Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T15:04:18.569Z Has data issue: false hasContentIssue false

A three-dimensionally preserved aglaspidid euarthropod with a calcitic cuticle from the Ordovician of China

Published online by Cambridge University Press:  24 April 2017

DEREK J. SIVETER*
Affiliation:
Earth Collections, Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
RICHARD A. FORTEY
Affiliation:
Department of Earth Sciences, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
XUEJIAN ZHU
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
ZHIYI ZHOU
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
*
Author for correspondence: derek.siveter@oum.ox.ac.uk

Abstract

Aglaspidid euarthropods are usually preserved as flattened carapaces. We here describe a new species and genus, Gogglops ensifer, from the Ordovician Shaanxi Province, China, which shows the best three-dimensional (3D) preservation yet discovered. We show that the cuticle was originally composed of calcium carbonate, except for the visual surfaces of the eyes which were probably originally organic but have been selectively phosphatized. A review is given of the problems pertaining to the original nature of the aglaspidid cuticle. Gogglops is probably closely related to certain poorly known aglaspidid genera from Ordovician deposits of the Siberian Platform. Phylogenetic analysis indicates that the new genus is closely related to Aglaspis itself, and securely nested within the clade Aglaspidida.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, T.-X., Zhang, A.-T. & Xu, J.-M. 1985. Ordovician conodonts from Yaoxian and Fuping, Shaanxi and their stratigraphic significance. Acta Geologica Sinica 59, 92108 (in Chinese with English abstract).Google Scholar
An, T.-X. & Zheng, Z.-C. 1990. The Conodonts of the Marginal Areas around the Ordos Basin, North China. Beijing: Science Press, 201 pp. (in Chinese with English abstract).Google Scholar
Andreeva, O. N. 1957. New discoveries of arthropods from eastern Siberia. Ežegodnik Vsesoûznogo Paleontologičeskogo Obŝestva 16, 80–6.Google Scholar
Bengtson, S. & Conway Morris, S. 1992. Early radiation of biomineralizing phyla. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H. & Signor, P. W.), pp. 447–80. Springer, New York, Topics in Geobiology no. 10.Google Scholar
Bockelie, T. G., Bruton, D. L. & Fortey, R. A. 1976. Research of the Ordovician rocks of North Ny Friesland, Spitsbergen. Norsk Polarinstitutt Årbok (for 1975), 214–7.Google Scholar
Bockelie, T. G. & Fortey, R. A. 1976. An early Ordovician vertebrate. Nature 260, 36–8.Google Scholar
Briggs, D. E. G., Bruton, D. L. & Whittington, H. B. 1979. Appendages of the arthropod Aglaspis spinifer (Upper Cambrian, Wisconsin) and their significance. Palaeontology 22, 167–80.Google Scholar
Briggs, D. E. G. & Fortey, R. A. 1982. The cuticle of the aglaspidid arthropods, a red herring in the early history of the vertebrates. Lethaia 15, 25–9.Google Scholar
Briggs, D. E. G. & Kear, A. J. 1993. Fossilization of soft tissue in the laboratory. Science 259, 1439–42.Google Scholar
Briggs, D. E. G., Kear, A. J., Martill, D. M. & Wilby, P. R. 1993. Phosphatization of soft-tissue in experiments and fossils. Journal of the Geological Society of London 150, 1035–8.Google Scholar
Černyšev, B. I. 1945. On Obrutschweia Tschern. and other Arthropoda [sic] from the Angara River (Siberia). Ežhegodnik Vsesoûznogo Paleontologičeskogo Obŝestva 12, 60–8.Google Scholar
Černyšev, B. I. 1953. Novye členistonogie s reki Angary. Ežhegodnik Vsesouznogo Paleontologičeskogo Obŝestva 14, 106–22.Google Scholar
Chen, J.-Y., Zhou, Z.-Y., Lin, Y.-K., Yang, X.-C., Zou, X.-P., Wang, Z.-H., Luo, K.-Q., Yao, B.-Q. & Shen, H. 1984. Ordovician biostratigraphy of western Ordos. Memoirs of Nanjing Institute of Geology and Palaeontology, Academia Sinica 20, 131 (in Chinese with English abstract).Google Scholar
Chen, J.-Y. & Zou, X.-P. 1984. Ordovician cephalopods from the Ordos area. Memoirs of Nanjing Institute of Geology and Palaeontology, Academia Sinica 20, 33112 (in Chinese with English abstract).Google Scholar
Cisne, J. 1981. Triarthrus eatoni (Trilobita): anatomy of its exoskeletal, skeletomuscular, and digestive systems. Paleontographica Americana 9, 96142.Google Scholar
Clarkson, E. N. K., Levi-Setti, R. & Horvath, G. 2006. The eyes of trilobites: the oldest preserved visual system. Arthropod Structure and Development 35, 247–59.Google Scholar
Cocks, L. R. M., Fortey, R. A. & Rushton, A.W. A. 2010. Correlation for the Lower Palaeozoic. Geological Magazine 147, 171–80.Google Scholar
Cooper, R. A. 1999. The Ordovician time scale-calibration of graptolite and conocont zones. Acta Universitatis Carolinae-Geologica 43, 14.Google Scholar
Dalingwater, J. E., Hutchinson, S. J., Mutvei, H. & Siveter, D. J. 1991. Cuticular ultrastructure of the trilobite Ellipsocephalus polytomus from the Middle Cambrian of Öland, Sweden. Palaeontology 34, 205–17.Google Scholar
Dalingwater, J. E., Hutchinson, S. J., Mutvei, H. & Siveter, D. J. 1993. Cuticular ultrastructure of some Silurian calymenid trilobites from the Welsh Borderland and Gotland. Palaeontographica A 229, 3749.Google Scholar
Feng, Z.-Z., Chen, J.-X. & Zhang, J.-S. 1991. Lithofacies Paleogeography of Ordos. Beijing: Geological Publishing House, 190 pp. (in Chinese with English summary).Google Scholar
Fortey, R. A. 1975. Early Ordovician trilobite communities. Fossils and Strata 4, 339–60.Google Scholar
Fortey, R. A. 1980. Generic longevity in Lower Ordovician trilobites: relation to environment. Palaeobiology 6, 2431.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W. & Rushton, A. W. A. 1995. A revision of Ordovician series and stages from the historical type area. Geological Magazine 132, 1530.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parkes, M. A., Rushton, A. W. A. & Woodcock, N. H. 2000. A revised correlation of Ordovician rocks in the British Isles. Geological Society of London, Special Report no. 24, 83 pp.Google Scholar
Fortey, R. A. & Rushton, A. W. A. 2003. A new aglaspidid arthropod from the Lower Ordovician of Wales. Palaeontology 46, 1031–8.Google Scholar
Fortey, R. A. & Theron, J. N. 1995. A new Ordovician arthropod, Soosmaspis and the agnostid problem. Palaeontology 37, 841–61.Google Scholar
Fröhlich, F., Mayrat, A., Riou, B. & Secretan, S. 1992. Structures rétiniennes phosphatisées dans l’œil géant de Dollocaris, un crustacé fossil. Annales de Paléontologie (Vert.-Invert.) 78, 193204.Google Scholar
Hall, J. 1862. On a new crustacean from the Potsdam Sandstone. Canadian Naturalist 7, 443–5.Google Scholar
Hesselbo, S. P. 1992. Aglaspidida (Arthropoda) from the Upper Cambrian of Wisconsin. Journal of Paleontology 66, 885923.Google Scholar
Hou, X.-G. & Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata 45, 1116.Google Scholar
Klug, C., Schultz, H. & De Baets, K. 2009. Red Devonian trilobites with green eyes from Morocco and the silicification of the trilobite exoskeleton. Acta Palaeontologica Polonica 54, 117–23.Google Scholar
Lerosey-Aubril, R., Ortega-Hernández, J., Kier, C. & Bonino, E. 2013. Occurrence of the Ordovician-type aglaspidid Tremaglaspis in the Cambrian Weeks Formation (Utah, USA). Geological Magazine 150, 945–51.Google Scholar
Lerosey-Aubril, R., Ortega-Hernández, J. & Zhu, X.-J. 2013. The first aglaspidid sensu stricto from the Cambrian of china (Sandu Formation, Guangxi). Geological Magazine 150 (3), 565–71.Google Scholar
Lerosey-Aubril, R., Paterson, J. R., Gibb, S. & Chatterton, B. D. E. 2017. Exceptionally-preserved late Cambrian fossils from the McKay Group (British Columbia, Canada) and the evolution of tagmosis in aglaspidid arthropods. Gondwana Research 42, 264–79.Google Scholar
Lin, J.-P., Ivantsov, A. Y. & Briggs, D. E. G. 2011. The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia 44, 344–9.Google Scholar
Miller, S.A. 1877. The American Paleozoic fossils. Cincinnati, OH. The author, 334 pp.Google Scholar
Muller, K. J. & Walossek, D. 1987. Morphology, Ontogeny and Life Habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Universitetsforlaget, Oslo University, Oslo, Fossils and Strata 24, 124 pp.Google Scholar
Novozilov, N. 1962. Klass Merostomata. Mečehvosty. In Osnovy Paleontologii. Spravočnik diȃ la Paleontologov i Geologov SSSR. Členistonogie, Trahejiye i Helitserovye (ed. Rodendorf, B. B.), pp. 386401. Moscow: Izdatel'stvo Akademii Nauk SSSR.Google Scholar
Obruchev, S. 1932. The Tungus coal Basin (southern and western parts). Volume 1. Geological Sketch. Transactions of the United Geological Prospecting Service of the USSR, Fascicle 164, 237 pp.Google Scholar
Ortega-Hernández, J. 2016. Making sense of ‘lower’ and ‘upper’ stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848. Biological Reviews of the Cambridge Philosophical Society 91 (1), 255–73.Google Scholar
Ortega-Hernández, J., Braddy, S. J., Jago, J. B. & Baillie, P. W. 2010. A new aglaspidid arthropod from the Upper Cambrian of Tasmania. Palaeontology 53, 1065–76.Google Scholar
Ortega-Hernández, J., Legg, D. A. & Braddy, S. J. 2013. The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. Cladistics 29, 1545, doi: 10.1111/j.1096-0031.2012.00413.Google Scholar
Ortega-Hernández, J., Van Roy, P. & Lerosey-Aubril, R. 2016. A new aglaspidid euarthropod with a six-segmented trunk from the Lower Ordovician Fezouata Konservat-Lagerstätte, Morocco. Geological Magazine 153, 524–36.Google Scholar
Owens, R. M. 1973. British Ordovician and Silurian Proetidae (Trilobita). Palaeontographical Society, Monograph, 98 pp.Google Scholar
Peel, J. S. 1979. Anatolepis from the Early Ordovician of East Greenland – not a fishy tail. Rapport Gronlands Geologiske Undersogelse 91, 111–15.Google Scholar
Peel, J. S. & Higgins, A. C. 1977. Anatolepis – a problematic Ordovician vertebrate re-interpreted as an arthropod. Rapport Gronlands Geologiske Undersogelse 85, 108–9.Google Scholar
Raasch, G. O. 1939. Cambrian Merostomata. Geological Society of America, Special Paper 16, 146 pp.Google Scholar
Rak, Š., Bergström, J., Fatka, O. & Budil, P. 2009. The Upper Ordovician arthropod Zonozoe drabowiensis Barrande (Libeň and Letná formations, Sandbian, Barrandian area, Czech Republic). Bulletin of Geosciences 84, 184–8.Google Scholar
Repina, L. N. & Okuneva, O. G. 1969. Cambrian arthropods of the maritime territory. Paleontological Journal 3, 95103.Google Scholar
Rozov, S. N. 2009. New Ordovician Aglaspidiodes arthropods from the Siberian Platform. In New Data on the Stratigraphy and Palaeontology of the Lower Palaeozoic of Siberia (eds Varlamov, A. I., Rozova, A. V., Rozov, S. N. & Efimov, A.S.), pp. 6289. Siberian Scientific Institute of Geology, Geophysics and Mineral Materials. Ministry of Natural Resources and Ecology of the Russian Federation, Novosibirsk.Google Scholar
Schmidt, F. T. 1886. A survey of fossils found in the Vilyui Territory. In Vilyui District of the Yakutsk Region (Maak, R., Viliuiskii okrug Iakutskoi obl.) (ed. Maak, R.), c. 2, pp. 355–66. A. Transhei, St Petersburg.Google Scholar
Shirley, J. 1936. Some British trilobites of the family Calymenidae. Quarterly Journal of The Geological Society of London 92, 384421.Google Scholar
Siveter, D. J. 1996. Calymenid trilobites from the Wenlock Series (Silurian) of Britain: Transactions of the Royal Society of Edinburgh: Earth Sciences 86, 257–85.Google Scholar
Smith, M. P., Sansom, I. J. & Repetski, J. E. 1996. Histology of the first fish. Nature 380, 702–4.Google Scholar
Torsvik, T. H. & Cocks, R. M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), 524. Geological Society, London, Memoir no. 38.Google Scholar
Van Roy, P. 2006. A new aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Transactions of the Royal Society of Edinburgh: Earth Sciences 96, 327–50.Google Scholar
Waggoner, B. 2003. Non-trilobite arthropods from the Silver Peak Range, Nevada. Journal of Paleontology 77, 706–20.Google Scholar
Walcott, C. D. 1912. Cambrian geology and paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections 57, 145229.Google Scholar
Wang, Z.-H., Bergström, S. M. & Lane, H. R. 1996. Conodont provinces and biostratigraphy in Ordovician of China. Acta Palaeontologica Sinica 35, 159.Google Scholar
Wang, Z.-H. & Luo, K.-Q. 1984. Late Cambrian and Ordovician conodonts from the marginal areas of the Ordos Platform, China. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica 8, 237316 (in Chinese with English abstract).Google Scholar
Westermann, G. E. G. 1973. Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6, 383403.Google Scholar
Ye, J.-A., Yang, Y.-Y., Xu, A.-D., Zheng, B.-Y., Zuo, Z.-F., Song, G.-C. & Li, J.-S. 1996. Middle Ordovician reefs in the region north of the Weihe River, Shaanxi Province. In The Ancient Organic Reefs of China and their Relation to Oil and Gas (ed. Fan, J.-S.), pp. 3947. Beijing: Oceanographic Publishing House (in Chinese).Google Scholar
Zhang, Y.-B. 1998. Latest Llanvirn-middle Caradoc faunal differentiation of nautiloids, North China Block. Palaeoworld 10, 40.Google Scholar
Zhen, Y.-Y., Wang, Z.-H., Zhang, Y.-D., Bergström, S. M., Percival, L. G. & Cheng, J.-F. 2011. Middle to Late Ordovician (Darriwillian-Sandbian) conodonts from the Dawangou Section, Kalpin Area of the Tarim Basin, northwestern China. Records of the Australian Museum 63, 203–66.Google Scholar
Zhou, Z.-Y., Ni, Y.-N., Lin, H.-L., Zhou, Z.-Q. & Yu, F. 1996. Palaeogeographic development during the Ordovician. In Phanerozoic Geology of Northwest China (eds Zhou, Z.-Y. & Dean, W. T.), pp. 7182. Beijing: Science Press.Google Scholar
Zhou, Z.-Y., Zhou, Z.-Q. & Zhang, J.-L. 1989. Ordovician trilobite biofacies of North China Platform and its western marginal area. Acta Palaeontologica Sinica 28, 296313 (in Chinese with English summary).Google Scholar
Zhu, X.-J., Peng, S.-C., Zamora, S., Lefebre, B. & Chen, G.-Y. 2016. Furongian (upper Cambrian) Guole Konservat-Lagerstätte from South China. Acta Geologica Sinica 90, 30–7.Google Scholar
Supplementary material: Image

Siveter supplementary material S1

Supplementary Figure

Download Siveter supplementary material S1(Image)
Image 3.2 MB
Supplementary material: Image

Siveter supplementary material S2

Supplementary Figure

Download Siveter supplementary material S2(Image)
Image 3.7 MB
Supplementary material: File

Siveter supplementary material S3

Siveter supplementary material

Download Siveter supplementary material S3(File)
File 212.5 KB
Supplementary material: File

Siveter supplementary material S4

Siveter supplementary material

Download Siveter supplementary material S4(File)
File 5.9 KB