d) = KN(a)(d) = 1.
Let Co = Co/Land Dy = Do /K. Then |a| = p,|d| = min Do and |¢| = g, |d| = min C,.
Moreover, (@) N (d) = (¢)N(d) = 1. Thus we can form the polygonal product Py of Ay,
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By, Co and Dy amalgamating (b), (¢), (d) and (a). Let ¢ be the canonical homomorphism
of Py onto Py. By Case 1, Py is RF. Thus, if, for each 1 # g € P, there exists a ¢ such
that g¢ # 1 then Py = Eg xy Fo is RF where Fo = Dy *(4) Co.

Subcase (i). g € H. Since Cy, Dy are RF and q, ¢, d are all of finite order, there exist
L < Cp and K < Dy such that LN (c)(d) = K N (a)(d) = 1. Let (N,M) € N\_. Then
clearly if we let Ay = Ag/N, By = By/M, Cy = Cy/L, Dy = Dy/K and let ¢ be the
canonical homomorphism described above, we have g¢ # 1.

Subcase (ii). g € Eg \ H. If g = b* then, by Lemma 4.2, there exists (N, M) € A
such that N N (b){a) = M N (b){c) = (b*') where ot > |k|. Let L, K and ¢ be as
defined in Subcase (i), then g¢ = b* ¢ H, whence g¢ # 1.If g is of length > 1 in
Ey = Ao *(3) By then, by Lemma 3.4, there exists (N, M) € N such that g ¢ Hm where
7 is the canonical homomorphism of Ey = Ag %,y Bo onto Ay *5) By where Ag = Ag/N
and By = By /M. Let L, K be as in Subcase (i). Then N, M, L, K define the required ¢ of
Py onto Py. Moreover g ¢ Hr implies g¢ ¢ H¢ whence gé # 1.

Subcase (iii). g € Fy \H. Since Cy, Dy are subgroup separable and (d) is finite, Fy
is subgroup separable [1]. Thus there exists R <y Fyy such that ¢ ¢ RH. Let L, K be as in
Subcase (i). Let L; = RN Land K; = RNK. Then L; N {c){d) = K1 N (a)(d) = 1. Let
(N,M) € N\. Let ¢ be the canonical homomorphism of Py onto the polygonal product
of Ag/N, Bo/M, Co/L, and Dy /K;. Since (L;,K; ) C R and g ¢ RH, it follows that
go & Hp, whence g # 1.

Subcase (iv). g & Ey U Fy. We shall only consider the case g = eifi - - - e,f, where
e; € Ey\ Handf; € Fy \ H (other cases being similar). As in Subcase (ii), for each e;,
there exists (N;, M;) € A such that e;7; ¢ H,. where 7; is the canonical homomorphism
OfA() *(b} BO onto /i() *<5> é() where A‘-o = Ao/N,‘, BO = B()/M,‘ and <5> = N,<b>/N, =
M;(b)/M;. As in Subcase (iii), for each f;, there exist L; < Cy and K; < Dy such that
LiN{c){d) = KiN{(a)(d) = 1 and f;0; ¢ HO; where 0; is the canonical homomorphism
of Dy x4 Co onto Dy *.3) Co where Co = Co/Li, Do = Do/K; and (d) = L{d)/L; =
K,(d)/K, LetLy = 07:1 L;and Ky = ﬂ?:l K;. Then L()<1f Co, K()<1fD() and L()ﬂ<C><d> =
Ko N {(a){d) = 1. Moreover if 6 is the canonical homomorphism of Dy x4 Co onto
D0*<3> Co where Co = Co/L(), D() = D()/K() and <&) = K0<d>/K() = L()(d)/Lo thenf,-B ¢
HOforalli.LetN = N, N;and M = (\_, M;. Then (N, M) € A_. Let ¢ be the canonical
homomorphism of Py onto the polygonal product of Ay /N, By /M, Cy/Ly and Dy /K.
Then ||g¢|| in Eo x5 Fy is the same as |g|| in Eo *y Fo, where Eq = Ao /N *y(,)/n Bo/M,
Fo = Fof and H = Hf. Thus g¢ # 1.

The remaining cases are:

CASE3. |b| < oo, |d| = 0.

CASE4. |b| < o0, |d| < 0.

CASES. |b| =ld| = oo.

By suitable modification of the proof of Case 2, we can show that for each of the
Cases 3, 4, 5 we can construct the required ¢ such that g¢ # 1 forevery 1 # g € G.

This completes the proof. n
We need the following lemma to prove our next result.
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LEMMA 4.5. Let G be a f. g. torsion-free nilpotent group. Let a,b € G such that
(@) N (b) = 1. If A is an infinite set of primes and if H = (a, b) has the same nilpotency
class as G then we have:

(1) rgA<x")G<x> = (x) foreveryx € G ;
) g(a">c<a>(b> = (a)(b) ;
3) @)°(B) = ().

PROOF. We first note that, by [7], if p is a prime greater than the nilpotency class of
G then for any x,y € G, ¥y’ = w” for some w € G. Moreover [),co G = 1.

If G is abelian, then the lemma is trivial. So we can assume G and H are of nilpotency
class ¢ > 1.

(1) Ifx € Z(G) then (1) is obviously true. Therefore, letx € Z;,1(G)\Z(G), 1 <i<c.
Ify € (#)%x) theny = gy'xhPg, .- g, XfPg,x*, for some g, € G and integers k,,
ip. Clearly [g,x] = 1modZ; for g € G.Let G = G/Z(G). Then y = X™P*» where
m, = ki +--- +k,. Since G is a f. g. torsion-free nilpotent group, m,p + i, must be a
fixed integer o for each p. This implies y = zx* = zx™P*» where z € Z(G). If p > ¢
theny = gylxkPgy - g \xkP g, = wPxir for some w € G. Thus z = wPx™™P = uP
for some u € G. It follows that if y € (x*)°(x) then yx~* = z = u” € GF foreach p > c.

Therefore, if y € (,ca ()% (x) theny € Mpea (x*)(x). This implies yx~* € s G.
>c p>c

P
Since ,ea G = 1, itfollows thaty = x* € (x). This proves (1).

>c

) Slll)ppose y € (aP)%{a)(b) theny = gy 'd"Pg, - - - g, 'abPg,a»b for some g, € G
and integers ky, i, and j,. Let G = G/Z._(G). Then y = @™F*»br where m, = k; +
oo+ ky. If y € (a9)%(a)(b) then § = @™9*ps for some integers my, iy and j,. This
implies a™P+»—md~laplr—ia € Z, (G)NH C Z._(H). Since H is of nilpotency class c,
Z._(H)N{a)(b) = 1. This implies myp + i, = myq + iy and j, = j,. Thus, for each p,
if y € (a?)%(a)(b), then j, is a fixed integer, say, c. Therefore, if y € (,ca(a?)%(a)(b),
by (1), yb=* € MNyea(a”)%(a) = (a). Hence y € (a)(b) proving (2).

The proof of (3) is similar to (2). =

We are now ready to prove the following theorem.

THEOREM 4.6. Let Py be the polygonal product of the f.g. torsion-free nilpotent
groups Ao, By, Co, Dy amalgamating (b), (c), (d) and (a) where AgN\By = (b), BoNCy =
(c), CoNDo = (d), DoNAg = (a) and (a)N(b) = (b)N(c) = (c)N{d) = (d)N(a) = 1.
IfA = (a,b), B = (b,c), C = (c,d) and D = (d, a) have the same nilpotency class as
Ay, By, Cy and Dy respectively then Py is RF.

PROOF. Let /-i() = A0/<ap>A°, B() = B()/(CP>B°, Co = C()/((,‘p>C° and D() =
Dy /(a?). Since Ay, By, Co and Dy are f.g. torsion-free nilpotent groups, it follows
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that |@ = |¢| = p and |b| = |d| = oo for every prime p. Thus we can form the polyg-
onal product Py of Ay, By, Co, and Dy amalgamating (b), (¢), (d) and (a). Let ¢, be
the canonical homomorphism of Py to Py. By Theorem 4.4, Py is RF. Thus, if, for each
1 # g € Py, we can find a prime p such that g¢, # 1 then we have proved Py is RF. As
before, we let Eg = Ao * ) Bo, Fo = Do *(4y Co and H = (a) * (c). Then Py = Ep *y Fo.
Let 1 # g € Py = Ey xy Fy.

CASE 1. |lg|| = 0. This implies g € H. We shall only consider the case g =
a%cbr ... q%ch | other cases being similar. Let p be a prime such that p > |al,|8il,
i = 1,...,n. Then g¢, has the same free product length in (@) * (¢) as g in (a) * (c). This
implies g¢, # 1 as required.

CASE2. ||g|| = 1. Without loss of generality we can assume g € Ey \ H. If g = b
then g¢, = b* ¢ H¢, for all primes p, whence g¢, # 1 as required. We need only
consider the case g = uyv; - - -u,v, where u; € Ag \ (b) and v; € By \ (b), other cases
being similar. Since g ¢ H, as in the proof of Lemma 3.4, there exists a”, b%, c'i, b'i such
that one of the following is true:

(1) u; & {a){b), or

(1) uy = a"b*, but b*'v; & (c)(b), or

(2) uy = a"b*, b*vy = chb", but buy & (a)(b), or

(n) uy = a" b, by =chbh, .. by, = clrb but by, & (a)(b), or

(') uy =a"b", by = clibh, ... b u, = a"b*, but by, & (c).

Let i be the smallest integer such that (i) (or (i')) is true. Then, by Lemma 4.5, for
almost all primes p, b''u; & (aP)(a)(b), u; & (aP)*(b) and v; & (P)Bo(b) forj =
1,...,n. Since (@) N (b) = (b) N (¢) = 1, as in the proof of Lemma 3.4, we can show
that, for almost all p, g¢, € Hé,, whence g, # 1 as required.

CASE 3. |lg|| > 2. Again we only consider the case g = e\f] - - - e,f, where ¢; €
Ey \H andf; € Fy \H, other cases being similar. By Case 2, we find a sufficiently large
prime p such that e;¢, & Ho, and fi¢, € Hp, fori = 1,...,n. This implies go, # 1 as
required.

This completes the proof. u

REMARK. Theorem 3.4 [2] follows immediately from Theorem 4.6.
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