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FINITE ^-GROUPS WITH UNIQUE MAXIMAL CLASSES

by I. D. MACDONALD

(Received 9th October 1981, revised 7th July 1982)

Is it possible for a finite p-group to have only one conjugacy class of maximal size?
This question was opened to public consideration in a paper [2] of John Meldrum
dealing with the breadth of the wreath product of finite p-groups. His Theorem 21 gives
a formula for the breadth of A wr B in terms of various constants including the breadths
of A and B, a formula which differs according to whether or not A has a unique largest
class. Hence the question.

There are certainly p-groups (dihedral and such like) with just two maximal classes,
but the general opinion seems to be that the answer to the question above is "no", i.e.
that a finite p-group with more than one element must have more than one maximal
class. In this connection, see Theorem 4 below.

Note that in a finite p-group containing the element a ^ l , distinct conjugacy classes
are represented by a, a2,...,ap~1. (For if ax = a" with l ^ a < p then a = l, because x has
p-power order.) This shows that a finite p-group with unique maximal class has p = 2,
and further suggests:

Problem. Is there a prime p and a finite p-group G which has precisely p — 1 conjugacy
classes of maximal size?

Theorem 1. If p is a prime and G is a finite p-group such that G has breadth n and has
precisely p— 1 conjugacy classes of size p" then |G|^p" +n.

Proof. Suppose that a, a2,...,ap~1 represent the p —1 classes of size p". Then G
contains elements bu b2,...,bn such that B = (bu...,bn} and G = C(a)B where C(a)
denotes the centraliser of a in G. Consider U = C(B). Since |G:C(b;)|gp" for l^i^n we
have |G:l/|^p"\

Take an arbitrary element u e U, and consider au. This element has breadth n, because
{(au)b:beB} contains precisely p" elements. So au is conjugate to one of a,a2,...,
a"'1, i.e. equals one of (p— l)p" elements. That is, u has at most (p—l)p" values;
| |

It follows that |G| = |G: U\ \U\^pn +n.
Theorem 1 gives an upper bound of roughly n2 on the nilpotency class of the group G

which features in it, whereas the next result shows that the class must exceed 2. (A
group G is said to have class 2 iff the commutator subgroup 8(G) lies in the centre C(G).)

Theorem 2. / / p is a prime and G is a non-trivial finite p-group of class 2 and breadth
n then G has at least p conjugacy classes of size p".
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Proof. Suppose by way of contradiction that G is a finite p-group, for some prime p,
with class 2 and breadth n, containing an element a£l such that every element of
breadth n is conjugate to one of {a':l^i<p}. As in Theorem 1, G = C{a)B and
B = (bu...,bny. Without loss of generality we suppose that G = (a,bl,...>bn}.

Put C; = [a, bj for 1 ̂  i ̂  n. Observe that if z e £(G) then az has breadth n and z = [a, x]
for some xeG. But (5(G)^£(G). Therefore (5(G)^<[a,x]:x£G> = <c1,...,cn>. Indeed

Next we remark that a and a1+p are elements of the same breadth. It follows that
a1+p is conjugate in G to one of {a':l%i<p}. This suffices to show that ape5(G).
Therefore a"e£(G). We infer that cf = 1 for l^i^n, and that G/((G) has exponent p.

Let g be a general element of G:

where 0^A<p, 0^<Pi<P for l ^ i ^ n , and ze£(G). The hypothesis on G is that g has
breadth n if A =/= 0 and 4> = 0, and breadth < n otherwise; here

To assist in calculation of the conjugates of g we put

where 0 ^ akij < p for 1 ̂  k, i,j ̂  «.
We have, for 1 g i g «,

= ct(c1lli... CO*1... {c\Ui... C

~ W C 1 C 2 • • • c n

where we put

Pji = a ; i i 0 1 + <*j2i<t>2 + • • • + <*jni<t>n-

If g has breadth <n then the matrix XI+ B has rank <n, where S = [/?;;]. Note that

with Ak = [atji] an n x n skew-symmetric matrix over Zp (with 0's on the diagonal).
Consider g with X=/= 0. Let 0^=0. Then A/ + B has rank <«. That is to say, if A=/=0

then —A is an eigenvalue of #, for all <D =/=(). (Observe that if p— 1 >n then we have already
reached the required contradiction.) In particular B has eigenvalue 1, for all

We now derive a contradiction in view of the following result.
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Lemma. Let p be a prime and n a positive integer. If A u A 2 , . . . , A n are nxn skew-
symmetric matrices over Z p (with O's on the diagonal), if O is an n x 1 vector and if
B = [A1<f>,A2Q>,...,An<&] then there is a non-zero value of <D for which 1 is not an
eigenvalue of B.

Proof. Fix $ 410- Let q(X) be the characteristic polynomial of B.

Because each Ak is skew-symmetric <J>Mt4> = 0 and so <J>'B = 0, i.e. B is singular. Hence
cn = 0.

By well-known properties of the characteristic equation, each c; is a homogeneous
polynomial of degree ^ i in <j>u <f>2,...,<j>n. It follows that ct+c2 + ••• + cn-i is a
polynomial of degree ^ n —1 in <f>lf <j)2,...,(j>n, with constant term 0. So by the Theorem
of Chevalley and Warning the equation

c 1 + c 2 + - - - + c n _ 1 = 0

in Zp has at least p solutions O, and in particular has a non-zero solution. With this O
we have g(l)= 1. That is to say, 1 is not an eigenvalue of B with this non-zero value of

This completes the proof of the Lemma and of Theorem 2.

Corollary. / / p is a prime and G is a finite p-group of breadth 2 then G has at least p
conjugacy classes of size p2.

Proof. Suppose otherwise. Then there is a prime p and a finite p-group G with an
element a of breadth 2, and every element of G is either conjugate to a, a2,... or ap~l or
has breadth <2. If xeG has breadth 1 then \G:C{x)\ = p. So C(x) is normal in G, G/C(x)
is abelian, and C(x) contains <5(G). But G is generated by all its elements of breadth 1. It
follows that 8(G) is central in G, and application of Theorem 2 concludes the proof.

The next result, though its proof is far from elegant, justifies its inclusion in view of
Theorem 4.

Theorem 3. If p is a prime and G is a finite p-group of breadth 3 then G has at least p
conjugacy classes of size p3.

Proof. Suppose by way of contradiction that G contains an element a such that
every element of breadth 3 is conjugate to one of {a1:1 ^i<p}. Clearly G is generated by
the (non-empty) set of those elements outside the normal closure <a>G of <a>, and such
elements have breadth ^ 2. By Satz 2 of Knoche [1] the class of G is ^ 3. In view of
Theorem 2 we take the class to be precisely 3.

Let {fti^bjiO^i, j,k<p} be a right transversal of C(a) in G. We lose no generality in
supposing that G = (a,bub2,b3}. Put c,= [a,b,] for I ^ i g 3 . Since
we have |C(G)| ^ p3. We distinguish three cases.
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Casel:|«G)| = p.
Let £(G) = <c3> and note that c§ = l. We have y3(G) = <c3>, and in particular

[c;, a] e <c3>. We choose fc1; b2 in such a way that

[C2,fl] = l. (1)

We put

(2)

for l ^ i ^ 2 .
Suppose by way of contradiction that there exists j(l:S/5S2) with coj^O. Then bj

cannot be conjugate to a\\^l<p) for otherwise

Similarly aft,- is not conjugate to ax; so both b,- and abj have breadth ^2 .
We shall need the well-known commutator identities

[x,j;z] = [x,Z][x)y]z, (3)

lxy,z] = [x,z-y[y,z]. (4)

Consider C(bj). We assert that {c2a^:0^a, /3<p} is a right transversal of C(b,) in G.
This may be seen directly or with the help of the following calculation:

V>J,d'2a'] = la»,bj}-1c;'»>. (5)

Note that c^e(^c3y. Similarly we have {c5bf:0^a,/?<p} for a right transversal of C(abj)
in G and

[afy,c2&J] = [fl,&J]»'c3-™'. (6)

Now (5) and (6) show that both [bj,x] and [ah;,x] lie in (cpc3) for all x in G. By (4)
[a,x]e<Cj,c3>, and so (c1,c2,c3y = (cj,c3y of order p2. This is a contradiction.

Case 2: |C(G)|=p2 and <a>G is non-abelian.
We put C(G) = <c2)c3>. Then [ci,d]±\, and we lose no generality in supposing

[c1,a] = c3. (7)

Note that if b2 were conjugate to a\\^X<p) then b2 = axc\ modulo ((G) with 0^/i<p,
and

a contradiction. So t2 is not conjugate to ax. Neither is ab2, by a very similar proof.
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We shall need the Jacobi-Witt identity, which in groups of class 3 takes the form

[x, y, z] [y, z, x] [z, x, y] = 1 (8)

where [x,j',z] = [[x,y],z]. If we put x = a,y = b1,z = b2 then we obtain

[cl,b2] = [bltb2,ayl. (9)

This allows us to put

(10)

with 0^6, (jxp.
Consider C{b2). We have {c\a^:0Soi,p<p} for a right transversal of C(b2) in G if

<t>±0, and

[62,c"1a^ = c2--8-'C3--*. (11)

So we have \b2,b{]e{c2,c^ if </>=/=0, and then by (9) [c1>ft2] = l, so 0 = 0. Thus (10)
becomes

[c1>fc2] = c2. (10')

Consider C(afc2). We have {c\b{:Q-^a.,/?<p} for a right transversal of C(ab2) '
n G, and

Iab2,c\b{-\ = c2^^cr. (12)

Therefore [ah2,b1]£<c2)c3>. By (4)

^ = [^1,^] modulo C(G),

and (9) gives

[c1,ft2] = [a»c1]-1=C31,

which contradicts (10').

Case 3: |C(G)| = p2 or p3 and <a>° is abe/ian.
Since C(a) does not contain bt or abf for any i, these elements cannot be conjugate to

a\l^X<p). Suppose by way of contradiction that [bl,b2]£(cl,c2,c3y. Consider C(b2).
We have {aab{:0^0L,f}<p} as a right transversal of C(b2) in G, and

[*2,fl'M]=C2-a[*?,fc2]-1. (13)

Consider C{ab2). We have {a"fc?:0ga,)?<p} as a right transversal of C(ab2) in G, and

[M,ft2]"1- (14)
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We use (13) and (14) to calculate [_a,x] for arbitrary x in G, obtaining

for certain a, /?, y, 5 such that O^a, /?, y, d<p. Clearly ft = 5. If we take x = b3 then we
obtain c3 = c2"

+r, a contradiction. This shows that [b1,b2]e(cl,c2,c3').
If C(G) = <c1,c2,c3> then we conclude that G must have class 2, a contradiction.
In the final case ((G) = (c2tc3} of order p2 and [cl5a] = l. We still have (9). Therefore

[ci,b2] = l. Similarly [c1,fe3] = l. But since (^((G) we must have [c^fc j^ l , and we
might as well suppose that

[c1)61] = c3. (15)

Consider C(bx). We have {c\a^:0^a,P<p} for a right transversal of C(ix) in G, and

Consider C{db{). We have {c1ap:0^a,P<p} for a right transversal of C(abi) in G, and

p i a nfi~t — p — a (\ *T\

As usual we can now calculate that

• =c{-5c3-i (18)

for certain a, /?, y, <5 such that O^a, ft, y, d<p. Taking x = b2 gives a final contradiction.
This completes the proof of Theorem 3.

In contrast to Theorems 2 and 3 we have:

Theorem 4. There is a group of order 27 and breadth 4 which has one and only one
conjugacy class o /2 4 elements.

Proof. Consider the group G = (^a,b1,b2} with power relations

where the cf are defined as part of the commutator relations:

a

b,

fci b2 Cl c2

Cj t-2 Cj Cj

1 r2 r2

1 Ci Cj

In this table the entry in row x column y is [x, y] = x iy ixy.
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The first part of the proof is to show that G has order 27. This may be done by one
of the machine processes. Alternatively G can be constructed as an extension of Z4 x Z4

(corresponding to (cuc2)>) by Z2 x Z2 x Z2 (corresponding to Gl(cl,c2)). The details are
left for the reader to supply.

The second thing is to establish the breadth properties of G. It is clear that the
breadth of a and of G is 4. It remains to prove that every class not containing a has size
^2 3 . This follows if every x5(G) except ad(G) splits into at least 2 classes, which is true
if |C(x)|^24 for every x of the form a^bf2 with (</)1,^2)^(0,0). Note that
C(x)^(x,cl,c2

2}, and that

cx e C(abY) n C(ab2),

c1c2eC(61)nC(at162),

This essentially completes the proof of Theorem 4.

Open questions.

1. Is there a finite p-group, for every odd prime p, which has precisely p—1 maximal
classes?
2. Is there a finite p-group, for every prime p, which has precisely p —1 classes of size p°"
and p*2 respectively, where ô  is the largest element breadth and <x2 the second largest?
3. Is it true that if G is a finite p-group with precisely p — 1 maximal classes, and if a lies
in one such class, then (̂G) = <[a, x]:xeG>?
4. Is it true that every finite p-group is isomorphic to a factor group of a finite p-group
with precisely p — 1 maximal classes?
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