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Introduction

We are concerned with an algebra S over a commutative ring. Pre-
cisely S is a non-commutative ring with identity which is also a finitely
generated unital B module such that r(xy) = (ra)y = 2(ry) for r in R
and z,ye€S. In section one, we assume A is a commutative, Artinian
ring. Following Goro Azumaya (see (1, p. 273)), we define the canonical
module F' of A to be the injective hull of A modulo the Jacobson radical
of A ie. FF=1I1(A/J(A)). Let S be an algebra over A, we call a bi-S
module @, a canonical S module if @ is isomorphic as a bi-S module to
Hom, (S, F). Azumaya has shown that the canonical bi-S module is uni-
quely determined, up to isomorphism, by the ring S and is independent
of choice of the base ring. In Prop. 1.2 we show that Q as a left S
module is the S hull of S modulo J(S). ie. Q = I(S/J(S)). Moreover
the left S endomorphism ring of @ is S. (See Prop. 1.3.)

In section 2 we consider an algebra S over a commutative ring R
(without chain conditions). For any maximal ideal p of R let J(p) be the
two sided ideal of S such that pS C J(p) and J(p)/pS is the Jacobson
radical of S/pS. Then () J(p) = J(S), the Jacobson radical of S.

pmax in R

In section 3 we assume R is a commutative, Noetherian ring and S
is an R algebra. Let p be a maximal ideal of R, then Prop. 3.2 states
the left S hull of S/J(p),1,, is Homg (S, I(R/p)).

If we assume R is semilocal, then we show in Prop. 3.4 that
I(S/J(S)) is countable generated.

In section 4, Prop. 4.1 we show that the left S endomorphism ring
of I, is the completion of S with respect to the pS-adic topology. Also
I, is injective over its endomorphism ring, see Prop. 4.3. If R is semi-
local, then the left S endomorphism ring of I(S/J(S)) is the completion
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of S with respect to the J(S) adic topology. Furthermore, I(S/J(S)) is
injective over its endomorphism ring, see Propositions 4.2 and 4.4.
In section 5, we set E = @ I, We show that the left S endo-

pmaxin R

morphism ring of E is inv. lim S/I1 where Ul is a left ideal of S such
that S/U is Artinian, see Prop. 5.3. In Prop. 5.5 we show the bicom-
mutator of E is the completion of S with respect to the finite topology.

I want to thank my advisor Goro Azumaya for all of his help and
encouragement.

§1. The Canonical Module in the Artinian Case

We assume A is a commutative, Artinian ring and S an algebra
over A. The Jacobson radical of S (respectively A) is J(S) (respectively
J(A).)

DEFINITION 1.1. The A canonical module is the A injective hull of
A/J(A). Denote the canonical module by F.

PROPOSITION 1.1. The A canonical module F' is a finitely generated
A module. The ring map A — End, (F), which sends ac A to (x — ax),
xeF is an isomorphism.

Proof. See Azumaya (1, Prop. 10, p. 273)
If S is an algebra over A, then S is left and right Artinian.

DEFINITION 1.2. A Dbi-S module @ is called a canonical S-module if
Q@ is isomorphic as a bi-S module to Hom, (S, F).

Remark 1.1. We regard Hom, (S,F) as a bi-S module by defining
) = @t — f(ts),(fs) = (t — f(st)) for feHom, (S,F),s,teS.

So with each base ring of S, there is a canonical S module. Azumaya
has shown that the canonical two sided S module is uniquely determined,
up to isomorphism, by the ring S and is independent of the choice of
the base ring (see 1, Thm. 21, p. 276).

PROPOSITION 1.2. If Q is the canonical two sided S module, then Q
as a left S module (respectively as a right S module) is the left (respec-
tively the right) injective hull of S/J(S) regarding S/J(S) as a left S
module (respectively as a right S module). Thus the left (or right) S
hull of S/J is a bi-S module.
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Proof. For any base ring A of S, as a two sided S module, Q@ ~
Hom, (S,F). Now by (8, Prop. 6.1a, p. 30) Hom, (S, F) is left and right
S injective. It is well known that an injective S module is the hull of
its socle. It is also clear that r¢o(J) = {ge Q|Jg = 0} is the socle of Q.
Now 74(J) = Hom, (S/J,F) by (1, Lemma 3, p. 275). We decompose

S/J =8 =Se + --- + Se,, where the Se,’s are simple subrings and &,’s

are orthogonal idempotents. Then 7,(J) = é Hom , (Se;, F) = é g,S =
=1 i=1

S/J by (1, Lemma 2, p. 274). Thus the socle of @ as a left (or right

S) module is S/J. So as a left (or right S) module @ is the injective
hull of S/J.

PROPOSITION 1.3. Let S be an algebra over a commutative, Artinian
ring, then the left S injective hull of S/J,I, is finitely generated and
contains a copy of every simple S-module. Moreover, the map S to
Endg I which sends s to (x — xs),xcl,se S is an isomorphism of rings.
We can replace left by right in the above.

Proof. As a Dbi-S module, I is of QF type (1, Thm. 19, p. 275).
Since S is left and right Artinian, we have established (iii) of Theorem
6 (1, p. 2569), which is equivalent to (i) of Theorem 6 (1, p. 2569). But
(i) Theorem 6 is our result.

§2. The Jacobson Radical of an Algebra

We assume R is an arbitrary commutative ring and S an R algebra.

PROPOSITION 2.1. Let M be a non-zero simple left S module. Then
there exists a unique mazximal tdeal p of R such that pM = 0. Thus if
B is a left maximal ideal of S there exists a unique maximal ideal p of
R such that pS C B. Moreover, p ={reR|r-13 C B}, if R C center of
S, then p =R N P.

Proof. Follows easily from Azumaya (2, Theorem 5, p. 123).

PROPOSITION 2.2. For any algebra S over R, let J(p) be, for each
maximal ideal p of R, the two sided ideal of S such that pS C J(p) and
J(0)/pS is the Jacobson radical of the residue class algebra S/pS. Then
the radical J of S is the intersection of all the J(p)’s i.e. J(S) =

N Jm. So J(B)-S < J(S). Moreover, if p # q are maximal ideals

p maximal in R

of R, then J(p) + J(q) =S = pS + qS.
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Proof. The first statement is the corollary of Lemma 2 (2, p. 125).
Ifp#qg, thenS=R-S=@p+PSCpS+gSc I +J@CS. SoS=
pS + aS =J() + J(@-.

§3. From now on we assume R is a commutative, Noetherian ring
and S is an R algebra. Thus S is left and right Noetherian. Let p be
a maximal ideal of R.

Remark 3.1. Let S,R and p be as above and ¢ > 1, then R/p’ is a
local, Artinian ring, S/p!S is an algebra over R/p’ and the radical of
S/ptS is J(p) [p*S.

Proof. Now S/pS is finite dimensional over R/p, so S/pS is Artinian.
Thus the Jacobson radical is nilpotent i.e. for some k > 0, J(p)* C »S.
So J(p)* < ptS, but S/J(p) is semisimple and so has no non-zero nilpotent
ideals. Thus J(p)/p!S is the Jacobson radical of S/p*S.

ProprosITION 3.1. Let p be a oprime ideal of o commutative,
Noetherian ring R, call the injective hull of R/p,I, and let A, =
{zel|p'x = 0}, then A; is a submodule of I,A; C A, and I =JA,.
Moreover, if p is a maximal ideal, then each A; is finitely gene;a,ted
R-module, thus I is a countable generated R-module.

Proof. See Matlis (4, Theorem 3.4, p. 520) and (4, Theorem 3.11,
p. 525).

PROPOSITION 3.2. Let p be a maximal ideal of a commutative,
Noetherion ring and S an algebra over R. Then the left S injective
hull of S/J(p), which we call I,, is Hompg (S,I(R/p)). Thus I, becomes
in the natural way a bi-S module. Moreover, Hompg (S,I(R/p)) is the
union of the canonical S [9tS modules i.e. I, = U Homg (S,4,). We can

replace left by right in the above.

Proof. Since S is a finitely generated R module Homg (S, I(R/9)) =
Lij Homj (S, 4,). Now for each 7> 0, Homy (S, 4,) = Hom,,.(S/p?S, 4)),
let S = S/p'S and B = R/p* we observe R is commutative, Artinian and
S is an algebra over B. By (1, Thm. 17, p. 272) A, is the R injective
hull of R/p. Thus for each ¢ > 0, Homj (S, A;) = Homgz (S, Iz(R /D) = Q;
which is the canonical S module. We know by Proposition 1.2 and
Remark 3.1, that as a left S module @, is the injective hull of S/J(p).
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Also Q; € Q,,,, for A C A,,,, thus S/J(p) is a large S submodule of U @

= Homy, (S, I(R(p)). But Hom (S, I(R/p)) is injective by (3, Prop. é.la,
p. 30.). Thus Homg (S, I(R/p)) is the left S injective hull of S/J(p). For
B a subset of S, let »(B) ={yel,|By =0} and I(B) = {yel,|yB = 0}.

PROPOSITION 8.3. The notation as in Prop. 3.2, then I, = | r(p*S) =
U r@@®H) = U IptS) = U W (mH.

Proof. Let ¢ > 0 and regard Q; as an S-module, then the S hull of
Q; is I,. Now r(p!S) = @; as an S/p’S module (see 1, Cor. Thm. 17,
p. 273). So I, = J (") = U l(p®S). Also S/pS is Artinian, so for some

k,J@)F € pS. Thus I, = U rJG)) = U I©9.

We call R semilocal, if R is commutative Noetherian ring with only
a finite number of maximal ideals, p,, -- -, p;.

PROPOSITION 3.4. Let R be a semilocal ring and S an R-algebra.
Then the left S injective hull of S/J(S) is Hompg (S,I(R/J(R)). Thus
I(S/J(S)) becomes a bi-S module in the natural way. We can replace
left by right in the abowve.

Proof. By Prop. 2.2 and the Chinese Remainder Theorem, S/J(S)
=8/J(p) D -+ D S/J(py), s0Is(S/J(S) = IS(S/J(p1)) ®--- @Is(S/J(pz)) =
Homp, (S, I(B/p)) @ - - - @ Homg (S, I(R/p,)) = Homg (S, I(R/J(R)).

Let B be a left maximal ideal of S, we know there exists a unique
maximal ideal p of R such that pS C B. Moreover, if R is contained in
the center of S, then p = R N L.

PROPOSITION 3.5. Let 2 be a left maximal ideal of an algebra S
over o commutative noetherion ring R. Call the left S injective hull of
S/B,1. Let r (p°S) be {xeI|(pS)z = 0}. Then I =Jr@'s) = r(J(p)9H.

Proof. Since S/ is a simple left S module, it is a simple left
S/J(p) module. Also S/J(p) is completely reducible, so S/P is isomorphic
to a direct summand of S/J(p). Thus I is a direct summand of I, =

Ur@8). So I =Jr(yiS).

PROPOSITION 3.6. Let R, p, S and R be as above. Then the left S
injective hull of S/B and S/J(p) are countable generated.
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Proof. Propositions 3.3, 3.5 and 1.3.

ProroSITION 3.7. If R is a semilocal ring, then the left (or right)
S ingective hull of S/J(S) is countable generated.

Proof. Propositions 3.6 and 3.4.

§4. We fix a maximal ideal p of a commutative, Noetherian ring
R. Let S be an R-algebra with the “pS-adic” topology. We define the
completion of S with respect to the pS-adic topology to be inv. lim S/ptS,
denoted by S, Now I, is a right S, module. For let § = (s; + p'S) € S,
and xzel,. Then for k> 0, x(p*S) = 0, (by Prop. 3.3) define 28 = zs;.
If 2(p?’S) = 0, assume j < k, then s, — s;€p’S so z(s; — s;) = 0 or zs;, =
xs;. Since I, is a bi S-module (Prop. 3.2), I, becomes a bi-S — S, module.

We also consider S with the J(p)-adic topology. We call inv. lim S/J(p)?,
the completion of S with respect to the J(p)-adic topology, denoted by
S;w. As above, I, becomes a bi-S — S, module. Since pS < J(p) and
J(p)* < pS, then S, = S,,.

PROPOSITION 4.1. The S endomorphism ring of I, (as either a left
or right S module) is the completion of S with respect to the pS-adic or
J(p)-adic topologies i.e. Endg I, = §,.

Proof. Since ((‘\ piS)-1,= 0,1, is a left S /ﬂ ptS module. In other
words, we may assume S is Hausdorff in the pS—adlc topology. Now
I, =Jr®S). So for feEnds ) flens € Endgys (7(pS)), where [l
meansz f restricted to r(»’S). It follows that EndgI, = inv. lim Endg,s
(r(»%S)). We now find for each ¢ > 0, Endg,,s (r(p?S)).

In the proof of Prop. 3.3, we showed r(p:S) as a left S/ptS module
is the S/ptS hull of S/J(p). Using Prop. 1.3, we conclude Endg,,:s (r(p?S))
= S/p'S, the isomorphism given by right multiplication. Since the fol-
lowing diagram commutes

Endg (r(p*S)) «— Endg (r(p***S))
U U
S/ptS «———— S/pi*kS
we conclude that Endg (I,) = inv. lim Endg, . (r(9S)) = inv. lim S/p*S.
By a semilocal ring R, we mean a commutative, Noetherian ring
with only a finite number of maximal ideals, §,, - -, ;.
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PROPOSITION 4.2. Let R be a semilocal ring and S an algebra over
R. Then the endomorphism ring of the injective hull of S/J(S), I(S/J(S)),
18 the completion of S with respect to the J(S)-adic topology.

Proof. We have seen (Prop. 3.4) I(S/J(S)) = é—) I(S/J(¥9). Letp+q
i=1
be maximal ideals of R, we show for feHomg(,,I), then f = 0. Let
xel, then (p*S)x = 0 and (¢'S)f(x) = 0 for k,1 > 0, by Prop. 3.3. Since
p¢ 4+ q* = R, there exists aep*, beqg’ such that ¢« + b =1. So f(x) =
flex + bx) = f(ax) + bf(x) = 0. Thus f = 0. We conclude Endg (I(S/J(S))
— @ Ends (,) = @ inv. lim S/piS = S® (e’a inv. lim B /p{> = S ® inv. lim
i=1 i=1 R \i=1 E

R/J(R)! = inv. lim S/J(R)S.

Now S/J(R)-S is an algebra over the commutative, Artinian ring
R/J(R). So S/J(R)S is Artinian, thus its Jacobson radical is nilpotent
of index k, so J(S)* C J(R)S. Also J(R)S C J(S), thus inv. lim S/J(R)*S =
inv. lim S/J(S)*.

Returning to a commutative, Noetherian ring R, p a maximal ideal
of R and S an R algebra, we call the left S endomorphism ring of I,, H,.
We have seen (Prop. 4.1) that H, is S, the completion of S with respect
to the J(p)-adic topology. Let J/(?)) = inv. lim J(p) /J(p)¢, then §p/f(\p) is
S/J(p) as left S modules.

PROPOSITION 4.3. The notation as above, then I, is an injective H,
module. In fact, I, is the H, injective hull of SA,,/J/(;)). Moreover, A, =
{er,|x.fGo)” =0} and A, = {xel,|aJ(p)* = 0} are equal for all k> 0.

Proof. Denote the right S module §/J/(\P) by C. Let D be the right
S hull of C. We show C is an essential S submodule of D. Now § is
a left and right Noetherian ring, since it is an algebra over inv. lim R/p.

So D =JD,, where D, ={zeD|2J(p)' = 0}. Let 0= deD so de A,
%

for some k. Also there exists § = (s; + J(p)H) e §v such that 0 £ dseC;
hence 0 # ds, € C. So C is an essential right S module of D. Also by
Prop. 3.2, I, is a right S injective module.

Thus we can find a right S map % such that hg =14, where g =
S/J(p) = S /J/(;)) C D) and ¢ are viewed as right S maps.
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0

!
0—> S/J(») 2> D
Nii ~h
1,/
Now & is one to one for S/J(p) is an essential right S module. Since

I, is a right S module and D is an injective 5}, module, D is a direct
summand of I,, However, ¢ is essential, so D =1I,. The equality of

fik and A, follows from J/(\p) = J(p)§.

§5. As usual we assume R is commutative Noetherian and S is an
R-algebra. The direct sum (as left S modules) of the I,’s, p ranging
over all maximal ideals of R, we call the canonical cogenerator, E. i.e.
E =®1, Now E is the left S hull of F, where F is the direct sum of
the S/J(p)’s. Moreover, since S is a finitely generated R-module, E =

Homj (S, D IR /p)). Thus E becomes in the natural way a bi-S

pmax in R

module and the right S hull of F. Because E contains a copy of each
simple left (right) S module, E is left (right) S cogenerator; hence, F
is faithful as a left (right) S module.

We denote by P the totality of all products of powers of maximal
ideal of R. If p-..pui»e P, then pr N .. N pplir = P2 . - p,in,

For B a subset of S, we call »(B) ={xreFE|Bx =0} and UB) =
{xe E|xzB = 0}.

PropOSITION 5.1. E = | r(wS) = U Uws)
weP

weP

Proof. Let zeFE, then x =2, + --- + @y, 2;€1,,;¢=1,.--,m. By
Proposition 3.3, (p*S)x, =0; -.-; (P, **S)x, =0. So pF...pf» =weP
and (wS)x = 0.

The n-adic topology of S has as a basis of neighborhoods of zero
ideals of the form wS,weP. We partially order P by inclusion. In

fact, P is a direct set. We call S* = inv. lim S/wS, the completion of
weP

S with respect to the m-adic topology. Furthermore, FE is a bi-S — S*
module. Let s* = (s, + wS) e S*,s8,eS,weP and xe FE, then 0 = xz(vS)
for v e P, define xs* = xs,. If x(wS) =0 for we P, then x2((vw)S) = 0.
Thus s, — S, € vS and 8, — Sy € WS, SO XS, = XS, = £S,. We conclude
the multiplication is well defined.
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For any BC S, let Iz(B) = {x e F|Bx = 0} and [;(B) = {xeF|Bx =
0}, z(B) C lz(B). For a fixed weP, let S=S/wS and R = R/w, S is
an algebra over the commutative, Artinian ring E. Thus S is both left
and right Artinian.

PROPOSITION 5.2. The notation as above. If Q = rz(wS), then Q is
the canonical bi-S module.

Proof. Since E is the left S hull of F,rz(wS) is the left S hull of
r(wS). (See 1, Thm. 17, p. 272). Now let w = p,**- .. p,*, p, -+, P,
maximal ideals of R. We show 7r;(wS) = S/J(p) D --- ® S/J(p,). Since
2SS C Iy, -+, 9SS C J(p,), we have rx(wS) D S/J(p) D -+ D S/J(p,). Let
zeryg(wS), so =%, + - + T,, 0£ T, = 2; + J(qy), for ;¢S and q; a
maximal ideal of R for ¢t =1,-.--,n. Now (wS)x = 0 implies (wS)x, <
J@), -, wSx, € J(q,). If q, #py,---,p; then q + w=R. Thus z, €
2 + w)S < 2,(qS) + z,(wS) C J(g) or % = 0. However, we assumed
T, #+ 0, thus p, = q, (after renumbering) continuing we see g, = p; (after
renumbering) and ¢ = n. Thus 7z(wS) = S/J(P) D --- B S/J(p;) so rx(wS)
=Is(rp(wS)=1I5(S/J(p)® - - - DS [J(p)) = I5(S/J(S)) = Homg (S, Ix(R /J(R))
by Prop. 1.2. Thus rz(wS) as a bi-S module is the canonical S module.

PROPOSITION 5.3. The endomorphism ring of E is the completion of
S with respect to the mn-adic topology.
Proof. Since E = | r(wS) (Prop. 6.1) Ends E = inv. lim Endg,,s

weP we

P
(rz(w8)). By Propositions 5.2, 1.2 and 1.3 S/wS = End (rz(wS)) by
@+ wS) - (x—xs), aeS, xerwS). If wS C vS, then the following
diagram commutes

restriction

End (r(wS)) ——— End (»(»S))

U U
S/wS S/vS

So Endg (E) = inv. lim S/wS.

weP

The question arises: is E injective over its endomorphism ring?
F. L. Sandomierski has shown that as long as E has an infinite number
of direct summands, then F is not injective over its endomorphism ring.
(See Sandomierski) (5, Thm. 1, p. 244).

Let U be the collection {U} of left ideals of S such that S/U is left
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Artinian. We order U by inclusion; since the intersection of two ideals
of U is in U, U is directed. We call the inv. lim S/U the completion

veU
of S with respect to U topology. Now S/U has a composition series

S/ U=M,DM,>---ODM,=0 for UeU.

By Prop. 2.2 there exists a unique maximal p, of R such that
pM; C M;,, for 1 =0,---,n — 1. Now p,_,---p(S/U) =0 ie. if w=
Dn_i* Dy, then wS < U and w e P. Furthermore, by the Jordan-Holder
Theorem w is unique. Thus we show for each U e U there exists a
we P such that wS C U i.e. {wS|we P} is cofinal in U.

PROPOSITION 5.4. The endomorphism ring of E (as a left S module)
is the completion of S with respect to the U topology.

Proof. We have seen {wS|w e P} is cofinal in U. Thus Endg E =

inv. lim S/wS = inv. lim S/U.
weP UeU

The finite topology on S has basic neighborhoods of zero of the form
U...,(00 = {seS|sx, = -+ =sx, =0} for x,.---,2,c¢E. Since E is
faithful the finite topology is Hausdorff. Moreover, by an argument
gimilar to the proof of Prop. 5.4 for each U,,...,,(0),x, ---,2,€ E there
exists a we P such that wS c U,,...,,(0). Thus the finite topology is
coarser than the n-adic topology and the n-adic topology is Hausdorff.

By the bicommutator of E (Bic (£)) we mean the set of all endo-
morphisms of E as an Abelian group which commutes with every element
of H(= Endg E).

PROPOSITION 5.5. The bicommutator of E is the completion of S
with respect to the finite topology.

Proof. Let z,---,2,eE and U = U,,...,(0), we have a we P such
that wS C U. So S/U can be regarded as a module over an artinian
ring S/wS. We define a product on S/U X (,.H + --- + 2,H) - E, by
s+ U, > xh) — >, 8xh;e E. It is easy to see that S/U and xH
+ ... 4+ 2,H form an orthogonal pair with respect to F. See (1, p. 254).
Now F is a quasi-Frobenius bi-S — H module because E is left S injective
and contains a copy of every simple left S module (See (1, Thm. 4, p.
257)). Furthermore S/U has a composition series as a left S/wS module;
hence, S/U has a composition series as a left S module for wS < U.
Thus by (1, Prop. 2, p. 254) v,H + --- + «,H has a composition series
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as a right H module and S/U = Homg (x,H + .-+ + 2, H,E) by (s + U)
- QS ahy— > svhy). If oH + - +2,HCyH+ --- +y,H, 2, -,
Ty Yy -+ Y € E, then U,,...,.(0) D U,,..,,0. The following diagram com-
mutes

S/U,,...,.(0) S/U (0

U U
Hom, (yH + --- + y.H,E) — Homy (v, H + --- + x,H,E)

Thus

inv. lim §/U,,...,.(0) = inv. lim Homy, (y,H + --- + y,H, E)
= Homy (dir limy,H + ... + vy, H,E)
= Homy, (£, E) .

PROPOSITION 5.6. If R is a commutative, Noetherion ring, then the
completion of R with respect to the n-adic topology equals the completion
of R with respect to the finite topology.
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