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Abstract An important inequality due to Wolff on plate decompositions of cone multipliers is known
to have consequences for sharp Lp results on cone multipliers, local smoothing for the wave equation,
convolutions with radial kernels, Bergman projections in tubes over cones, averages over finite-type
curves in R

3 and associated maximal functions. We observe that the range of p in Wolff’s inequality,
for the conic and the spherical versions, can be improved by using bilinear restriction results. We also
use this inequality to give some improved estimates on square functions associated to decompositions of
cone multipliers in low dimensions. This gives a new L4 bound for the cone multiplier operator in R

3.
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1. Introduction

Let Γ = {(τ, ξ) ∈ R × Rd : τ = |ξ|} denote the forward light cone in Rd+1, d � 2. For
fixed c > 0 and small δ > 0, we consider δ-neighbourhoods of the truncated cone

Γδ(c) = {(τ, ξ) ∈ Rd+1 : 1 � τ � 2 and |τ − |ξ|| � cδ},

with the usual decomposition into plates subordinated to a
√

δ-separated sequence in the
sphere {ωk} ⊂ Sd−1:

Π
(δ)
k =

{
(τ, ξ) ∈ Γδ(c)

∣∣∣∣
∣∣∣∣ ξ

|ξ| − ωk

∣∣∣∣ � c′√δ

}
, dist(ωk, ωk′) �

√
δ if k �= k′. (1.1)

Let

α(p) := d

(
1
2

− 1
p

)
− 1

2
, (1.2)
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Table 1. Range of exponents for the validity of (1.3) for light cones

dimension [11,22] improvements conjecture

d = 2 p > 74 p > p2 := 63 + 1
3 p > 6

d = 3 p > 18 p > p3 := 15 p > 4

d = 4 p > 8.4 p > p4 := 7.28 p > 10
3

d � 5 p > 2 +
8

d − 3
p > pd := 2 +

8
d − 3

(
1 − 1

d + 1

)
p > 2 +

4
d − 1

the standard Bochner–Riesz critical index in d dimensions. Then Wolff’s inequality is the
assertion that, for all ε > 0,

∥∥∥∥∑
k

fk

∥∥∥∥
p

� Cεδ
−α(p)−ε

( ∑
k

‖fk‖p
p

)1/p

(1.3)

provided that
supp f̂k ⊂ Π

(δ)
k . (1.4)

The power α(p) is optimal for each p (except perhaps for ε > 0), and the inequality is
conjectured to hold for all p > 2+4/(d−1). In his fundamental work [22], Wolff developed
a method to prove such inequalities for large values of p, and obtained a positive answer
for d = 2 and p > 74. Subsequently, the method has been extended by �Laba and Wolff [11]
to higher dimensions. It is shown in [11] that (1.3) holds for p > 2 + 32/(3d − 7) when
d � 3 and p > 2 + 8/(d − 3) when d � 4. In this paper we modify the weakest part of
their proof to obtain a better range of exponents in all dimensions (see Table 1). The
improvement relies on certain square function bounds which follow from Wolff’s bilinear
Fourier extension theorem [23].

Theorem 1.1. Let d � 2 and let pd be as in Table 1. Then, under the assumption
(1.4), the inequality (1.3) holds for all ε > 0 and all p � pd.

Remark 1.2. Various further and more technical improvements on the range of Theo-
rem 1.1 (and by implication on the results of Corollaries 1.5 and 1.6) have been obtained
by the authors, and also by Wilhelm Schlag. After this paper was submitted for publi-
cation these improvements were combined and included in a joint paper [9].

A similar result can be proved for decompositions of spheres in Rd. We now let

Uδ(c) = {ξ ∈ Rd : ||ξ| − 1| � cδ},

and consider the decomposition into plates subordinated to a
√

δ-separated sequence in
the sphere {ωk} ⊂ Sd−1,

B
(δ)
k = {ξ ∈ Uδ(c) : |ξ/|ξ| − ωk| � c′√δ}.
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Theorem 1.3. The analogue of Wolff’s inequality for the sphere,∥∥∥∥∑
k

fk

∥∥∥∥
p

� Cεδ
−α(p)−ε

( ∑
k

‖fk‖p
p

)1/p

, supp f̂k ⊂ B
(δ)
k , (1.5)

holds for p � 2 + 8/(d − 1) − 4/((d − 1)d) and all ε > 0.

Again (1.5) is conjectured to hold for the optimal range p > 2 + 4/(d − 1). It has been
known to hold for p > 2 + 8/(d − 1); this follows from a modification of the argument
in [11] (see also [10]). Note that in two dimensions the range is improved from the
previous value of p > 10 to p > 8.

Remark 1.4. Theorem 1.3 may be extended to convex surfaces with non-vanishing
Gaussian curvature and, similarly, Theorem 1.1 may be extended to cones with d − 1
positive principal curvatures. This can be achieved by using scaling and induction on
scales arguments such as in [16, § 2] (see also [10] for related results).

We proceed to list some of the known implications of Theorem 1.1.

Corollary 1.5. Let d � 2 and pd be as in Table 1. Then the following hold.

(i) For all p > pd, α > (d − 1)/2 − d/p, we have( ∫ 2

1
‖eit

√
−∆f‖p

Lp(Rd) dt

)1/p

� ‖f‖Lp
α(Rd). (1.6)

(ii) For all p ∈ (pd,∞), α > (d − 1)/2 − d/p the Fourier multiplier

mα(τ, ξ) = (1 − |ξ|2/τ2)α
+ (1.7)

defines a bounded operator in Lp(Rd+1).

(iii) Let K ∈ S ′(Rd) be radial, let ϕ ∈ C∞
0 (Rd \ {0}) so that ϕ is radial and not

identically zero and let ε > 0. Let Kt = F−1[ϕK̂(t·)]. Then, for all Schwartz
functions f and 1 < r < pd/(pd − 1),

‖K ∗ f‖r � Cε sup
t>0

( ∫
|Kt(x)|r(1 + |x|)ε dx

)1/r

‖f‖r.

(iv) Let χ ∈ C∞
0 (R) and let s �→ γ(s) ∈ R3 be a smooth curve satisfying

n∑
j=1

|〈θ, γ(j)(s)〉| �= 0

for every unit vector θ and every s ∈ suppχ. For t > 0 define the convolution
operator At by

Atf(x) =
∫

f(x − tγ(s))χ(s) ds.

Suppose that max{n, 32 + 2
3} < p < ∞. Then At maps Lp(R3) into the Lp-

Sobolev space Lp
1/p(R

3). Moreover, the maximal function Mf = supt |Atf | defines
a bounded operator on Lp(R3).
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Parts (i)–(iii) are standard consequences of Theorem 1.1; see [22] for (i) and the local
version of (ii). The global version follows by results on dyadic decompositions of multi-
pliers and Lp Calderón–Zygmund theory (see [6, 17]). The proof of [15, Theorem 1.6]
together with these arguments can be used to deduce (iii) from Theorem 1.1. For (iv)
see [16].

In addition to the connection to cone multipliers, a major motivation for this paper
was the relevance of inequalities for plate decompositions for the boundedness properties
of the Bergman projection in tube domains over full light cones (see [2,3]). Denote by
∆(Y ) = y2

0 − |y′|2 the Lorentz form and consider the forward light cone on which ∆ is
positive:

Λd+1 = {Y = (y0, y
′) ∈ R × Rd : y2

0 − |y′|2 > 0, y0 > 0}.

Let T d+1 ⊂ Cd+1 be the tube domain over Λd+1, i.e.

T d+1 = Rd+1 + iΛd+1.

Let wγ(Y ) = ∆(Y )γ and consider the weighted space Lp(T d+1, wγ) with norm

‖F‖p,γ =
( ∫∫

T d+1
|F (X + iY )|p∆γ(Y ) dY dX

)1/p

.

Let Pγ be the orthogonal projection mapping the weighted space L2(T d+1, wγ) to its
subspace Ap

γ consisting of the holomorphic functions. Only the case when γ > −1 is
interesting since Ap

γ = {0} for γ � −1. We are interested in the Lp boundedness prop-
erties of Pγ . For γ > −1 the operator Pγ can only be bounded on Lp(T d+1, wγ) in the
range

1 +
d − 1

2(γ + d + 1)
< p < 1 +

2(γ + d + 1)
d − 1

(1.8)

(see, for example, [1, Theorem 4.3]), and (1.8) is indeed the conjectured range for Lp

boundedness (except for d = 2 and γ ∈ (−1,− 1
2 ), in which case there are additional

counter-examples for p � 8 + 4γ [2]).

Corollary 1.6. Let d � 2 and pd as in Table 1. Then, for all

γ � d − 1
2

(
pd − 2(d + 1)

d − 1

)
,

the Bergman projection Pγ is a bounded operator in Lp(T d+1, wγ) in the sharp
range (1.8).

In addition to Corollary 1.6, both Theorem 1.1 and Theorem 4.4 have further impli-
cations for the range of boundedness of the Bergman projector Pγ in natural weighted
mixed norm spaces. For the derivation of Corollary 1.6 and further discussion of mixed
norm estimates, we refer the reader to [2] (cf. in particular Proposition 5.5 and Corol-
laries 5.12 and 5.17 therein).
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Our approach to Theorem 1.1 is based on bilinear methods, for which we consider a
closely related inequality:

∥∥∥∥∑
k

fk

∥∥∥∥
p

� Cαδ−α

( ∑
k

‖fk‖2
p

)1/2

. (1.9)

One can conjecture the validity of (1.9) for all α > 0 and all 2 < p < 2 + 4/(d − 1),
but for the moment no positive result for any such p seems to be known. The limiting
point p = 2(d+1)/(d−1) should be the hardest case, since by interpolation and Hölder’s
inequality it implies both (1.9) and (1.3) in all the conjectured ranges. This kind of
inequality arises naturally in the study of weighted mixed norm inequalities for the
Bergman projection operator Pγ [2].

We shall deduce Theorem 1.1 by using a stronger version of (1.9) for p = 2(d+3)/(d+1),
but with a power of 1/δ which is (probably) not optimal. Namely, under the assumption
(1.4) we have

∥∥∥∥∑
k

fk

∥∥∥∥
2(d+3)/(d+1)

� Cεδ
−((d−1)/4(d+3))−ε

∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥

2(d+3)/(d+1)
(1.10)

for all ε > 0.
We prove this inequality in § 2 using the bilinear approach of Tao and Vargas [20, § 5]

and the optimal bilinear cone extension inequality of Wolff [23] (see Proposition 2.3). By
Minkowski’s inequality and interpolation, (1.10) trivially implies non-optimal estimates
for the inequality (1.9) for all p ∈ (2,∞) (see Corollary 2.4). In § 3 we use these to refine
a part of Wolff’s proof of (1.3) and obtain the new sharp estimates for large p given in
Table 1. In § 4 we improve on some of the square function results in low dimensions; these
yield, in particular, the following estimate for the cone multiplier in R2+1.

Theorem 1.7. Suppose that

α >
5
44

(
p2 − 4
p2 − 41

11

)
.

Then the cone Fourier multiplier mα defines a bounded operator on L4(R3) and the local
smoothing result (1.6) holds in two dimensions.

This is a small improvement over the known range α > 5
44 , which follows from a

combination of [20] and [23].

Notation

We shall use the notation A � B if there is a constant (which may depend on d) so
that A � CB. For families (Aδ, Bδ), δ � 1, we use Aδ � Bδ if for every ε ∈ (0, 1) there
is a constant Cε such that Aδ � Cεδ

−εBδ for δ � 1.
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2. The bilinear estimate

Following the approach by Tao and Vargas, we first establish an equivalence between
linear and bilinear versions of (1.10), which is a higher-dimensional analogue of [20,
Lemma 5.2].

Lemma 2.1. Let d � 2, and suppose that, for some p ∈ [2,∞) and α > max{0, (d −
1)(1/4 − 1/p)},∥∥∥∥

( ∑
ωk∈Ω

fk

)( ∑
ωk′ ∈Ω′

fk′

)∥∥∥∥
p/2

� Cδ−2α

∥∥∥∥
( ∑

ωk∈Ω

|fk|2
)1/2∥∥∥∥

p

∥∥∥∥
( ∑

ωk′ ∈Ω′

|fk′ |2
)1/2∥∥∥∥

p

(2.1)

holds for all fk ∈ S(Rd+1) with supp f̂k ⊂ Π
(δ)
k , all pairs of 1-separated subsets

Ω, Ω′ ⊂ Sd−1 and all δ � 1. Then we also have∥∥∥∥∑
k

fk

∥∥∥∥
p

� C ′δ−α

∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥

p

, supp f̂k ⊂ Π
(δ)
k . (2.2)

We remark that the restriction on α for p > 4 is never severe. To see this we note that
the condition (d−1)(1/4−1/p) � α(p)/2 holds if and only if d � 2 and that (2.2) cannot
hold with α < α(p)/2; this can be proved using Knapp examples.

Proof of Lemma 2.1. Let Φ : Q ≡ [0, 1]d−1 → Sd−1 be a smooth parametrization
of (a compact subset of) the sphere and let D denote the set of all dyadic intervals
I ⊂ Q with |I| � δ(d−1)/2. As in [21, p. 971], we may consider a Whitney decomposition
Q × Q =

⊎
I∼J I × J , where I ∼ J means that

(i) I, J ∈ D and |I| = |J |,

(ii) if |I| > δ(d−1)/2, then I and J are not adjacent but their parents are,

(iii) if |I| = δ(d−1)/2, then I and J have adjacent or equal parents.

For simplicity, we assume (by splitting the sphere into finitely many pieces) that all
ωk ∈ Φ(Q) and let yk = Φ−1(ωk) ∈ Q. We also denote Dj = {I ∈ D : |I| = 2−j(d−1)}.
Then ( ∑

k

fk

)2

=
∑

yk,yk′ ∈Q

fkfk′ =
∑

√
δ�2−j�1

∑
I,J∈Dj ,

I∼J

( ∑
yk∈I

fk

)( ∑
yk′ ∈J

fk′

)
.

To establish (2.2) we take Lp/2-norms in the above expression and use Minkowski’s
inequality in j, so that we reduce the problem to showing that, for each j,∥∥∥∥ ∑

I,J∈Dj ,
I∼J

( ∑
yk∈I

fk

)( ∑
yk′ ∈J

fk′

)∥∥∥∥
p/2

� (22jδ)−2α max{1, 2j(d−1)(1−4/p)}
∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥2

p

. (2.3)
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Inequality (2.3) is trivial when 2−j ≈
√

δ, since by assumption the number of yks
in each I is approximately constant. We consider the general case

√
δ < 2−j � 1. By

construction, we must have ∑
I∈Dj

∑
J∼I

χI+J � 1. (2.4)

Indeed, if cI denotes the centre of I, then

I + J ⊂ (cI + Bc2−j ) + (cJ + Bc2−j ) ⊂ 2cI + Bc′2−j .

Since for each I there are at most O(1) cubes J with J ∼ I, and since the centres cI are
2−j separated, (2.4) follows easily.

From (2.4) it follows that the functions FI,J = (
∑

yk∈I fk)(
∑

yk′ ∈J fk′) have pairwise
(almost) disjoint spectra when I ∼ J ∈ Dj . We may conclude by orthogonality and
standard interpolation arguments that∥∥∥∥ ∑

I∼J∈Dj

FI,J

∥∥∥∥
p/2

� max{1, 2j(d−1)(1−4/p)}
( ∑

I∼J∈Dj

‖FI,J‖p/2
p/2

)2/p

. (2.5)

(The case p/2 = 2 follows by orthogonality and the cases p/2 = 1 and p/2 = ∞ are trivial;
see, for example, [20, Lemma 7.1].) Next, we wish to use the bilinear assumption (2.1)
to estimate ‖FI,J‖p/2. This can only be used directly when 2j ≈ 1, since dist(I, J) ∼ 1.
For other js we must use Lorentz transformations to rescale the problem. To do this, let
{η1, . . . , ηd} be an orthonormal basis of Rd with η1 being the centre of Φ(I). Then we
define L ∈ SO(1, d) acting on a basis of Rd+1 by

L(1, η1) = (1, η1), L(−1, η1) =
σ

δ
(−1, η1) and L(0, η�) =

√
σ

δ
(0, η�), � = 2, . . . , d,

where we choose σ = 22jδ (so that δ < σ < 1). The spectrum of the function fk ◦ L is
contained in (perhaps a multiple of) the plates Π

(σ)
k corresponding to the

√
σ-separated

centres {L(1, ωk)}. Moreover, by the choice of σ, the plates corresponding to yk ∈ I and
yk′ ∈ J are c-separated, and therefore after a change of variables we can apply (2.1) at
scale σ to obtain

‖FI,J‖p/2 =
∥∥∥∥
( ∑

yk∈I

fk

)( ∑
yk′ ∈J

fk′

)∥∥∥∥
p/2

� (22jδ)−2α

∥∥∥∥
( ∑

yk∈I

|fk|2
)1/2∥∥∥∥

p

∥∥∥∥
( ∑

yk′ ∈J

|fk′ |2
)1/2∥∥∥∥

p

,

and then also( ∑
I∼J∈Dj

‖FI,J‖p/2
p/2

)2/p

� (22jδ)−2α

[ ∑
I∼J∈Dj

∥∥∥∥
( ∑

yk∈I

|fk|2
)1/2∥∥∥∥p/2

p

∥∥∥∥
( ∑

yk′ ∈J

|fk′ |2
)1/2∥∥∥∥p/2

p

]2/p
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� (22jδ)−2α

[ ∫ ( ∑
I

∑
yk∈I

|fk|2
)p/2]2/p

� (22jδ)−2α

∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥2

p

,

where in the second inequality we have used 2ab � a2 + b2 followed by the imbedding
�1 ↪→ �p/2. Combining this with (2.5), we obtain

∥∥∥∥ ∑
I∼J∈Dj

FI,J

∥∥∥∥
p/2

� (22jδ)−2α max{1, 2j(d−1)(1−4/p)}
∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥2

p

. (2.6)

This proves (2.3). By our assumption on α we may sum in j and the lemma follows. �

We turn to the proof of (a generalization of) the square function estimate (1.10). We
shall use the following statement of Wolff’s Fourier extension theorem [23, p. 680].

Wolff’s bilinear estimate

Let p � (d + 3)/(d + 1), ε > 0 and let E, E′ be 1-separated subsets of Γ1/N . Then, for
all smooth f and g supported in E and E′, and all N -cubes Q, we have

‖f̂ ĝ‖Lp(Q) � CεN
−1+ε‖f‖2‖g‖2. (2.7)

Denote by Q ≡ Q(δ−1/2) a tiling of Rd+1 with cubes Q of disjoint interior and side
length δ−1/2, with centres cQ in δ−1/2Zd+1.

Proposition 2.2. Let d � 2 and suppose that supp f̂k ⊂ Π
(δ)
k , supp ĝk ⊂ Π

(δ)
k and let

Ω, Ω′ ⊂ Sd−1 be 1-separated subsets. Suppose 2(d + 3)/(d + 1) � q � p � ∞ and let

µ(p) =
d

4
− d + 1

2p
. (2.8)

Then, for all ε > 0,

( ∑
Q∈Q(δ−1/2)

∥∥∥∥
( ∑

ωk∈Ω

fk

)( ∑
ωk′ ∈Ω′

gk′

)∥∥∥∥p/2

Lq/2(Q)

)2/p

� δ−2µ(p)−ε

∥∥∥∥
( ∑

ωk∈Ω

|fk|2
)1/2∥∥∥∥

p

∥∥∥∥
( ∑

ωk′ ∈Ω′

|gk′ |2
)1/2∥∥∥∥

p

. (2.9)

Proof. Let ψ ∈ S(Rd+1) be such that supp ψ̂ ⊂ B1/10 and ψ(x) > 1 if |xi| � 2,
i = 1, . . . , d+1; then

∑
n∈Zd+1 ψ(· + n)2 ≈ 1. Let ψQ = ψ(

√
δ(·−cQ)), so that

∑
Q ψ2

Q ≈ 1.
We write

FQ =
( ∑

ωk∈Ω

fk

)
ψQ and GQ =

( ∑
ωk′ ∈Ω′

gk′

)
ψQ,
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so that the supports of F̂Q and ĜQ are 1-separated sets in Γ√
δ. Thus, we can use Wolff’s

estimate (2.7) with N = δ−1/2 to obtain∥∥∥∥
( ∑

ωk∈Ω

fk

)( ∑
ωk′ ∈Ω′

gk′

)∥∥∥∥
Lq/2(Q)

�
∥∥FQGQ

∥∥
Lq/2(Q) � δ1/2

∥∥F̂Q
∥∥

2

∥∥ĜQ
∥∥

2. (2.10)

Now, by almost orthogonality we can write

‖F̂Q‖2
2 ≈

∑
k

‖f̂k ∗ ψ̂Q‖2
2 =

∥∥∥∥
( ∑

k

|fk|2
)1/2

ψQ

∥∥∥∥2

2
,

and similarly for GQ. We write

SΩ =
( ∑

ωk∈Ω

|fk|2
)1/2

, S̃Ω′ =
( ∑

ωk∈Ω′

|gk|2
)1/2

,

raise (2.10) to the power p/2 and sum in Q. Thus,

( ∑
Q

∥∥∥∥
( ∑

ωk∈Ω

fk

)( ∑
ωk′ ∈Ω′

gk′

)∥∥∥∥p/2

Lq/2(Q)

)2/p

�
√

δ

( ∑
Q

‖SΩψQ‖p/2
2 ‖S̃Ω′ψQ‖p/2

2

)2/p

and by the Cauchy–Schwarz and Hölder inequalities the right-hand side is estimated as

√
δ

( ∑
Q

‖SΩψQ‖p/2
2 ‖S̃Ω′ψQ‖p/2

2

)2/p

�
√

δ

( ∑
Q

‖SΩψQ‖p
2

)1/p( ∑
Q

‖S̃Ω′ψQ‖p
2

)1/p

�
√

δ

( ∑
Q

‖SΩψQ‖p
p|Q|−1+p/2

)1/p( ∑
Q

‖S̃Ω′ψQ‖p
p|Q|−1+p/2

)1/p

� δ1/2−(d+1)(1/2−1/p)‖SΩ‖p‖S̃Ω′‖p,

which yields the assertion. �

We combine Proposition 2.2 for q = p and Lemma 2.1 to obtain the following.

Proposition 2.3. Let d � 2 and let µ(p) be as in (2.8) and suppose that p �
2(d + 3)/(d + 1).

Then, for all ε > 0,

∥∥∥∥∑
k

fk

∥∥∥∥
p

� Cεδ
−µ(p)−ε

∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥

p

if supp f̂k ⊂ Π
(δ)
k . (2.11)
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We may apply Minkowski’s inequality on the right-hand side of (2.11) and obtain (1.9)
for the limiting case p = 2(d + 3)/(d + 1) and α > µ(p) = d/4 − (d + 1)/2p.

It turns out this is all that is needed to obtain the claimed improvements in Theo-
rem 1.1. The resulting inequality can also be interpolated with the trivial estimates for
L2 and L∞ to give the following.

Corollary 2.4. The inequality (1.9) holds for all

α >
d − 1

4

(
1
2

− 1
p

)
when 2 � p � 2(d + 3)

d + 1

and for all

α >
d − 1

4

(
1 − 2(d + 2)

p(d + 1)

)
when

2(d + 3)
d + 1

� p � ∞.

3. An improvement of Wolff’s estimate

We turn to Theorem 1.1. The proof in [11,22] for inequality (1.3) is based on a subtle
localization procedure, induction on scales and certain combinatorial arguments. Here
we discuss only the modifications leading to the claimed improvements based on Propo-
sition 2.3. A more self-contained exposition with further improvements can be found
in [9].

For simplicity, when δ is fixed (and small) we use the notation A � B to indicate the
inequality A � Cεδ

−εB for all ε > 0. Recall that the number of plates Π
(δ)
k covering Γδ

is approximately δ−(d−1)/2. Also, throughout this section we fix q(d) = 2(d + 3)/(d + 1).
Due to various reductions (see [11, § 3]), it is sufficient to show that, for all fk with

supp f̂k ⊂ Π
(δ)
k and ‖fk‖∞ � 1, and for all λ > 0 we have∣∣∣∣

{∣∣∣∣ ∑
k

fk

∣∣∣∣ > λ

}∣∣∣∣ � λ−pδd−(d−1)p/2‖f‖2
2, (3.1)

where f =
∑

k fk. In [11,22] it is observed that, by Chebyshev’s inequality, this property
trivially holds for small enough λ; namely, for all λ � δ−(d−1)/2+1/(p−2). We use (1.9) to
enlarge this range of λ.

Lemma 3.1. Let q = q(d) = 2(d + 3)/(d + 1). Then inequality (3.1) holds for all

λ � δ−((d−1)/2)+q/4(p−q). (3.2)

Proof. Let β = (d − 1)/4(d + 3). By Chebyshev’s inequality and (1.9), we have

|{|f | > λ}| � λ−q‖f‖q
q � δ−qβλ−q

( ∑
k

‖fk‖2
q

)q/2

and estimate ( ∑
k

‖fk‖2
q

)q/2

� δ−((d−1)/2)((q/2)/(q/2)′)
∑

k

‖fk‖q
q

� δ−((d−1)/2)(q/2−1)
∑

k

‖fk‖2
2 sup

k
‖fk‖q−2

∞ .
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Since by assumption ‖fk‖∞ � 1 and by almost orthogonality
∑

k ‖fk‖2
2 ≈ ‖f‖2

2, it
suffices to show that in the desired range of λ we have δ−qβ−((d−1)/2)(q/2−1)λ−q �
δ−((d−1)p/2)−dλ−p, which is equivalent to (3.2). �

At this point one can proceed exactly as in the proof of [11, Proposition 3.2] (or [22,
p. 1277], when d = 2). The desired gain comes from using λ � δ−((d−1)/2)+q(d)/4(p−q(d))

(rather than λ � δ−((d−1)/2)+1/(p−2)) in [11, Step (54)] (or [22, (68)]).
For completeness, we shall briefly sketch this procedure here, referring always to the

notation in [11]. Localizing with
√

N -cubes ∆ as in [11, Lemma 6.1], one can find a
collection of functions {f∆} with spectrum in Γ√

δ and a number

λ∗ ∈ (λδ(d−1)/4+ε, cδ−(d−1)/4) (3.3)

so that

|{|f | > λ}| �
∑
∆

|{|f∆| > λ∗}|

and

card(P(f∆)) � λ2
∗λ

−2δ−(3d−1)/4. (3.4)

Here P(f∆) refers to the set of plates in the wave-packet decomposition of f∆. When the
cardinality of this set is ‘small’, a further localization argument and induction on scales
allows us to conclude the theorem (see [11, Lemmas 6.2 and 6.3]).

In [11,22], the size of card(P(f∆)) which ensures the validity of these arguments is
controlled in three different ways, each depending on a different combinatorial estimate:

card(P(f∆)) � cεδ
ελ2

∗ (3.5)

or

card(P(f∆)) � cεδ
(3d−3)/8+ελ4

∗ (3.6)

or, in three dimensions (i.e. d = 2) only,

card(P(f∆)) � cεδ
(11/8)+ελ9

∗. (3.7)

The last estimate is by far the most difficult (see [11, Lemmas 5.2 and 5.3] and [22,
Lemma 3.2]).

Given the lower bound for λ∗ in (3.3) and

λ � δ−((d−1)/2)+q/4(p−q) (3.8)

and given (3.4), it remains to verify the estimates (3.5) in the claimed range p > pd,
d � 5, (3.6) for p > pd, d = 3, 4 and (3.7) for p > p2.

This is straightforward. By (3.4) and (3.8) we have

card(P(f∆)) � δ−ελ2
∗δ

d−1−(q(d)/2(p−q(d)))δ−(3d−1)/4,
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which, in the case when d � 4, gives the assertion (3.5) if

d − 1 − q(d)
2(p − q(d))

− 3d − 1
4

> 0

or, after a short computation,

p > q

(
1 +

2
d − 3

)
= 2 +

8
d − 3

d

d + 1
.

This is the asserted range if d � 5.
Next we examine the validity of the inequality (3.6) under condition (3.8). We now

have

card(P(f∆)) � Cε
λ4

∗δ
−((3d−1)/4)−ε

λ2
∗λ

2 � λ4
∗δ

−((3d−1)/4)−ε

λ4δ((d−1)/2)+2ε
� δ−((5d−3)/4)−3ε

δ−2(d−1)+(q(d)/p−q(d)) λ
4
∗.

This quantity is � δεδ(3d−3)/8λ4
∗ if and only if

5d − 3
4

− 2(d − 1) +
q(d)

p − q(d)
+ 4ε < −3d − 3

8
,

which yields the range p > q(d)(1 + 8/(3d − 7)). Notice that this inequality amounts to
p > 7.28 if d = 4 and p > 15 if d = 3, which is the assertion in those cases.

Finally, we consider the case d = 2 when q(2) = 10
3 . By (3.4) we need to have

λ2
∗λ

−2δ−5/4−ε � cεδ
11/8λ9

∗,

i.e. λ−2δ−21/8−ε � cελ
7
∗ provided that λ∗ > λδ1/4+ε. Thus, taking the smallest possi-

ble λ∗ yields δ−35/8−10ε � λ9 and this has to hold for all λ satisfying (3.8), i.e. λ �
δ−1/2+q(2)/4(p−q(2)). Taking the minimal λ, this is achieved if 35

8 −10ε < 9
2 −9q/(4p−4q)

with q = q(2) = 10
3 . Solving in p and letting ε → 0 yields the range p > 19q(2) =

63 + 1
3 . �

Sketch of proof of Theorem 1.3. The proof is similar to the proof of Theorem 1.1.
Instead of (1.10) we use a square function inequality for the sphere∥∥∥∥∑

k

fk

∥∥∥∥
q

� Cεδ
−α(q)/2−ε

∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥

q

, supp f̂k ⊂ B
(δ)
k , (3.9)

with α(q) = d(1/2 − 1/q) − 1
2 and q = 2(d + 2)/d. In two dimensions this is an old

observation by Fefferman [8] and holds for q = 4 with ε = 0. In higher dimensions the
inequality (3.9) was proved by Bourgain [4] for the range of the Stein–Tomas restriction
theorem (i.e. q � 2(d + 1)/(d − 1)). For the larger range q > 2(d + 2)/d the proof
of (3.9) is analogous to the proof of Proposition 2.3; one now uses Tao’s bilinear Fourier
extension inequality [19] (see also [12] for related results). Unlike (2.11) in the conic
case, the inequality (3.9) in the spherical case is essentially optimal for the given range
q � 2(d + 2)/d. We omit further details. �
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4. More on square functions

We shall now discuss some improvements of the square function estimate in Proposi-
tion 2.3 in low dimensions; thus, we seek estimates of the form∥∥∥∥∑

k

fk

∥∥∥∥
p

� Cεδ
−β−ε

∥∥∥∥
( ∑

k

|fk|2
)1/2∥∥∥∥

p

, supp f̂k ⊂ Π
(δ)
k (4.1)

for some β < µ(p) = d/4 − (d + 1)/2p.
We shall assume throughout this section the following Wolff hypothesis and aim to

prove estimates of the form (4.1) conditional on this hypothesis.

Hypothesis W(w; d). For all δ ∈ (0, 1) and all families {hk} of functions satisfying
supp ĥk ⊂ Π

(δ)
k , ∥∥∥∥∑

k

hk

∥∥∥∥
w

� Cεδ
−α(w)−ε

( ∑
k

‖hk‖w
w

)1/w

, (4.2)

where

α(w) = d

(
1
2

− 1
w

)
− 1

2

(see Table 1).

We note that in view of the embedding Lp(�2) ⊂ Lp(�p) the inequality (4.2) trivially
implies (4.1) with β = α(p), for w � p < ∞. Another trivial observation is that (4.1)
holds with β � 1

4 (d − 1) in view of the Cauchy–Schwarz inequality, as

∑
k

|fk(x)| � δ−(d−1)/4
( ∑

k

|fk(x)|2
)1/2

for every x.
The method for our improvement over the exponent min{µ(p), 1

4 (d−1)} will be limited
to the case where

α(p) < min{µ(p), 1
4 (d − 1)}, (4.3)

which holds if and only if

p < min
{

2(d − 1)
d − 2

,
4d

d − 1

}
.

We have the additional restriction p > 2(d+3)/(d+1) in Proposition 2.3. Summarizing,
we obtain an improvement which is limited to d = 2, 3, 4 and to the ranges

d =

⎧⎪⎨
⎪⎩

2, 10
3 < p < min{8, w},

3, 3 < p < 4,

4, 14
5 < p < 3.

(4.4)

We emphasize that square function estimates such as (4.1) cannot a priori be interpo-
lated when subject to the Fourier support condition (1.4). We shall, however, start with
a preliminary result that is proved using an interpolation.
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We let φk be a bump function adapted to the plate Π
(δ)
k satisfying the natural esti-

mates, so that φk equals 1 on the plate, and is supported on the ‘double plate’. Define
the operator Pk by

P̂kf = φkf̂ . (4.5)

Each Pk is bounded on Lp(Rd+1), 1 � p � ∞, with uniform bounds.

Lemma 4.1. Let d = 2, and suppose that Hypothesis W(w; 2) holds. Let

β = β∗(p, w) =
3w − 13
6w − 20

− 9w − 40
(6w − 20)p

(4.6)

and let r = r(p, w) be defined by

1
r(p, w)

=
1
2

− w − 2
6w − 20

(
3 − 10

p

)
. (4.7)

Then, for 10
3 � p � w, ∥∥∥∥∑

k

Pkgk

∥∥∥∥
p

� Cεδ
−β−ε

∥∥∥∥
( ∑

k

|gk|r
)1/r∥∥∥∥

p

for all families {gk} with gk ∈ S(Rd+1).

Proof. By W(w; 2) and the embedding Lp(�2) ⊂ �p(Lp) we have the inequality∥∥∥∥∑
k

Pkgk

∥∥∥∥
w

� Cεδ
−(α(w)+ε)

( ∑
k

‖Pkgk‖w
w

)1/w

� Cεδ
−(α(w)+ε)

∥∥∥∥
( ∑

k

|gk|w
)1/w∥∥∥∥

w

. (4.8)

We also observe that, for 2 � p � 4,∥∥∥∥
( ∑

k

|Pkgk|2
)1/2∥∥∥∥

p

� C(1 + log δ−1)1/2−1/p

∥∥∥∥
( ∑

k

|gk|2
)1/2∥∥∥∥

p

. (4.9)

Indeed the left-hand side is estimated by using

sup
ω∈L(p/2)′

( ∑
k

∫
|Pkgk|2ω dx

)1/2

� sup
ω∈L(p/2)′

( ∑
k

∫
|gk|2Mδω dx

)1/2

, (4.10)

where Mδ is a Besicovitch-type maximal operator associated to the light cone which is
bounded on L2 with norm O(

√
log(2 + δ−1)) if δ < 1

2 [7,14]. Thus, Hölder’s inequality
implies (4.9).

Now we can combine Proposition 2.3 with respect to the double plates, applied to
fk = Pkgk, and (4.9) to obtain∥∥∥∥∑

k

Pkgk

∥∥∥∥
10/3

� Cεδ
−1/20−ε

∥∥∥∥
( ∑

k

|gk|2
)1/2∥∥∥∥

10/3
. (4.11)
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After a little arithmetic the claimed bound follows by interpolation between (4.8) and
(4.11). �

Since r(p, w) � 2 in Lemma 4.1, we immediately get the following result.

Corollary 4.2. Let d = 2 and suppose that Hypothesis W(w; 2) holds. Then for all
families of functions {fk} with supp f̂k ⊂ Π

(δ)
k the estimate (4.1) holds for 10

3 � p � w

with β = β∗(p, w).

In particular note that β∗(4, w) = (3w − 12)/(24w − 80), so that β∗(4, 6) = 3
32 . If we

use the exponent obtained in Theorem 1.1, i.e. w = p2 = 190
3 , we get only β∗(4, p2) = 89

720 ,
which is worse than the 5

44 exponent that is already known from [20,23].
For large values of w one can improve on the result of Corollary 4.2. Our approach will

be similar to the one by Tao and Vargas [20] in 2 + 1 dimensions. By using W(w; 2) in
that approach one can slightly improve on the previously known exponents.

Theorem 4.3. Let 2 � d � 4 and let p be as in (4.4). If Hypothesis W(w; d) holds,
then for all families of Schwartz functions {fk} with supp f̂k ⊂ Π

(δ)
k the estimate (4.1)

holds with

β = µ(p) − d − 1
2

(
((d + 1)/2(d + 3)) − 1/p

((d + 1)/2(d + 3)) + (1/p) − 2(p − 1)/(w − 1)p

)(
1
p

− d − 2
2(d − 1)

)
.

(4.12)

The proof (of a slightly more general result) will be given in § 5.
In 2+1 dimensions, Theorem 4.3 yields inequality (4.1) for the range 10

3 � p � w with
β equal to

β∗∗(p, w) =
1
2p

(3p2 − 2p − 20)w − 23p2 + 82p − 40
(10 + 3p)w − 23p + 10

; (4.13)

in particular, we have β∗∗(4, w) = (5w − 20)/(44w − 164), which (with p2 ≡ w)
occurs in Theorem 1.7. We compare this result with (4.6). Notice that 3

32 = β∗(4, 6) <

β∗∗(4, 6) = 1
10 . A straightforward computation shows the inequality β∗∗(p, w) < β∗(p, w)

holds if and only if (9p − 30)w2 + (−9p2 − 39p + 230)w + 23p(3p − 10) > 0 and after
factoring we see that for 10

3 < p < w we have β∗∗(p, w) < β∗(p, w) if and only if
(p − 10

3 )(w − 23
3 )(w − p) > 0. Thus, for any p ∈ ( 10

3 , w) we have

β∗∗(p, w) < β∗(p, w) ⇐⇒ w > 23
3 , (4.14)

so that the Lp result in Theorem 4.3 is better than the result of Corollary 4.2 in the
range w > 23

3 . We obtain the following corollary, which yields Theorem 1.7.

Corollary 4.4. Let d = 2 and suppose that W(w; 2) holds for some w > 6. Let
10
3 < p � 4 and let α > min{β∗(p, w), β∗∗(p, w)} (i.e. α > β∗∗(p, w) if w > 23

3 ).
Then

(i) the smoothing inequality (1.6) holds true and

(ii) the Fourier multiplier mα in (1.7) defines a bounded operator on Lp(R3).
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We also observe that by interpolation we obtain the analogous boundedness results for
the range 4 � p � w under the assumption that

α >
1
2

− 2
p

+
4(w − p)
p(w − 4)

min{β∗(4, w), β∗∗(4, w)}.

If we use the result of Theorem 1.1 in 2 + 1 dimensions (i.e. Hypothesis W(w; 2) with
w = p2 = 190

3 ) we obtain this result for

α > β∗∗(p, 190
3 ) =

501p2 − 134p − 3920
2p(501p + 1930)

,

which equals 445
3934 if p = 4. This represents a slight improvement over the Tao–Vargas

result [20], which yields the L4 boundedness for α > 5
44 = 0.11363; note that 445

3934 ≈
0.11311642 . . . . We also see from Corollary 4.2 that the validity of (1.3) for the optimal
(conjectured) range p � 6 implies the L4 boundedness for α > 3

32 = 0.09375; however, it
has been conjectured that it should hold for all α > 0.

Proof of Corollary 4.4. It remains to estimate the Lp-norm of the square function.
For part (ii) this is done as in [13]; namely, one first uses a weighted L2 bound as in (4.10)
together with the optimal L(p/2)′

bound for a Besicovitch maximal function associated
with the light cone. Now let Sk be the region in R2 obtained by projecting the plate
Π

(δ)
k to the ξ1–ξ2-plane. Now define an operator Sk by Ŝkg(τ, ξ) = ηk(ξ)ĝ(τ, ξ), where

ξ = (ξ1, ξ2) and ηk is a function adapted to the double of Sk, with the property that
PkSk = Pk. We then obtain∥∥∥∥

( ∑
k

|Pkg|2
)1/2∥∥∥∥

p

� C(1 + log δ−1)1/2−1/p

∥∥∥∥
( ∑

k

|Skg|2
)1/2∥∥∥∥

p

(4.15)

and by Córdoba’s estimate for a sectorial square function [7] one dominates the latter
Lp-norm by C(log δ)C‖g‖p.

For part (i) one argues similarly, except that now one has to use a result for a Besi-
covitch maximal function which sends functions on R3 to functions on R2; this variant
and its application are discussed in [14]. �

5. Proof of Theorem 4.3

We work with the operators Pk in (4.5), which localize in Fourier space to the doubles
of the plates Π

(δ)
k . It will be convenient to consider the following mixed norm variant of

the ‘Wolff hypothesis’.

Hypothesis W(r, s; d). Given r � 2(d + 1)/(d − 1) and 1 � s � r, we say that
Hypothesis W(r, s; d) holds if, for all δ < 1, ε > 0 and all families of Schwartz functions
{hk}, we have ∥∥∥∥∑

k

Pkhk

∥∥∥∥
r

� Cεδ
−α(r,s)−ε

( ∑
k

‖hk‖s
r

)1/s

, (5.1)

where α(r, s) = (d − 1)/2s′ − (d + 1)/2r.
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We shall prove the following variant of Theorem 4.3.

Theorem 5.1. Let 2 � d � 4, and let p be as in (4.4). Let q = 2(d + 3)/(d +
1). If Hypothesis W(r, p; d) holds, then for all families of Schwartz functions {fk} with
supp f̂k ⊂ Π

(δ)
k the estimate (4.1) holds with

β = µ(p) − d − 1
2

[
1/q − 1/p

1/q + 1/p − 2/r

](
1
p

− d − 2
2(d − 1)

)
. (5.2)

Theorem 4.3 is an immediate consequence of Theorem 5.1, by the following observation.

Lemma 5.2. Let w � 2(d + 1)/(d − 1) and fix p ∈ [2, w]. Then W(w; d) implies
W(r, p; d) with r = p′(w − 1).

Proof. This follows by interpolation between the Wolff inequality (i.e. (4.8) in d

dimensions) and the trivial bound ‖
∑

k Pkhk‖∞ �
∑

k ‖hk‖∞. �

Remark 5.3. In [9] we establish certain cases of the mixed norm inequality W(r, s; d)
which do not simply follow by interpolation from the original Wolff inequality (as for-
mulated in W(w; d)). In such cases Theorem 5.1 leads to further improvements of Theo-
rem 1.7.

To establish Theorem 5.1 we shall work with the following hypothesis.

Hypothesis SQ(γ, p). For all δ < 1, ε > 0,∥∥∥∥∑
k

hk

∥∥∥∥
p

� Cεδ
−γ−ε

∥∥∥∥
( ∑

k

|hk|2
)1/2∥∥∥∥

p

, (5.3)

provided that supp ĥk ⊂ Π
(δ)
k .

By Proposition 2.3 we know already that for p > 2(d+3)/(d+1) this inequality holds
true with the exponent γ = µ(p) = d/4 − (d + 1)/2p and we seek an improvement in the
ranges (4.4).

We use Hypothesis W(r, p; d) to prove the following proposition, which amounts to
an improved version of [20, Proposition 5.4] (where the case r = ∞ was considered in
the (2 + 1)-dimensional situation). As in § 2 we work with a covering Q(δ−1/2) of

√
1/δ

cubes.

Proposition 5.4. Let d � 2, 2 < p < r, and suppose that hypotheses W(r, p; d) and
SQ(γ, p) hold. Then, for all functions hk with supp ĥk ∈ Π

(δ)
k we have( ∑

Q∈Q(δ−1/2)

∥∥∥∥∑
k

hk

∥∥∥∥p

Lr(Q)

)1/p

� Cεδ
−(γ+α(p))/2−ε

∥∥∥∥
( ∑

k

|hk|2
)1/2∥∥∥∥

Lp(Rd+1)
. (5.4)

Proof. We group the indices k (and therefore the corresponding plates Π
(δ)
k ) into

O(δ−(d−1)/4) disjoint families Sl so that dist(ωk, ωk′) � δ1/4 for k, k′ ∈ Sl. Define

Gl =
∑
k∈Sl

gk.
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As in the proof of Proposition 2.2 we also work with the functions ψQ adapted to
the cubes Q ∈ Q(δ−1/2). By the support property of ψ̂Q the Fourier transform of ψQGl

is supported in a C
√

δ plate and these plates form an essentially disjoint plate family.
Therefore,

∥∥∥∥∑
l

Gl

∥∥∥∥
Lr(Q)

�
∥∥∥∥ψQ

∑
l

Gl

∥∥∥∥
r

� δ−α(r,p)/2
( ∑

l

‖ψQGl‖p
r

)1/p

, (5.5)

by Hypothesis W(r, p; d) with δ replaced by
√

δ. By the support property of ψ̂QGl and
Young’s inequality,

‖ψQGl‖r � δ((d+1)/4)(1/p−1/r)‖ψQGl‖p (5.6)

and therefore( ∑
Q

∥∥∥∥∑
l

Gl

∥∥∥∥p

Lr(Q)

)1/p

� δ−(α(r,p)/2)+((d+1)/4)(1/p−1/r)
( ∑

Q,l

‖ψQGl‖p
p

)1/p

.

A little algebra shows that

−α(r, p)
2

+
d + 1

4

(
1
p

− 1
r

)
= −α(p)

2
.

From some straightforward estimation using the decay of the ψQ we also obtain

( ∑
Q

∥∥∥∥∑
l

Gl

∥∥∥∥p

Lr(Q)

)1/p

� δ−α(p)/2
( ∑

l

‖Gl‖p
p

)1/p

. (5.7)

As Ĝl is supported in a C
√

δ plate we may use rescaling arguments as in the proof of
Lemma 2.1 to deduce from Hypothesis SQ(γ, p) applied with parameter

√
δ that

‖Gl‖p � δ−γ/2
∥∥∥∥
( ∑

k∈Sl

|gk|2
)1/2∥∥∥∥

p

and hence( ∑
Q

∥∥∥∥∑
l

Gl

∥∥∥∥p

Lr(Q)

)1/p

� Cεδ
−(α(p)+γ)/2−ε

( ∑
l

∥∥∥∥
( ∑

k∈Sl

|gk|2
)1/2∥∥∥∥p

p

)1/p

� Cεδ
−(α(p)+γ)/2−ε

∥∥∥∥
( ∑

k

|gk|2
)1/2∥∥∥∥

p

,

which is the assertion. �

In order to complete the Proof of Theorem 5.1, we begin by observing that Hypothe-
sis SQ(µ(p), p) holds by Proposition 2.3.
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Assuming that SQ(γ, p) holds for some γ � µ(p), the following estimate for bilinear
expressions is an immediate consequence of Proposition 5.4:

( ∑
Q∈Q

∥∥∥∥
( ∑

ωk∈Ω

fk

)( ∑
ωk′ ∈Ω′

gk′

)∥∥∥∥p/2

Lr/2(Q)

)2/p

� δ−α(p)−γ

∥∥∥∥
( ∑

ωk∈Ω

|fk|2
)1/2∥∥∥∥

p

∥∥∥∥
( ∑

ωk′ ∈Ω′

|gk′ |2
)1/2∥∥∥∥

p

. (5.8)

We now assume that Ω and Ω′ are separated as in Proposition 2.2 and interpolate the
inequalities (5.8) and (2.9) with q = 2(d + 3)/(d + 1). As a result we obtain

( ∑
Q∈Q

∥∥∥∥
( ∑

ωk∈Ω

fk

)( ∑
ωk′ ∈Ω′

gk′

)∥∥∥∥p/2

Lp/2(Q)

)2/p

� δ−2Γ (p,γ)
∥∥∥∥
( ∑

ωk∈Ω

|fk|2
)1/2∥∥∥∥

p

∥∥∥∥
( ∑

ωk′ ∈Ω′

|gk′ |2
)1/2∥∥∥∥

p

,

where

Γ (p, γ) = (1 − ϑ)µ(p) + ϑ
α(p) + γ

2
with ϑ =

(
1
q

− 1
p

)(
1
q

− 1
r

)−1

.

By Lemma 2.1 we also obtain∥∥∥∥∑
k

fk

∥∥∥∥
p

� δ−Γ (p,γ)
∥∥∥∥
( ∑

ωk∈Ω

|fk|2
)1/2∥∥∥∥

p

. (5.9)

The assumption p < 2(d − 1)/(d − 2) in (4.4) implies that α(p) < Γ (p, γ) � µ(p),
provided that α(p) < γ � µ(p). Moreover, γ = Γ (p, γ) if and only if γ equals

γ∗ =
1

1 − ϑ/2

(
(1 − ϑ)µ(p) + ϑ

α(p)
2

)
= µ(p) − ϑ

2 − ϑ
(µ(p) − α(p)).

The fixed point is contained in the interval (α(p), µ(p)) and one observes that Γ (p, γ) < γ

for γ∗ < γ � µ(p). Thus, if we define a sequence γn by setting γ0 = µ(p) and γn+1 =
Γ (p, γn) for n � 0, then γn is decreasing and bounded below and converges to γ∗. We
compute that ϑ/(2 − ϑ) = (1/q − 1/p)/(1/q + 1/p − 2/r) and α(p) − µ(p) = (d − 2)/4 −
(d − 1)/2p and see that γ∗ is equal to the right-hand side of (5.2). Thus, (5.9) and an
iteration yield the assertion of the theorem.
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6. A. Carbery, Variants of the Calderón–Zygmund theory for Lp-spaces, Rev. Mat. Ibero.
2 (1986), 381–396.
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