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Heavy quarks

14.1 Introduction

When quarks were introduced into physics, they were considered to be light, like
the up, the down, and the strange quarks. Their bound states were light mesons,
such as the π and K mesons. In fact, light states were interpreted as the Goldstone
bosons of the SU(3) symmetry with several of the aspects of Goldstone particles
discussed in Chapter 5.

The next quark is the charm quark, which was formulated in order to suppress
flavor-changing-neutral couplings in the K mesons (Glashow et al., 1970) (GIM
henceforth). Since the charm quark is much heavier than the proton, its existence
gave rise to the possibility that additional heavy quarks may exist. The expectation
was confirmed with the discoveries of the bottom and top quarks when accelerators
of higher and higher energies began operating.

The precise definition of quark masses is a delicate topic and for this reason
we shall discuss some of the issues involved. Masses of fermions appear in the
electroweak Lagrangian after the breaking of the symmetry, i.e. when the Higgs field
acquires a vacuum expectation value. Masses for particles are measured through
their interactions with an external field; for example, the bending of an electron
beam in a magnetic field determines the ratio e/m. The interaction contains higher-
order corrections, which must be included. For leptons the masses are defined as
poles of the propagators. For quarks the situation is more complicated because they
never appear as free particles, but are always confined within hadrons. The masses
of quarks must include radiative corrections from the forces which confine them. On
the energy scale of the heavy quarks the strong coupling constant is small enough
to allow perturbative calculations. We define the running quark mass m(p2) as the
renormalized mass parameter in the quark propagator

S(p) = i

p/ − m0 − �(p) + iε
= iZ3(p)

p/ − m(p2) + iε
. (14.1)
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156 Heavy quarks

In this expression m0 is the bare mass and �(p) is the fermion self-energy cor-
rection obtained in perturbation theory, which contains infinite terms. The infinite
terms combine with m0 to define the physical mass and define the wave-function
renormalization Z3(p). The specific method for eliminating (subtracting) the in-
finity is scheme-dependent and brings into the definition of masses and coupling
constants the renormalization scale µ0, where the subtraction takes place. This
is very similar to the definition of the running coupling constant described in
Section 11.2.

So far have we defined quark masses as functions of the renormalization point
µ0 and the momentum p at which they are measured. We need an additional pre-
scription for relating them to masses of hadrons or for describing how we estimate
reactions in which heavy quarks occur. There are several methods for extracting
quark masses from physical processes. One of them uses sum rules over two-
point functions (spectral functions), which are saturated by physical data and are
matched to theoretical expressions that include running quark masses (Narison,
2001; Manohar, 2000). Another method appeals to decays of mesons containing a
single heavy quark. Here one computes the decay in a two-fold expansion: in pow-
ers of αs(p) and a non-perturbative series in powers of �QCD/m Q (Manohar and
Wise, 2000). The masses extracted by the various methods are close to each other
and contain an explicit dependence on the momentum at which they are measured.
The spectrum that emerges for the new quarks is

mc(mc) = 1.15–1.35 GeV,

mb(mb) = 4.6–4.9 GeV.

The mass of the top quark is determined in another way. The observed events
are attributed to the production of tt̄ pairs and their subsequent decays into leptons
and hadron jets. The production of the pairs is computed in the parton model using
lowest-order QCD. The value for the top quark appears in the calculation and
the value which optimizes the fit is reported as the standard-model mass, giving
(CDF/DO, 2005)

m t = 174.3 ± 3.4 GeV.

Besides the masses of the heavy quarks we need their couplings to charged and
neutral currents. They are accurately determined by the gauge nature of the theory
and experimental data. The couplings have already been discussed in Chapter 9.

There are several other properties of heavy quarks that we take up in this chapter.
First, the decays of states containing heavy quarks involve hadronic matrix elements
that simplify considerably. In addition, when they appear as intermediate states in
loop diagrams, they dominate the diagrams and produce new phenomena such as

https://doi.org/10.1017/9781009402378.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.015


14.1 Introduction 157

the mixing of states and CP asymmetries. Examples of the new phenomena are
(i) B0–B̄0 mixing dominated by box diagrams and (ii) some CP asymmetries dom-
inated by penguin diagrams. Finally, heavy quarks may have strong couplings to
induce bound states that imitate the Higgs particles. Some of these topics will be
covered in this and the following chapters.

It is still interesting to ask which quarks are considered to be heavy. A heavy
state is one with

mq � �QCD,

where according to QCD the interparticle forces become weak. For instance, the
inclusive semileptonic decays of pseudoscalar mesons containing a heavy quark
must be given to a first approximation by the spectator model. The spectator model,
improved by the momentum distribution of a b quark in a B meson, gives an accurate
description of semileptonic B-meson decays. Thus B and higher meson states are
considered to be heavy states. In fact, for hadronic states containing a heavy quark,
a systematic expansion has been developed in inverse powers of the heavy-quark
mass, which will be described in Sections 14.4 and 14.5. The top quark decays so
fast that bound states do not have enough time to form.

A crude test for the validity of the spectator model is provided by the ratio of
lifetimes of charged and neutral mesons. For mesons with beauty quarks,

τB+

τB0
= 1.08 ± 0.01,

which is to be compared with the ratio for mesons containing charmed quarks,

τD+

τD0
= 2.55 ± 0.01.

The ratio for the B mesons suggests that the spectator model is applicable. The
ratio for D mesons indicates that there are additional contributions. In fact, it was
a surprise when the experimental colleagues established this large ratio. It is now
generally believed that annihilation diagrams are important in D-meson decays.
The simple picture that mesons consist of a quark and an antiquark is too naive,
because the gluons in D mesons play a very active role in binding the quarks. We
illustrate this fact by the following argument, where we set the CKM matrix equal
to the unit matrix, which makes the Vcd element zero. The spectator decay mode
(see Section 14.2)

c → s + d̄ + u

is expected to give equal contributions to D0 and D+ decays, and its amplitude will
be denoted by Asp. In addition, for the D0 meson there is the annihilation diagram
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for the reaction

c + ū → s + d̄ + gluons,

with a W+ exchanged in the t-channel. Its amplitude will be denoted by Aan. The
decay width for D0 depends on the sum of the two amplitudes,

�D0 ∝ |Asp|2 + |Aan|2,
and similarly for D+,

�D+ ∝ |Asp|2.
The CKM-matrix elements are the same in all these diagrams, indicating that the
lifetime τD+ is larger than τD0. Precise calculations for these and other decays of
charm mesons are difficult, but there are phenomenological models that give a
consistent picture for several decay channels (Bander et al., 1980).

This chapter is long and contains various topics. To help the reader I outline
its contents. The following three sections describe decays of heavy quarks in phe-
nomenological models. Some of these models have been very popular. Sections
14.4 and 14.5 are devoted to the heavy-quark effective theory (HQET), which is a
systematic expansion of amplitudes in inverse powers of the heavy-quark mass. The
top quark is very heavy and has special properties. For this reason a special section
is devoted to it. Finally, heavy quarks play an important role in loop diagrams, with
a simple example being provided by box diagrams, which are ultraviolet-finite.
An introduction to the computational methods for box diagrams is included in
Section 14.7.

14.2 Semileptonic and inclusive B-meson decays

14.2.1 The spectator model

When a heavy quark, generically denoted by Q, decays inside a hadron, it does
so without disturbing the surrounding field produced by other quarks, antiquarks,
and gluons. In the B mesons, for instance, the b quark decays, leaving the light
antiquark u, d, or s (hereafter generically denoted as q) undisturbed (spectators).
Thus we expect the decay of the B meson to be given by the free decay of the b quark
to a zeroth-order approximation. This result must be improved for the bound-state
effects of the meson, as will be described in this section (Altarelli et al., 1982).

In the spectator model, the light quark moves in the field of the heavy quark,
and between them they share all the energy and momentum of the meson. The
spectator quark q has a definite mass m and a four-momentum pq ≡ (Eq, p). In
the rest frame of the meson the b quark moves with a virtual mass W and a
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14.2 Semileptonic and inclusive B-meson decays 159

Figure 14.1. B-meson decay.

four-momentum pb ≡ (Eb, −p), where

Eq + Eb = MB,
(14.2)

W 2 = M2
B + m2

q − 2MB

√
p2 + m2

q,

and MB is the mass of the B meson. The decay is now given by the point-like decay
of the b quark averaged over its momentum inside the meson (Fig. 14.1).

In the model of Altarelli et al. (1982), henceforth called the ACCMM model,
the averaging over the momentum of the b quark is done by introducing a Gaussian
distribution function,

φ(|p|) = 4√
π p3

F

exp
( − |p|2/p2

F

)
, (14.3)

where pF, the Fermi momentum, is a free parameter to be adjusted by comparing the
theoretical prediction with the experimental spectrum. Its value is of the order of a
few hundred MeV at most, so large-p configurations are exponentially suppressed.
With this distribution the b quark remains close to its mass shell.

To calculate the electron spectrum from the semileptonic decay b → u(c)eν̄e,
one follows three steps.

1. One calculates the differential decay width for a point quark in its rest frame. This is
exactly analogous to the muon decay and the result is

d�0

dE
= G2W 4

48π3
|Vu(c)b|2x2(3 − 2x). (14.4)

Here, E is the electron energy, Vub or Vcb are the CKM-matrix elements, and x = 2E/W .
Note that we have neglected the masses of all final-state particles, which is surely not
justified for a b → c transition, with the relevant mass dependences given in the ACCMM
article.

2. In addition, one may incorporate the QCD corrections to this tree-level decay distribution,
by multiplying d�0/dE by an overall factor that is less than unity and depends upon
x . This changes the shape of the spectrum near its endpoint. This will not be discussed
here, but is described briefly in Problem 2.
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160 Heavy quarks

3. The decaying quark is not at rest but moves with a momentum | �p| inside the meson. We
can account for this motion by writing the decay rate in a Lorentz-invariant form, which
will be valid in any frame. To this end, we write first

x = 2E

W
= 2pb · pe

W 2
= 2

W 2
(Eb Ee − ppe cos θ ). (14.5)

The first two equations are computed in the rest frame of the b quark and the third one
in a frame where the b quark moves. Here E2

b = W 2 + p2, p2
e = E2

e − m2
e , and θ is the

angle between the momentum of the b quark and the direction of the electron. The final
decay rate is obtained by averaging over p and θ using the distribution function

d�

dEe
= G2

48π3
|Vub|2

∫ pF

0
W 4x2(3 − 2x)φ(p)p2 dp d cos θ ; (14.6)

here x depends on p and the range of integration over θ is from 0 to π .

This method of averaging over the Fermi motion respects Lorentz invariance
and takes into account the phase space. It is somewhat crude, in the sense that the
energy and momentum of the meson are supposed to be distributed between the
two constituent quarks only and the distribution formula is valid only when |p| is
rather small. In spite of its crudeness, the model describes accurately the electron
spectrum observed in the experiments. It indicates that for B and heavier mesons the
spectator model is a reasonable zeroth-order approximation, requiring additional
corrections from the interaction of the heavy quark with its surrounding field. We
shall discuss some improvements in this chapter.

14.2.2 The parton model

The semileptonic B-meson decays can be presented by the diagram in Fig. 14.2,
where X can be a specific final state or the incoherent sum over various final states.
The drawing represents the square of the amplitude and looks very much like the
diagram for deep inelastic scattering. This suggests that a formally similar analysis
for the B-meson inclusive decays is possible. There are two differences, however;
the initial B meson is heavy and the current is time-like, with its variables determined
by the initial and final hadronic states. Consequently, we use the same formalism
but the structure function is now different, giving the probability of finding a b
quark in a fast-moving B meson.

In a standard analysis the square of the matrix element is given as the product of
a leptonic and a hadronic tensor,

|M|2 = LµνWµν. (14.7)
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Figure 14.2. Semileptonic B decay in the parton model.

The hadronic tensor can be written as

Wµν(q2, q · p) = 1

2π

∫
d4x eiqy〈B|[Jµ(x), Jν(0)]|B〉

= −gµνW1 + pµ pνW2 + iεµναβ pαqβW3 + · · ·, (14.8)

with the notation being analogous to that introduced for neutrino reactions. After
analyzing the kinematics of the decay, it was shown that a large region of phase
space is dominated by the singular behavior of the commutator on the light cone.
This allows us to express the decay in terms of a quark distribution function f (x),
which denotes the probability of finding a b quark in the B meson. Dominance of
the light cone demands that the analysis of the decay be carried out in an infinite-
momentum frame.

We visualize the B meson moving in an infinite-momentum frame, where the
motion of the constituents slows down relative to the time of the decay. In this frame
the b quark decays, leaving the rest of the B meson undisturbed. The decay is in
general given by

d�

dEe dq0 dq2
= G2|Vub|2

32π3mB

{
2q2W1 + (

4Eeq0 − 4E2
e − q2

)
W2

− 2q2(2Ee − q0)
W3

mB

}
. (14.9)

The hadronic tensor for point-like interaction is

W µν

0 (q2, q · p) = 1

2
Tr

[
p/uγ

µ(1 − γ5)p/bγ
ν(1 − γ5)

]
δ
[
(pb − q)2

]
, (14.10)

with pu and pb the four-momenta of the u and b quarks, respectively. The b quark
carries a fraction x of the B meson’s momentum and has the momentum distribution
function f (x). We arrive at the B-meson decay by substituting

pb = x P and pu = pb − q, (14.11)

then multiplying W µν

0 by f (x) and integrating over x ,

W µν =
∫

W µν

0 (q2, xq · p) f (x)δ(x2 p2 − 2xq · p + q2)dx . (14.12)
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162 Heavy quarks

The δ-function has two roots x± = (q0 ± |�q|)/MB. The smaller root x− corresponds
to diagrams with particles moving backwards in time and will be neglected because
it is numerically small. The structure functions are given as (Bareiss and Paschos,
1989)

W1 = 2x+ f (x+), W2 = 4MB

|�q| x2
+ f (x+), W3 = −2MB

|�q| x+ f (x+).

(14.13)
Direct substitution leads to the final result

d�

dEe dq0 dq2
= G2|Vub|2

4π3mB

x f (x)√
q2

0 − q2
(q0 − Ee)

(
2EemBx − q2

)
, (14.14)

with x = (q0 + |�q|)/MB.
It is hard to measure the triple differential decay and several integrations must be

carried out. We define the limits of the integrations. For fixed q2 we can substitute
q0 by the hadronic mass s = m2

X:

s = m2
B + q2 − 2mBq0,

(14.15)= m2
B + q2 − 2mB Ee − 2mB Eν.

We can replace Eν by Eν = q2/[2Ee(1 − cos θ )] and obtain the upper bound of s
at cos θ = −1:

m2
π ≤ s ≤ (mB − 2Ee)

(
mB − q2

2Ee

)
. (14.16)

The other two variables are bounded in the regions

0 ≤ q2 ≤ 2mB Ee, (14.17)

0 ≤ Ee ≤ mB

2
. (14.18)

The triple differential rate can be used to extract the distribution function directly,
but decay rates in several variables are not available yet. Instead one adopts an
Ansatz for the distribution function. Here we are guided by physical intuition and
the experience gained from the fragmentation functions. In the boosted frame, we
expect the heavy quark to carry most of the momentum of the meson, which means
that the distribution function is peaked at x ≈ 1. Thus a function with a peak in
the high-x region and a small width should be sufficient. A function with two
parameters a and b that satisfies the above criteria is

f (x) = N
x(1 − x)

(x − b)2 + a2
, (14.19)
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Figure 14.3. The predicted electron-energy spectrum compared with data.

with N a normalization constant. Integration over the variables and for a =
0.0118, b = 0.931 produces the electron spectrum shown in Fig. 14.3. A simi-
lar curve is obtained in the ACCMM model. The data points are from Barish et al.
(1996).

It is desirable to calculate the distribution function or determine its parameters
from basic principles. Attempts in this direction have been made in the heavy-quark
effective theory.

14.3 Exclusive semileptonic decays

Of special interest are decays in which the initial and final mesons are specific
hadrons. In this case analysis in the quark-decay picture is not applicable. Let us
concentrate on decays of a heavy B or D meson, to a meson Xi and a lepton pair:

M → Xi eν, (14.20)

where M is the initial heavy meson. The experiments measure the energy spectrum
of the electron (1/�)d�/dE , and, for comparison with the theoretical model, we
calculate the invariant amplitude for the process. It is again a product of the known
leptonic weak current Lµ and the hadronic matrix element Hµ:

M = G√
2

Lµ Hµ with Hµ = 〈Xi | jµ|M〉. (14.21)

The explicit structure of the meson current depends on the definite properties of
the final meson under Lorentz transformations. With such information it is possible
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to derive the most general form-factor decomposition of the matrix element. As an
example we present here the decay to a pseudoscalar state, i.e. Xi = P(0−):

〈P| jµ|M〉 = m2
M − m2

P

q2
qµF0(q2) +

[
(kM + kP)µ − m2

M − m2
P

q2
qµ

]
F1(q2),

(14.22)

with qµ = (kM − kP)µ and F0(0) = F1(0). F0(q2) and F1(q2) denote the longi-
tudinal and transverse form factors, respectively. The form factors are unknown
parameters, which have to be estimated theoretically and then compared with the
experiments. On the theoretical side, the most famous parametrization appears in
the BSW model (Wirbel et al., 1985) which makes the following Ansatz for the q2

dependence:

Fi (q
2) = Fi (0)

1 − q2/m2
i

. (14.23)

The pole masses mi are estimated numerically. Finally, to predict an energy spec-
trum for the lepton produced in the decay of Eq. (14.20), an estimate for the form
factors at q2 = 0 is required. In the BSW appoach it is given by the overlap of the
initial and final wave functions of the mesons. With this information, the phase-
space integrals can be performed and many differential decay rates calculated
(Wirbel et al., 1985).

14.4 Heavy-quark effective theory

The heavy-quark effective theory (HQET) is a systematic method for describing
particles containing a heavy quark (Manohar and Wise, 2000). The HQET is based
on the fact that QCD is flavor-blind and a hadron containing a heavy quark is
very unlikely to have excitations containing antiquark degrees of freedom. Thus it
suffices to work with the spinor of the heavy quark and view the light quark with its
surrounding gluonic field as a composite system. This picture is an improvement
over the spectator model and supplies a method for calculating the distribution
function of the heavy quark in the meson. For mesons made up of a heavy quark
Q and a light antiquark, the heavy quark is essentially on-shell and therefore static
when the meson is at rest. This is analogous to atoms, in which the nucleus is
stationary and the electrons move in the static field of the nucleus. We will see that,
to zeroth order, properties of the meson do not depend on the mass, spin, or flavor
of the heavy quark, just as chemical properties of the atom do not depend on the
particular isotope.

We shall demonstrate that the HQET is a limiting case of QCD where mQ → ∞
with the four-velocity of Q, vµ, held fixed. In this limit the Lagrangian simplifies
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considerably, giving a static term and calculable corrections expressed in inverse
powers of the heavy-quark mass.

The four-momentum of the heavy quark can be expressed by

pµ = mQvµ + kµ, (14.24)

with vµ its velocity normalized to unity, vµvµ = 1. The correction term kµ is small
relative to mQvµ. The heavy-quark field has an energy dependence close to that
of a free particle and a spinor hv with positive energy. Since the heavy quark is
bound, it may be influenced by the cloud of quark–antiquark pairs. These degrees
of freedom are represented in HQET by two spinors, which are eigenfunctions of
the velocity operator. To be specific,

Q(x) = e−imQv·x [hv(x) + lv(x)] , (14.25)

with

v/hv = hv, v/ lv = −lv. (14.26)

Factoring out the phase is a redefinition of the field, but the decomposition into the
components hv and lv is an approximation in terms of positive and negative velocity
fields.

The results can be re-expressed in terms of velocity projection operators

P± = 1

2
(1 ± v/ ), (14.27)

which project out the positive velocity fields,

P+Q = e−imQv·x hv, (14.28)

and the negative velocity fields,

P−Q = e−imQv·xlv. (14.29)

The overall phase varies rapidly and among the spinors we expect hv to be dominant.
The heavy quark interacts with the gluonic field and satisfies a Dirac Lagrangian

L = Q̄(x)
[
iD/ − mQ

]
Q(x), (14.30)

where Dµ = ∂µ + igs Aa
µ · λa/2, with Aa

µ(x) the field of the gluons. We are inter-
ested in approximate solutions of the Lagrangian in which the heavy-quark field
hv is slightly perturbed by the light degrees of freedom. To simplify the algebra we
mention two identities and drop the subscript v, i.e. setting hv = h and lv = l,

P+γµ P+ = P+
(
P−γµ + vµ

) = vµ P+,

P−γµ P− = P−
(
P+γµ − vµ

) = −vµ P−, (14.31)

/D Q(x) = −imQv/Q + e−imQv·x (/Dh + /Dl) , (14.32)
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with h̄l = 0 and h̄/vl = l̄/vh = 0. With the help of the identities, we rewrite L in the
following way:

L = h̄i /D h + l̄(i /D − 2mQ)l + h̄i /Dl + l̄i /Dh

= ih̄v · Dh − l̄(iv · D + 2mQ)l + h̄i /Dl + l̄i /Dh. (14.33)

In the last two terms a final simplification is possible, which allows one to replace
Dµ by its transverse component D⊥µ = Dµ − D · vvµ because h̄v/ l = l̄v/h = 0.
Several authors use this additional simplification. The Euler–Lagrange equation
for the field gives

(iv · D + 2mQ)l = i /Dh =⇒ l = 1

iv · D + 2mQ
iD/ h. (14.34)

To sum up, we have taken out the dependence on large momenta by factoring out
the term exp(−imQv · x). The remaining terms, except for the covariant derivative
acting on h, contain small momenta, as is evident from the fact that l(x) is indeed
the smaller of the two velocity spinors.

In this limit of the theory, we give rules for the propagator

i
p/ + mQ

p2 − m2
Q

= i
mQv/ + mQ + k/

2mQv · k + k2
→ i

v · k

(
1 + v/

2

)
+ O

(
k

mQ

)
(14.35)

and for the vertex describing the coupling of gluons to the heavy quark,

igh̄γµh = igvµh̄h. (14.36)

Calculations with h alone reproduce the free-quark model. The interactions are
improved by including 1/mQ terms.

In the limit of mQ → ∞ the quark field approaches the heavy-quark field,

Q(x) → e−imQv·x P+h. (14.37)

On substituting this field into the Lagrangian (14.30) or from Eq. (14.33), we obtain

L → ih̄ v · Dh = L0. (14.38)

The result shows explicitly that in the limit mQ → ∞ the interaction between the
gluonic field and the heavy quark is independent of the spin and mass of the heavy
quark. There are several consequences of this property.

As mentioned already, the meson is viewed as composed of a heavy quark and a
light system consisting of the light quark and its surrounding gluonic field. Several
properties should be independent of the spin of the heavy quark. Let us denote the
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spin of the light system by S� and the spin of the heavy quark by SQ = 1
2 . The two

systems may still have relative angular momentum �L . The total angular momentum,
�J , for the meson is a sum of spins

�S = �SQ + �S� (14.39)

plus the relative angular momentum �L ,

�J = �S + �L.

For a meson with S� = 1
2 and �L = 0

| �S| = | �S�| ± 1

2
= 0, 1

and the total angular momentum �J = 0 or 1. For Q = b the two states with L = 0
are Bd and B∗

d mesons. The HQET predicts that the two states have properties that
are independent of SQ and therefore degenerate. The difference between the masses
of the pseudoscalar and vector mesons is indeed small relative to their sum. The
same is experimentally true for the charm states D and D∗.

Even though the mass differences are small, they are not zero, suggesting that
we must formulate the effective Lagrangian more precisely by keeping the 1/mQ

terms which were ignored. This will be discussed in the next section. The same
is true for the charm states D and D∗ containing charm quarks. To first approxi-
mation the spin symmetry is realized. However, the small differences suggest that
we must formulate the effective Lagrangian more accurately by including 1/mQ

corrections.

14.5 The effective Lagrangian: 1/mQ corrections

Higher-order corrections are obtained by including the light-quark degrees of free-
dom. This complicates the algebra somewhat, but leads to correction terms that are
simple to describe. In the following we give a derivation. However, the reader who
finds it complicated may proceed directly to Eq. (14.43).

To include the light-quark field, we substitute l(x) using Eq. (14.34) together
with a similar expression for l̄(x). In this way we obtain an improved interaction,

L = L0 + L1 = h̄

(
i /D + i /D

1

iv · D + 2mQ
i /D

)
h + O

(
1

m2
Q

)

= ih̄v · Dh + 1

2mQ
h̄i /Di /Dh + O

(
1

m2
Q

)
, (14.40)
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with the first term being L0 and the rest the improvement. The new term has two
covariant derivatives next to each other and can be simplified. We use the identity

/D/D = γ µγ ν Dµ Dν

= 1

2
{γ µ, γ ν}Dµ Dν + 1

2

[
γ µ, γ ν

]
Dµ Dν

= D2 + 1

4

[
γ µ, γ ν

][
Dµ, Dν

]
(14.41)

together with

σµν = i

2

[
γ µ, γ ν

]
, igsG

a
µν

(
λa

2

)
= [

Dµ, Dν

]
, (14.42)

in order to obtain the 1/mQ term of the Lagrangian:

L1 = −h̄
D2

2mQ
h − gsh̄

σµνGµν

4mQ
h. (14.43)

A few remarks are now in order. The first term, D2/(2mQ), is the average kinetic
energy of the heavy quark. The second term couples the spin of the heavy quark to
the gluo-magnetic field surrounding the quarks. The theory succeeded in including
the interaction of the heavy quark with the surrounding degrees of freedom. It also
has the advantage that it is precise enough to allow systematic studies. It has been
successful in accounting for mass differences, decay rates etc., which we cover in
the next section.

14.5.1 Applications

Mass relations

To leading order the HQET Lagrangian does not depend on the spin or flavor of
the heavy quark. The first term in Eq. (14.43) breaks the flavor symmetry and the
second term breaks both flavor and spin symmetries. These two terms play a leading
role in determining the mass spectra of heavy hadrons. Consider the expectation
value of the Hamiltonian between mesonic states. The mass of the meson is written
as

mM = mQ + �̄ + 〈M |O1|M〉 + 〈M |O2|M〉
= mQ + �̄ − λ1

2mQ
+ aJ λ2

2mQ
, (14.44)

with aJ = 1
2
�SQ · �S�. Here O1 and O2 are the first and second operators in Eq.

(14.43), respectively, and �̄ is the contribution from the light-quark degrees of
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freedom, which is a priori unknown. According to HQET, λ1 and λ2 are univer-
sal constants. One generally determines them from the moments of the energy
spectrum of inclusive semileptonic B decays. It turns out that �̄ ≈ 0.40 GeV and
λ1 ≈ −0.2 GeV2.

O2 is a magnetic-moment-type interaction, and its matrix element for mesons
with L = 0 is proportional to SQ · S� = (J 2 − S2

Q − S2
� )/2. The expectation values

of this operator in triplet and singlet states are different, which causes a splitting
among the lowest-lying states. The singlet (J = 0) is lowered and the triplet (J = 1)
is raised, but by different amounts. These states are generally denoted by M and
M∗. It is obvious that

mB∗ − mB

mD∗ − mD
= mc

mb
,

which is satisfied to a high degree of accuracy. In fact, one can determine λ2 from
the splitting of the meson doublet.

Exclusive semileptonic decays

An important prediction of HQET describes decays governed by the quark-level
transition b → c. The initial B meson decays into an electron–neutrino pair plus the
D meson. In general the matrix element of pseudoscalar-to-pseudoscalar transition
involves two form factors that are functions of q2 (see Eq. (14.22)). The velocities
for the B and D mesons are vµ = pµ/mB and v′µ = p′µ/mD and the q2 dependence
may be replaced by

w = v · v′ = m2
B + m2

D − q2

2mBmD
. (14.45)

In the limit that the masses are very big relative to the difference mB − mD the two
states B and D are, according to HQET, very similar. In this limit v · v′ = 1 and
vµ ≈ v′µ.

To appreciate the situation, consider a configuration in which the B meson is
at rest and the four-momentum carried away by the lepton pair is maximal, q2 =
(MB − MD)2, which means that the D meson is also produced at rest. This is the
zero-recoil point where w = 1. In the limit that the heavy-meson masses are large
and close to each other, only one form factor contributes:

〈D(p′)|Vµ|B(p)〉 = f+(q2)(p + p′)µ + f−(q2)(p − p′)µ

→ 〈D(v′)|c̄γµb|B(v) ≈ √
mBmD h(v · v′)(vµ + v′

µ). (14.46)

The square root arises from the normalization of the states and h(v · v′) is a universal
function called the Isgur–Wise function (Isgur and Wise, 1989, 1990). Furthermore,
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in the limit mB, mD → ∞ with mB − mD fixed, q2 � MB, MD, the Isgur–Wise
function measures the overlap of two identical wave functions so that h(1) = 1.

Consider next the decay to a vector meson B → D∗�ν. We have discussed already
the fact that to leading order the decay is independent of the spin of the heavy quarks.
A consequence of the symmetry is the relation

〈D∗(v′, ε)|c̄γµb|B(v) = i
√

mBmD∗εµναβενvαv′βh(v · v′), (14.47)

where the Lorentz structure depends on the polarization of the D∗ meson, εµ, and the
same universal form factor h(v · v′) appears as before. However, the universality
is a feature of the zeroth-order Lagrangian and is broken by 1/mQ corrections.
For a complete analysis we must also include matrix elements of the axial current,
which bring additional form factors into play. The general case must explain decays
to several vector mesons D∗(2010), D∗(2420), . . ., whose partial decay widths are
different from each other. The differences remain after corrections over phase-space
factors have been taken into account.

This motivated an analysis of the partial decay rates in terms of h(v · v′) plus its
slope at the point v · v′ = 1. The important variable for the decays is w, with the
decay spectrum given by (Manohar and Wise, 2000)

d�

dw
(B → D∗�ν) = G2|Vcb|2

48π3
K (w)h(v · v′)2, (14.48)

where w is defined in (14.45), K (w) is a known phase-space factor, and h(v · v′)
is the Isgur–Wise function including finite-mass and other (QCD, . . . ) corrections.
The analysis determined the value of the form factor F1(w = 1) and its slope at
w = 1. A systematic analysis of several experiments gives the mean value of the
slope and the product as

h(w = 1)|Vcb| = 0.0038 ± 0.0010,

from which the value for |Vcb| has been extracted (see Section 9.3.4).
The applications of HQET to mass relations and B decays to D and D∗ are

successes of the theory. The Isgur–Wise function h(v · v′) has been studied and
calculated also in lattice gauge theories. Of direct interest is its calculation for the
physical b and c masses in the zero-recoil limit (when v · v′ = 1). Lattice calcula-
tions give h(1) = 0.929 with a small error.

B-meson decays to light mesons are much harder to calculate in HQET or on the
lattice because most of the decay occurs in a kinematic region where the π or the
ρ mesons have large momenta. They attract a good deal of attention because data
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on B-meson decays are accumulating in B-factories and are very important for the
interpretation of CP asymmetries in B-meson decays.

Inclusive semileptonic decays

For inclusive decays one must calculate the decay rate in the rest frame of the b
quark. To leading order the hadronic tensor will have the structure of Eq. (14.10),
which is proportional to the δ-function

δ[(pb − q)2] = δ
(
m2

b − 2pb · q + q2
)
.

In the limit m2
b � q2 it reduces to

δ
(
m2

b − 2mbq0
)
,

which peaks at the endpoint of the q0 range. Since there is no averaging over a
distribution function, the smoothness of the spectrum must be brought about by
higher-order corrections of HQET. Higher-order corrections including bound-state
effects must reproduce the effects and spectrum discussed in Sections 14.2.1 and
14.2.2.

14.6 The top quark and its physical properties

The top quark is very heavy and weighs as much as a heavy atom. After the discovery
of the bottom quark and the tau lepton, the top was predicted in order to preserve
the symmetry between quarks and leptons. In addition, several properties of the
low-lying states required the existence of a heavier state. Among these properties
are the mixing and CP properties of the neutral K mesons, as well as those of
neutral D and B mesons. Furthermore, in order to accommodate CP violation in
the electroweak theory, a third generation of quarks is required. Some of these
properties were mentioned earlier and they will be covered in greater detail in the
next chapters.

Besides the expectation of a heavier top quark, its mass was, for a long time,
unknown. Only with the discovery of the W and Z bosons and the precise measure-
ments of their masses and widths did it become possible to put a limit on the top
quark’s mass. A stringent limit is provided by the ρ parameter, where the correction
from the self-energy has a quadratic dependence on the quark mass. We quote the
result here in order to stress how quantum corrections become important. The ρ

parameter is defined as

ρ = M2
W

M2
Z cos2θW
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and has the value unity (see Eq. (12.19)). The loop correction from the top–bottom
quark pair changes this ratio to

ρ = 1 + G

8π2

(
m2

t + m2
b − 2m2

t m2
b

m2
t − m2

b

ln

(
m2

t

m2
b

)
+ smaller terms from

Higgs exchanges

)
. (14.49)

For very accurate values of MW, MZ, and the mixing angle, the effect from the
top quark is noticeable. Several analyses along these lines gave a range for the top
quark’s mass in the neighborhood of 175 GeV, with an error of ±25 GeV, within
which it was eventually discovered.

The dominant decay of the top quark is into a bottom quark plus a W boson.
The calculation of the decay is straightforward and we have formulated it as an
exercise. If we neglect the mass of the bottom quark, the decay width is

�(t → bW+) = GF M3
t

8
√

2π
|Vtb|2

(
1 − M4

W

M4
t

)2

, (14.50)

which grows rapidly with the top-quark mass. For Mt = 175 GeV, the decay width
is

�(t → bW+) = 1.55 GeV,

which corresponds to a top-quark lifetime of 0.4 × 10−24 s. The confining effects of
the strong interactions act on a time scale ≈1/�QCD. This means that the top quark
decays long before the interaction can act to produce hadrons. Unlike the properties
of the other five quarks, there are no bound states and no toponium spectroscopy.

The fact that the mass of the top quark is close to the value required by the
radiative corrections is a success of the electroweak theory. These and other tests of
the theory will be discussed in Section 17.2 devoted to precision tests of the theory.
Another test involves the value of Vtb, which, according to the analysis of the CKM
matrix, must be very close to unity. There is already experimental evidence that the
top decays primarily to a bottom quark, but the accuracy is still very poor to test
the unitarity prediction in Eq. (9.49).

The ultrarapid decay of the top quark implies that the production of tt̄ pairs
in hadron collisions should be calculable in perturbative QCD. Electron–positron
colliders could be used to search for the reaction

e+e− → tt̄,

but at the lower energies available in those colliders it is impossible to produce the
pairs. The decisive experiments have been carried out at the proton–antiproton
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collider of Fermilab. Some characteristic reactions and their decays are listed
below:

p + p̄ → t + t̄ + anything → eνe + µν̄µ + hadrons,

→ e±µ± bb̄ /ET,

→ µ± + jets /ET.

The dilepton events (eµ, ee, and µµ) are produced when both W bosons decay into
eν or µν. The neutrinos remain unobservable and are represented by the missing
energy /ET. Events with lepton-plus-jets channels occur when one W decay produces
e or µ and the other decays into quark–antiquark pairs.

A second challenge to experimenters is the complexity of the events in high-
energy proton–antiproton collisions. The tt̄ pair produced is accompanied by scores
of other particles. Separating the top quark is like searching for a needle in a
haystack. Two experimental groups at the Tevatron collider at Fermilab succeeded
in discovering the production of tt̄ pairs. As mentioned in the introduction to this
chapter, the production of tt̄ pairs and their subsequent decays are computed in
the parton model, using the best possible quark distribution functions, and the top
quark’s mass is determined as the value which optimizes the fit.

We close this section with a speculation. The fact that the mass of the top quark
is larger than the mass of gauge bosons and closer to the scale of the symmetry-
breaking motivates the thought that the top quark is intimately connected to the
symmetry-breaking. One suggestion is to study the decays of the top quark to the
b quark and the W boson, which is expected to be longitudinally polarized. Since
the longitudinal state of W bosons is developed through the Higgs mechanism, it
may be sensitive to new physics. In another suggestion, the top–antitop pairs attract
each other through a new force to make a condensate, which is the Higgs particle.
We return to this possibility in Chapter 17.

14.7 Loop diagrams with heavy quarks

14.7.1 Mixing of states and lifetime differences: a preview

Heavy quarks also appear as intermediate states in loop diagrams and give dominant
contributions. As a first example we study box diagrams, in which second-order
weak interactions change the flavor quantum number by two units and produce
the mixing of B0–B̄0, as well as K0–K̄0, states. When the intermediate states are
heavy quarks, they produce a short-distance interaction shown with the diagrams
in Fig. 14.4. The strategy of the calculations is to construct an effective �F = 2
Lagrangian from the free-quark model and then take the matrix element between
B0 and B̄0 (or, analogously, K0 and K̄0). We compute the diagram of Fig. 14.4 in
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Figure 14.4. Box diagrams for �B = 2 transitions. We calculate the “scattering”
term in (a). The “annihilation” term (b) is equal to the “scattering” term.

Section 14.7.2, where it is also shown that box diagrams are finite, i.e. they do not
bring in any ultraviolet divergences. Before we present the calculation, we quote
several results from Chapters 15 and 16 in order to emphasize the point that box
diagrams are indeed important. The interested reader may consult Chapters 15 and
16 for the underlying physics and then return to this section for the study of a loop
diagram.

Let us denote by�Md = MBH − MBL the difference in mass between the physical
states built up from the mesons B0

d and B̄0
d. We use the subscripts H and L to denote

heavy and light mesonic states. The structure of physical states is described in
Chapter 15. The calculation of the box diagram with the top quark in the intermediate
state gives

�Md = G2

16π2
|VtdV ∗

tb|2 M2
W E(xt)X Bd, with xt =

(
m t

mW

)2

, (14.51)

E(xt) = 3

2

x3
t

(1 − xt)3
ln xt −

[
1

4
+ 9

4

1

1 − xt
− 3

2

1

(1 − xt)2

]
xt, (14.52)

X̄Bd = 〈Bd|d̄γµ(1 − γ5)bb̄γ µ(1 − γ5)d|B̄d〉. (14.53)

The function E(xt) comes from the integration over the loop and XBd is the matrix
element of a four-quark operator between Bd and B̄d states. Four-quark operators
appear as overall factors in calculations of box diagrams. The same calculation also
determines the width difference

��d = 3G2

32π
m2

b|VtdV ∗
tb|2 XBd . (14.54)

In the decay only u and c quarks appear as final states. The decay is discussed at
the end of Section 16.4 and shown in Fig. 16.1. The dependences of the width and
�Md on the quark masses are different. Mass and width differences are related by

��d = 3

2
π

m2
b

M2
W E(xt)

�Md, (14.55)
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from which we conclude that for large m t the width difference is much smaller than
the mass difference. Furthermore, on comparing �Md with the decay width

�B = G2m5
b

192π3
|Vbc|2, (14.56)

we note that there is an enhancement of the mass difference arising from the high
mass of the heavy quark. Thus, for favorable values of the other quantities, �Md

can be comparable to �B. In fact, experiments determined

�Md = (0.49 ± 0.01) × 1012h s−1, (14.57)

which is one fifth of the width. A similar analysis of the mass difference of Bs = (bs̄)
leads to a larger mass difference because it is enhanced by the CKM element.
Experimentally there is the lower bound

�Ms > 13.1 × 1012h s−1. (14.58)

The discussion shows that loop contributions are important since they determine
physical quantities and correlate properties of various mesons.

The physics described for the neutral Bd mesons contains several general prop-
erties. The down quarks are always lighter than the upper quark of the same family.
Consequently, mesons containing down quarks decay to quarks of a lighter family,
for which the decay width is suppressed by a CKM element. On the other hand, the
mass difference of neutral mesons containing the down quarks involves the square
of the mass of the upper quark. If the mass of the upper quark in the same family
is much larger and the values of the mixing angles and the reduced matrix element
are favorable, then substantial mixing between the neutral mesons is possible. This
situation is realized for the B0

d, B0
s , and K0

L–K0
S mesons.

The opposite situation prevails for neutral mesons that contain a heavy upper
quark. For example, for D0 = (cū) mesons the decay width is proportional to m5

c

and the CKM element is practically unity. The mass difference is proportional to
m2

b or m2
s and the CKM elements are smaller than unity, so there is no substantial

enhancement. Consequently, mixing of the D0 and D̄0 states is small and it has not
been observed yet.

14.7.2 Calculation of a box diagram

We compute first the box diagrams for Fig. 14.4 with intermediate quarks
i, j = u, c, t. In addition to the diagrams with the exchange of W bosons there
are exchanges with charged Higgses, which become important when the masses of
the internal quarks are large. Charged Higgses became the longitudinal degrees of
freedom of the W bosons. For simplicity we shall assume that the external momenta
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and masses are zero. In the Feynman–’t Hooft gauge, we obtain

T a
12 =

(
g

2
√

2

)4 ∑
i, j

λiλ j

∫
d4k

(2π )4

( −i

k2 − M2
W

)2(
d̄Lγ µ k/ + mi

k2 − m2
i

γ νbL

)

×
(

d̄Lγν

k/ + m j

k2 − m2
j

γµbL

)

= − g4

64

∑
i, j

λiλ j

∫
d4k

(2π )4

1(
k2 − M2

W

)2 d̄γ µ(1 − γ5)
k/ + mi

k2 − m2
i

γ ν(1 − γ5)b

× d̄γν(1 − γ5)
k/ + m j

k2 − m2
j

γµ(1 − γ5)b, (14.59)

with λi = V ∗
idVis. Simple counting of the momenta shows that the integral is con-

vergent. The neutrino masses in the numerators do not contribute, because of the
(1 − γ5) structure. The surviving integral has the following Lorentz structure:

Iαβ(i, j) =
∫

d4k
kαkβ(

k2 − M2
W

)2(
k2 − m2

i

)(
k2 − m2

j

) = I (mi , m j , MW)gαβ.

(14.60)

The fact that the integral is proportional to the gαβ simplifies the spinor structure,
which takes the form

d̄γ µγ αγ ν(1 − γ5)b · d̄γνγαγµ(1 − γ5)b = 4d̄γ α(1 − γ5)b · d̄γα(1 − γ5)b.

(14.61)
This and other spinor identities follow from the relation

γ µγ λγ ν = gµλγ ν + gλνγ µ − gµνγ λ − iεµλνργ5γρ, (14.62)

as demonstrated in Appendix C.

14.7.3 Integrals in Euclidean space

In the calculation of the integrals we consider the momenta to be Euclidean, by
setting

k0 = ik4. (14.63)

Then the propagators do not have poles. The four-dimensional volume element
becomes

d4k = dk0 d3k = idk4 d3k. (14.64)
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A typical integral in loop calculations takes the form

I α(m) =
∫

d4k
1

(k2 − m2 + iε)α
= i(−1)α

∫
Eucl.

d4k
1

(k2 + m2 − iε)α
. (14.65)

In Euclidean space we can transform to spherical coordinates,

d4k → k4−1 dk d�4 with
∫

d�4 = 2π2

�(2)
= 2π2. (14.66)

For our specific integral

I (mi , m j , MW) = 1

4

∫
d4k

k2(
k2 − M2

W

)2(
k2 − m2

i )(k2 − m2
j

)
= 1

4
2π2

∫ ∞

0
dk

k5(
k2 + M2

W

)2(
k2 + m2

i

)(
k2 + m2

j

) . (14.67)

14.7.4 Feynman parameters

The standard way of carrying out momentum integrations in loop integrals is to
use the so-called Feynman-parameter technique in order to transform a product of
propagators depending on the integration momentum into a single factor. This is
accomplished with the following identity:

1

(a1 + iε)(a2 + iε) . . . (an + iε)
=

∫ 1

0
(n − 1)! dx1 dx2 . . . dxn

× δ(1 − x1 − x2 − · · · − xn)

[a1x1 + a2x2 + · · · + anxn + iε]n . (14.68)

Simple examples can be worked out. When the propagator (ai + iε)k , with k an
integer, appears on the left-hand side, the corresponding formula is obtained by
differentiating the above expression with respect to ai several times. Following this
rule we obtain

1

(a1 + iε)(a2 + iε)(a3 + iε)
= 6

∫
dx dy(1 − x − y)

[a1(1 − x − y) + a2x + a3 y + iε]4 . (14.69)

Returning to our integral in Eq. (14.67),

I (mi , m j , MW) = π2

2

∫ ∞

k=0
dk k5

∫ 1

0
dx

∫ 1−x

0
dy

× 1 − x − y[
k2 + M2

W(1 − x − y) + m2
i x + m2

j y
]4 . (14.70)
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Now, since the Feynman parameters in the δ-function sum up to unity, the coefficient
of the k2 term in the denominator is always unity. We can perform the dk2 integration
to obtain

I (mi , m j , MW) = π2

12M2
W

∫ 1

0
dx

∫ 1−x

0
dy

1 − x − y(
1 − x − y + x2

i x + x2
j y

)
= π2

12M2
W

1

2

1

xi − x j

[
1

1 − xi
− 1

1 − x j
+ x2

i

(1 − xi )2 ln xi

− x2
j(

1 − x2
j

)2 ln x j

]
, (14.71)

with xi = m2
i /M2

W and x j = m2
j/M2

W.This diagram gives the dominant contribution
for cases in which xi and x j � 1. In the other cases with the exchange of a heavy
scalar, additional diagrams must be included; the complete answer is given in
Chapter 15.

This first example shows that the calculation of loop diagrams involves four
steps.

1. A simplification of the spin structure, which reduces the calculation to a few four-
dimensional integrals.

2. The reduction of the denominators to a single factor with the help of Feynman parameters.
3. The completion of the four-dimensional integrals. This is carried through in Euclidean

space and holds in the Minkowskian region by analytic continuation. The case of the
box diagram is relatively simple, because the integral is convergent. In the general case,
the integrals are divergent, which demanded the development of special methods for
subtracting the infinities, which respect the gauge invariance of the theory.

4. Finally, there is an integration over the Feynman parameters, which requires special
attention at the endpoints, where infrared singularities may occur.

Problems for Chapter 14

1. Draw the graph of d�0/dx , where x = 2E/W , in the quark rest frame. Multiply by the
QCD correction factor

G(x) = 1

x
2 ln(1 − x)[2 + ln(1 − x)]

and show how the distribution changes.
2. Use the identities given in the text to prove Eq. (14.33). Then show that it is possible to

replace Dµ by D⊥µ = Dµ − D · vvµ.
3. For the semileptonic decay B → Deν̄ the dominant form factor f+(q2) is related to the

Isgur–Wise function as in Eq. (14.46).
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(i) Show that f+(q2) is related to h(v · v′) as follows:

f+(q2) = h(v · v′)
2
√

mBmD

mB + mD
.

(ii) Calculate the decay spectrum d�/dW in the heavy-quark limit.
(Hint: you may begin with d�/dq2 and then take the heavy-quark limit.)

4. Use the Feynman rules from Chapter 8 to calculate the decay width for the top quark
given in Eq. (14.50).

5. Prove the following useful identities that involve Feynman parameters:

(i)
1

(a1 + iε)(a2 + iε)
=

∫ 1

0

dx

[a1x + a2(1 − x) + iε]2
;

(ii)
1

(a1 + iε)3(a1 + iε)
=

∫ 1

0

3x2 dx

[ax + b(1 − x) + iε]4
.
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