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Abstract

It is shown that the algebra of regular sets for a finitely additive Borel measure p. on a compact
Hausdorff space is a a-algebra only if it includes the Baire algebra and p is countably additive on the
o-algebra of regular sets. Any infinite compact Hausdorff space admits a finitely additive Borel
measure whose algebra of regular sets is not a o-algebra. Although a finitely additive measure with a
a-algebra of regular sets is countably additive on the Baire o-algebra there are examples of finitely
additive extensions of countably additive Baire measures whose regular algebra is not a o-algebra. We
examine the particular case of extensions of Dirac measures. In this context it is shown that all
extensions of a {0, l}-valued countably additive measure from a o-algebra to a larger a-algebra are
countably additive if and only if the convex set of these extensions is a finite dimensional simplex.

1980 Mathematics subject classification (Amer. Math. Soc): 28 C 15, 28 A 60, 54 G 10.
Keywords: Borel measure, regularity, extensions of measures, completion regular compact space, Borel
regular compact space.

Introduction and synopsis

In [16], Kupka noted that if a vector-valued Borel measure on a compact
Hausdorff space X is countably additive then its algebra of regular sets is in fact a
a-algebra. In Question 3.3.1 of [16], he asked whether countable additivity is
necessary for this result. We essentially answer this question in the negative but
do show that a good deal of countable additivity is implicit in the assumption that
the algebra of regular sets of a finitely additive Borel measure is a a-algebra. More
specifically we show that, on any a-algebra contained in the algebra of regular
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121 The algebra of regular sets for a Borel measure 375

sets of a finitely additive Borel measure jtt, /* is countably additive (Lemma 1). If
in fact the algebra of regular sets for /x is a a-algebra then it includes the
/i-completion of the Baire algebra and ft agrees with the canonical regular
extension of fi to the Borel algebra from the Baire algebra at least on the a-algebra
of regular sets (Propositions 3 and 5). In fact, the latter statement holds even if jti
is only assumed to be countably additive on the Baire algebra but with the
algebra of regular sets not necessarily a a-algebra. Corollary 3.1 answers Kupka's
question affirmatively for completion regular compact Hausdorff spaces. Here a
finitely additive Borel measure is countably additive if and only if its algebra of
regular sets is a-algebra. Corollary 3.2 shows that on any infinite compact
Hausdorff space there is a finitely additive Borel measure which does not have a
a-algebra of regular sets. This follows from Proposition 4 which asserts that a
Boolean algebra admits a non-countably additive measure if and only if it is not
Cantor separable if and only if its Stone space is not an almost P-space, a result
of independent interest.

The latter part of the paper examines the regular algebras of finitely additive
Borel measures ju whose restriction to the Baire algebra is countably additive
when ju is {0,1}-valued on the Baire algebra. Proposition 6 deals with the convex
compact set of all extensions of a countably additive (0,1 }-valued measure S on a
a-algebra 2 , to a larger a-algebra 2 2 . It is shown that this convex compact set is
finite dimensional if and only if all extensions of o are countably additive.
Otherwise, there exist 2' mutually singular non-atomic purely finitely additive
extensions or c {0, l}-valued extensions where c = 2S°, (Corollary 6.1). This is
applied to the case where 2 , is the Baire algebra, 2 2 is the Borel algebra and 6 is
Sx for some non-G8-point x G X. If the extensions of 8X to the Borel algebra are
all countably additive there is a countably additive extension /x whose regular
algebra is just the o^-completion of the Baire algebra. However, for this to be true
X must be topologically pathological near x.

We conclude with an example which yields finitely additive Borel measures
whose regular algebras are not a-algebras yet contain the Baire algebra. If real
valued measurable cardinals exist an example is given of a countably additive
Borel measure whose regular a-algebra is properly contained in the Borel algebra
and properly contains the completed Baire algebra.

1. When is the algebra of regular sets for a finitely additive Borel measure a
a-algebra?

$0 and % denote, respectively, the Baire and Borel a-algebras on X. Q{X)
denotes the real continuous functions on Xand <Dlt(X) the dual of G(X). 91t(X)
is identified, as usual, with both CA(%0) the countable additive Baire measures
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and with CAt(<$>) the regular countably additive Borel measures. For any Boolean
algebra &, BA(&) denotes the finitely additive real measures of bounded variation
on & with CA(&) the band of countably additive elements of BA(&). If ju G
BA + (<S) we denote by Reg(/x) all A E 9> so that mf{n(0\K): K compact C A
C 6 open} = 0. Note that Reg(ju) is an algebra which is /t-complete in <$ in that
whenever {An} is an increasing sequence and {Bn} is a decreasing sequence in
Reg(/x) with An C Bn for all n and with limn^xn(Bn\An) - 0 then A G Reg(/i)
provided A E <S and An C A C Bn for all n. For any algebra & C <$, &" will
denote its completion in % with respect to the finitely additive Borel measure /x.
Thus, Reg(ju) = (Reg(ju))'1. This lemma was pointed out by Douglas Dokken. It
is a generalization of Problem 7 on page 11 of [6].

LEMMA I. If 2 is a a-algebra contained in Reg(/t) for [i G BA + {%) then n is
countably additive on 2 .

PROOF. It must be shown that if {Dn} C 2 is a disjoint sequence with union D
then fi(D) = 2" = , n(Dn). That n(D) > 2~=1 /*(/)„) is immediate. If we show that
p(D)^ 2^=,/i(Z)n) + e for any e > 0 the assertion will be established. Pick K
compact C D with n(D) < n(K) + e/2. Pick 0n open with Dn C 0n and with
fi(6n \Dn)< e2~"~l. Since KCD C U^=, fln there is an integer m so that K C 0,
U - - - U 0 m . For this m it is true that ja(^) ^ 2~=1 ju(flm) < 2»=1

+ e/2- Thus, M(/)) < 2? = 1 M(^) + c

REMARK. Lemma 1 is a consequence of Proposition 1.6 in Chapter V of [4] and
of Lemma 1 of [25].

COROLLARY 1.1. a) If n E BA +(<&) and Reg(/x) is a a-algebra then fi is
countably additive on Reg(ju).

b) Reg(ja) is a a-algebra if and only if ju is countably additive on the a-algebra
generated by Reg(ju).

PROOF. Only b) needs to be established. This is done in the standard fashion.
Let {Dn} be a disjoint sequence in Reg(/n) with union D. Let Bn be open with
Dn C dn and ju(0n \Dn) < 2"""1. e for a given e > 0. Let m be such that
/*( U "= m + i ^ ) < £ / 4 - L e t Kn CDJorn=\,...,m be compacts with n(Dn\Kn)
< iew- ' . We have M[(U- = 1 f l jN(U7 = I J f J ]< e with U ; = , ^ C i ) C U « = 1 ^ .
Thus, Z> G Reg(ju). Thus, Reg(ju) is a a-algebra if /* is countably additive on the
a-algebra generated by Reg(ju). The converse follows from a).
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LEMMA 2. Let A G Reg(ju).

i) There exists a Gs As G Reg(fi) and an FaAa G Reg(/u) with Aa C A C As and

ii) There exists a Gs As G % n Reg(ft) and an Fo ^ ° G <S0 n Reg(/x) w/r«
4O CA°CAS CAS.

iii) /i(yl) = n(Aa) = n(As) = in(A") - (i(As) = sup{n(K): K compact Baire
C A") = inf{ju(G): G open Baire D As}.

iv) 77im> w an Ao G <ft0 n Reg(/i) w/f/i /i(4A.4o) = 0.

PROOF.

i) Immediate from the definition of regularity.
ii) Let Aa— U" = 1 Kn and ^ o = D Gn where A"n is compact and Gn is open for

all n. By Urysohn's Theorem there is a compact Gs, K'n m satisfying Kn C K'n m C
Gm for all n, m. Set ^ = f l ^ = , ^ m. ^ is a compact Gs and J [ a C ^ C ^ for
all n. Set /i" equal to the Fa, U" = 1 A*̂ . 4̂* is obtained analogously as a countable
intersection of open Fa sets.

iii) From the definition of regularity the Kn in ii) may be chosen with
H(A) - sup/!(£„) < supju(A";) ^ sup{/x(A:): K compact Baire C A"} < JU(^°)

= n(A). Thus, /*(/!) = sup{/x(AT): K compact Baire C A"). Similarly, ix{A) =
inf{/t(G): G open Baire D /I"}.

iv) Set Ao = As or A".

Plachky, [20], shows that if v is a finitely additive probability on a Boolean
algebra 6E, and B^,+ ((£,, c, (22) denotes the convex compact set of extensions of v
to a probability measure on a larger algebra &2 then jw G &4,+ (6E1, v, &2) is
extreme if and only if for all A2 E. &2 and e > 0 there is an Ax G 6B, with
ju,(y4,Ay42) < e. Thus, in Lemma 2, ju, on Reg(fi), is an extreme extension of its
restriction to ®0 n Reg(ju).

PROPOSITION 3. If n G BA+CS>) is such that Reg(ju) is a a-algebra then
% C Reg(,i).

To establish this we first consider the case X= [0,1]. Let Y denote those
x G (0,1) so that inf{ju(#): x G 0 open} = 0. The complement of Y is at most
countably hence Y is dense. Each {x} with x G Y is in Reg(ja) with fi({x}) = 0.
For e > 0 let 6 be an open set containing x G Y with fi(0e) < e, AT~ = [ 0, x) \ 0c

and K* = (x, 1] \0e. Both K~ and AT+ are compact. It is easily verified that
lim^oM(*7 ) = /*([<>, x)) and lim^0M(*"e

+ ) = /*((*, 1]). Thus, {[0, *),(*, 1]} C
Reg(/i). It follows that all intervals, open, closed, or half open, whose endpoints
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are chosen from Y belong to Reg(/i). The a-algebra generated by these intervals is
6D0 — ©. Since Reg(ju) is a a-algebra •$<, = Reg(/t). This establishes this case.

Let X be arbitrary and let / : X -> [0,1] be continuous. Let v be the finitely
additive Borel measure on [0,1] which is the image of fx under/. Thus, for Borel
A C [0,1], v(A) = n(f~l(A)). Just as in the countably additive case A G Reg(j»)
if and only if f~\A) G Reg(ju). Consequently, Reg(j>) is a a-algebra hence is
equal to the Borel algebra of [0,1] by the special case just established. Thus, / i s
measurable for the a-algebra Reg(ji). Since / is arbitrary it follows that all
/ G C( X) are Reg(/immeasurable. Thus, since ®0 is the smallest a-algebra so that
a l l / G G(X) are ®0-measurable, %0 C Reg(ju). This establishes the proposition.

In [4], Babiker and Knowles define a space X to be completion regular if and
only if every ju G CA +C$>0) is completion regular in the sense of Berberian [5].
That is, each /x G CA+($0) has a unique extension in BA+ (<$). Alternatively X
is completion regular if and only if ® is the ju-completion of %0 for all
ix G CA +(%0). Examples of completion regular spaces include all perfectly
normal compact Hausdorff spaces X. In [5] Berberian notes that if X is comple-
tion regular all points must be Gs's. Under the assumption that the continuum is
real valued measurable an example may be constructed of a non-completion
regular X each of whose points is a Gs. In order that X be completion regular it is
necessary and sufficient that every Borel set be regular with respect to the paving
of compact Gs's for all countably additive Borel measures. This corollary is easily
deduced from the definition of completion regularity.

COROLLARY 3.1. Let X be completion regular. The following are equivalent for

a) Reg(ju) is a a-algebra
b) Reg(/i) = %
c)/t G CA + {<&) = CA+

COROLLARY 3.2. / / X is an infinite compact Hausdorff space there is a ju G BA +

(6£>) so that Reg(ju) is not a a-algebra.

PROOF. Any extension ju to <3J of a member of BA+ C$o) \CA + (6S>0) will do.
The non-emptiness of BA + (<$0) \ CA+ (<eB0) is a special case of Proposition 4.

We are interested in determining for which infinite Boolean algebras & every
element of BA+ (<$) is countably additive. If no infinite strictly decreasing
sequence in & has a lower bound then, automatically, BA + (&) = CA + ((3,). Such
Boolean algebras are termed Cantor separable in [28]. Cantor separable Boolean
algebras & are characterized in terms of their Stone space X& by the fact that each
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non-empty zero set has a non-empty interior. Completely regular spaces X with
the aforementioned property are called almost P-spaces in [17] and have been
studied in [7], [10] and [27]. Thus, & is Cantor separable if X& is an almost
P-space. Notice that if 6E is a-complete it is not Cantor separable if it is infinite.
fSN \ N is the most familiar example of an almost P-space [9, 65.8]. Graves and
Wheeler in [10] give a method for producing a large class of almost P-spaces. The
following proposition was pointed out by R. F. Wheeler.

PROPOSITION 4. The following are equivalent for an infinite Boolean Algebra &
a) & is Cantor separable
b) X& is an almost P-space

PROOF. We already have a) <=> b) => c). Let us assume c) and see that this
implies b). Notice that all {0, l}-valued elements of BA + (6E) are countably
additive. Phrased in terms of the corresponding ultrafilters on & this says that if
{ y 4 n : / j £ N } i s a decreasing sequence in an ultrafliter then 0 ¥= infn An. That is,
there is an Ax G & with 0 =£ Ax C An for all n. Since every decreasing sequence
of non-empty elements of (2 lies in an ultrafilter this says that no decreasing
sequence of non-empty elements of & has 0 as infimum. In particular, regarding
& as the clopen algebra of X&, the intersection of a decreasing sequence of
non-empty clopen sets (that is, a zero set) has non-empty interior. Thus, c)
implies both a) and b).

REMARK. We use the term 8-ultrafilter for an arbitrary Boolean algebra to
denote any ultrafilter whose corresponding {0,1}-valued measure is countably
additive.

A compact Hausdorff space X is called Borel regular [19], or Radon, [21], if and
only if CA + (<$>) - CA+ (<$>) if and only if every ju G CA+(%) has a unique
extension, the regular extension, to <S belonging to CA +{%). If /* G C4,+ ( ® ) \
C4,+ (%) then Reg(ju) is a super-a-algebra of ®0 properly contained in %. The
canonical example of a non-Borel regular space is the compact ordinal space
[0, w,] where <o, is the first uncountable ordinal. There are countably additive
{0,1}-valued extensions of the Dirac measure 8Ui from ®0 to $ other than the
regular extension [9, ex. 53.10a]. An example of a Borel regular space X which is
not completion regular is the one point compactification D U {oo} of a discrete
space D with uncountable non-real-valued measurable cardinal, [8, ex. 6.2]. The
Dirac measure Sx has extensions from ®0 to $ other than the regular one but all
must be purely finitely additive [2], [13], since they induce on D finitely additive,
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diffuse [2], probability measures. We shall be primarily concerned with Reg(/i)
for n non-countably additive yet with n countably additive on ®0 but occasionally
with n countably additive and non-regular on %. In any case, jureg will denote the
unique element of C4,+ (<$) agreeing with ju on <$0.

PROPOSITION 5. Let ju £ BA + C $ ) be countably additive on ®0. On Reg(ji), ju
and jureg coincide.

PROOF. Let A £ Reg(jw). One can, in the proof of Lemma 2, find Aa an Fa in
RegO) and As a Gs in Reg(ju), so that Aa C A C As and so that n(As \Aa) =
Hreg(As \AJ = 0. Let {A", As} C%C\ Reg(ju) with Aa C A° C As C As. Then,
H(A) = n(A°) = tiKg(A°) = M

In the remainder of the paper we will be dealing fairly exclusively with
extensions ft of Dirac measures Sx for x G X from <$0 to <$. All such extensions
must be (0, l}-valued on Reg(/t). If A G Reg(/t) then n(A) = 0 if and only if

PROPOSITION 6. Let 2 , C 2 2 be a-algebras of subsets of a set Q.LetSe CAf (2,)
be {0,1 }-valued. Let rj be the a-ideal in 2 2 of sets of outer measure 0 under S.

i) / / the quotient algebra 22/rj is finite then BAf (2 , , S, 2 2 ) is a finite dimen-
sional subset of CA,+ ( 2 2) .

ii) / / 2 2 / i j is infinite there is a family {/x1,} C 5y4,+ (2 , , 8, 2 2 ) of mutually
singular, non-atomic, purely finitely additive measures whose cardinality is 2C where
c is the continuum.

PROOF. There is an affine bijection from &4,+ (2 , , 5, 2 2 ) to 5y4,+ (22/7j). If
H G 5/l1

+(21, S, 2 2 ) then JU(/4) = 0 for all A £ -q hence /i induces on 2 2 /TJ an
element, also denoted by jtt, in the usual fashion. This gives the affine bijection.

ii) If 2 2 / T J is infinite it is an infinite F-algebra as in [3]. By Corollary 3.2.3 of
[3] there is a family {jt*,}, of cardinality 2C, of mutually singular non-atomic
probability measures on 2 2 / T J all with the same negligible sets. Pulling back
under the affine bijection from &4,+ ( 2 | , S, 2 2 ) to BAf (22/rj) one obtains the
same sort of family in BA + (2 , , S, 2 2 ) . If ns £ {/i,} is countably additive there
can be no other countably additive nr G {n,} for fir ± ps and both have the same
nullsets. Delete ns if necessary so that no element of {/x,} is countably additive.
Each fi, has a non-trivial purely finitely additive part which is a multiple of a
purely finitely additive n'r which is easily verified to belong to BAf (1V 8, 22) .
Furthermore, /x', must be non-atomic for each /. This establishes ii).
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i) Suppose that 2 2 / T J is finite and has n atoms {ax,...,an}. Corresponding to
each ai is an At £ 2 2 which is such that if A E 2 2 then Al \A G TJ or A C\ A, £ TJ.
The {0, l}-valued measure 5, on 2 2 / T J or in &4,+ (2 , , 5, 2 2 ) corresponding to a, is
an extreme point of BAf ( 2 2 / T J ) and & 4 , + ( 2 2 / T J ) = conv(S,,...,Sn). To show
that Bi4,+ (21 ,6 , 2 2 ) C G4 + (2 2 ) it suffices to show that each 8iy considered as
an element of ft4,+ (2 , , 8, 22 ) , is in G4 + (2 2 ) . To this end let {£„} be an
increasing sequence in 2 2 with 8,-(2in) — 0 for all n. We have En D v4( G TJ for all «
hence, by the a-completeness of TJ, we have ( U n En) C\ At G TJ. Thus, 5,( Un En)
— 0. This establishes countable additivity of 8, hence establishes i).

REMARKS. Recall from [2] that a measure ju is strongly finitely additive if and
only if there is a partition {An: n G N} with /x(^4n) = 0 for all n. Any purely
finitely additive probability measure is the sum of countably many strongly
finitely additive measures, [2]. In ii) purely finitely additive measures may be
replaced by strongly finitely additive measures.

Actually ii) asserts only that such a family of probabilities exists in BA{12/T)).

This is true if TJ is replaced by the ideal generated by the null sets of a non
{0,1}-valued measure or S2 /TJ by an arbitrary F-algebra.

COROLLARY 6.1. / / 2 2 / T J is infinite there exist c purely finitely additive {0, \}-val-
ued elements of BA? (2 , , 5, 2 2 ) .

PROOF. There is a strongly finitely additive non-atomic /i G BAf (I.x, 8, 2 2 ) .
Let {An} C 2 2 be an increasing sequence with ix(An) = 0 for all n and with
yJnAn = Q,. Let 6E denote the algebra 2 2 / T J and let X& be its Stone space.
BA\ (2 , , 8, 2 2 ) is af finely homeomorphic to the Bauer simplex of Radon proba-
bility measures on X&. Let /i be the Radon measure on X& corresponding to n so
that if A G 2 2 /TJ or if A G 2 2 then li(A) = fl([A]) where [A] is the clopen set in
X& corresponding to A. We have fi(A) = / x[A](x)fi(^x) = f Xx(A)P(dx) (where
x G X& are considered as ultrafiters on &). If there were a set Z with outer
measure /i*(Z) > 0 of 8-ultrafilters x G Xs (so that each xx is countably additive
on &), it would follow that 0 = hm^^niA^ = limn^xJx[An](x)(i(dx)>
p.*(Z) > 0. Since this is impossible jus-almost all x G X& have x* purely finitely
additive. Since jS is non-atomic there is a compact perfect set Y C supp(j5) C X&

so that if x G 7 then xx is purely finitely additive. Y contains at least c elements.

COROLLARY 6.2. / / & is a Boolean algebra then n G BAf (&) is purely finitely
additive with corresponding measure ft. on the Stone space X& only if [i-almost all
x G X& are not 8-ultrafilters.
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We may apply the preceding results to the case where %0 = 2 , and 9> = 2 2 . A
{0,1}-valued measure 8 on ®0 is a Dirac measure 8X. rj will be denoted by i\x. i\x

consists of those Borel sets in X contained in a a-compact subset of X' = X\{x).
We are only interested in the case where %/r\x — (S>X has cardinality larger than 2
so that {x} is not a Gs.

PROPOSITION 7. Let x be a non-Gs-point in X.

i) / / <3>x is finite the elements of BA* (%0, Sx, <$) form a finite dimensional
simplex in C4,+ (<&). In this case there is a /x G BAf (%, ox, %) with Reg(ju.) =
6ksx — 6RJ*Do — JD0.

ii) / / 9>x is infinite there is a family of cardinality 2C of singular non-atomic purely
finitely additive elements of BAf('$>0,8x,

<$>) and a family of cardinality c of
{0,1}-valued purely finitely additive elements.

PROOF. We need only find in case i ) a / i £ BA^(%, Sx,
 6J) with RegO) - %.

Let {Sx, 8 , , . . . ,8n} denote the extreme points of BAf (%, Sx, ®) where Sx is the
usual Dirac measure on ®. We assert that ft = 1(8, + • • • +8n)has RegO) = ©^.
Suppose not. Note that <&£ = ®** is the largest subalgebra of <$ to which 8X has a
unique extension. Note also that 8X agrees with jn on Reg(/i) by Proposition 5.
There is an extreme extension 8 of 8X from %£ to Reg(ju) other than 8X hence
other than ju. This extreme extension 8 is the restriction of one of {8, , . . . ,5n} to
Reg(/x), say 5,. Since all extreme extensions of 8X to Reg(ju) are {0,1}-valued
there is an A G Reg(/t) with 0 = 8X(A) = fi(A) and S^A) = 1. But n(A) =
ji(8i(A)+ ••• +8n(A))^j; which is impossible. Thus, Reg(ju) = <&£.

COROLLARY 7.1. / / <$>x is infinite and ju G BAf (%,8X,C&) has Reg(ju) ^ %£
there is a v G BA + (%, 8X, %) with Reg(j') a proper subset of Reg(jii).

REMARK. We know of no case in which x is a non-Gg-point for which i) holds
in Proposition 7. For the case X = [0, w,] and x = w, one may set Ao equal to the
relatively closed set in [0, w,) consisting of limit ordinals, and set An = {a + 1:
a G An_{\ for n G w. Then [0, to,) = Un yln. Each /!„ is in <$ \TJX hence ^ is
infinite. A similar argument shows that if D is an infinite discrete set with
uncountable cardinality then X — D U {oo} has ®x infinite then x = oo.

COROLLARY 7.2. / / %x is finite there is a closed set E C X' whose complement is
a-compact and is such that E has a partition {Ex,... ,En) with each Et closed.
Within each Ei the set ($j of non-a-compact closed sets forms a 8-ultrafilter of closed
sets. If Et U {x} = Xt is considered as the one point compactification of Et then 8X
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has a one dimensional simplex of extensions to the Borel sets of Xt. The extreme
extension Sj is defined by 8((A) = 1 if and only if A contains an element of ^F- for
i= ! , . . . , « .

PROOF. Let {80, 5 , , . . . ,8n) be the extreme elements of BAf (%, 8X, <$) with So

the regular extension. For each i — \,...,n there is a 8-ultrafilter <§i of closed
subsets of X' so that 8t{A) = 1 if and only if A meets each element of §,. One
may find {F,, . . . ,Fn} so that F, E % for i - \,...,n and so that F,. fl Fy E t\x for
all i ¥=j. One may find an open a-compact 9 C A" with FtP\ Fj C 0 for all /, _/.
Let F,, = F, \ 0 for all / and let £ = U"=, F, = A" \ 9. Any extension 8 of 8X to the
Borel sets of Xt with 8(x) = 0 may be extended to an element of BAX

+ (%0, Sx, <$)
with 8(£,) = 1. We must have 8 = 8, which establishes the corollary.

COROLLARY 7.3. If($>x is finite every closed set in X' contains a dense a-compact
subset.

PROOF. We may, by Corollary 7.2, assume that BAf (\, Sx, %) - {8X, 8} so
that I3r= {/"closed in A": 8(F) = 1} is the set of non-a-compact closed sets in X'.

Assume that X' ¥^ E for any E £ 7}x. If this is the case then E G rjx implies that
E G j)x. To see this note that if E & -qx then E G <$ and Ec G r\x. Since X is the
closure of E U £ c G TĴ  one has a contradiction.

Let {0a} Cij j be a sequence indexed by ordinals a defined by transfinite
induction so that 0a is a proper subset of 0a+, and so that 6a = U^.,,, 6jg if a is a
limit ordinal. The last element 0X of this sequence occurs for a limit ordinal X so
that 6X E S7 hence so that 6x(£j]x. Since T)X is a-complete X is of uncountable
cofinality. Let ^a = 9tt+x\Sa for a<\ and let ^X = A"\0X. We have A" =
[ U {i|/a: a < X}] U [ U {30a: a < X}]. The open set U {i/-a: a < X} is dense in A"
hence is not in TJX. The closed set U [d9a: a < X} is a-compact hence is in an open
9X G 7]x. Let D = {a < X: ^a \9X ¥= 0}. The open sets {</*„: a E D) together
with 9X cover A". Thus, card(D) =̂ « , . If AT is a compact set in A" it is covered by
0X together with finitely many /̂a with a E D hence a a-compact set is covered by
0x together with countably many \pa with a E D. Let {Dn: n G N} be a countable
partition of D into uncountable sets. For each n let Un= U {i//a: a 6 D J . The
family {Un: n G JV} is a disjoint family of open sets with U {{/„: n G N} = U {^a:
a G D}. Since a a-compact F meets only countably many ^a, no Un is in r\x. Thus,
9>x is infinite which is impossible. Thus, X' = E for some E G TJX. This demon-
stration also establishes, if F E ff replaces A", that F = E for some £ E rjx, which
establishes the corollary.
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In the unlikely event that 9>x be finite for some non-G5-point x, Proposition 7
gives a countably additive ju G BAf (®0, 8X, %) with Reg(/i) = $£. We conclude
by giving an example where Reg(ju) is always larger than 9>^.

EXAMPLE 8. Let X be the one point compactification D U {x} of an uncounta-
ble discrete space. %0 consists of countable sets in D and their complements in X,
6$ = 2X and i\x consists of countable sets in D hence is a maximal ideal in ®0 and
% is /i-complete for any p. E BA +(%, Sx, <&). The /x G BAf (%, Sx, <&) with
fi({x}) — 0 are identified with elements of BAf (2D/-qx) or with elements of
BA,+ (2D) which annihilate TĴ  hence are those p G BAf (2X) with \i(A) - 0 if ^ is
countable in X If jti G j&4,+ (<$0, 8X, <S) then /i agrees with 5X on Reg(ju). If
A C D has /x(/l) = 0 then A E Reg(ju) since A is open whereas /I U {x} £
Reg(ja). Thus, Reg(/*) consists of A C D with /i(^4) = 0 and the complements in
X of these A. Let T)M denote the ideal in 2D of ju-negligible sets, TĴ  is a maximal
ideal in Reg(ju) and 2 ° / ^ satisfies the countable chain condition. On the other
hand 2D/i\x does not satisfy the countable chain condition since D has an
uncountable partition into uncountable sets. Thus, t\x ^ rĵ  and <$£ ^ Reg(ft).

Note that if the cardinality of D is not real-valued measurable, [1], [2], then all
elements /x of BAf (%, 8X, S ) with /x({x}) = 0 must be purely finitely additive. If
the cardinality of D is real-valued measurable any countably additive diffuse
measure m on 2D gives an element of C4,+ (®0, 8X, ®) singular to Sx and Reg(ju)
is guaranteed to be strictly between <S0 and %. If ju G BA + (%0, 8X, %) is purely
finitely additive it is a countable convex combination S{Xnjun: n G N} of strongly
finitely additive {nn} C &4,+ (®). Each pn must be in 5^,+ (%, 8X, <$>). From the
definition of strong finite additivity there exist {A"m: m G N) C rĵ  which parti-
tion D. We have {An

m: m G N} C Reg(jun). Since Z) ^ Reg(ftn) it is impossible
for Reg(/tn) to be a-algebra even though ©0 C

REMARK. Karel Prikry and Richard Gardner pointed out Example 8.
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