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(Received 2nd August 1984)

0. Introduction

In this paper we analyse the electrical behaviour within systems of long and short
coupled nerve axons by using a geometric approach to obtain a priori bounds on
solutions. In [4] we developed a general model for a bundle of n-uniform unmylinated
nerve fibres. If FitzHugh-Nagumo dynamics, [3] are used to describe the ionic
membrane currents, then the model takes the form

Wt = MWxx + F(W)-Z
(*)

Z, = aW-yZ.

Here W = (wu...,wn)
T denotes the membrane action potentials for each fibre in the

bundle and Z=(z1,...,zn)
T represents the recovery variables for each fibre, which

control the return to the resting equilibrium after any transmission of signals.
F: Kn-> W is a continuous nonlinear vector field and a and y are non-negative diagonal

matrices. The electrical interaction between separate fibres within the bundle is
controlled by the matrix M, which is taken to be of the form

M = AJ-ocB

where / is the identity matrix on W, B is the adjacency matrix for a graph on n-vertices
representing the location and interaction of the fibres in cross-section, and A and a are
positive constants (see [4]).

We assume that the bundle is semi-infinite, and seek solutions of (*) for x^O, £^0,
when appropriate Dirichlet boundary conditions are applied at x = 0. Such conditions
may be thought of as modelling a stimulus provided by synaptic transmission between
axons further down the bundle.

Numerical and physiological evidence suggests that a strong stimulus of short
duration or a weak stimulus of long duration is sub-threshold, i.e. the resultant
potentials within the bundle will decay to the inactive rest-state. We show that for zero
initial data, and compactly supported boundary data the solution of (*) is bounded for
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all time by a constant multiple of the total stimulus, and that if the stimulus is
sufficiently small, the solution has exponential decay.

M. Schonbeck [7] considers a similar problem for the FitzHugh-Nagumo equations,
and our analysis, like hers, requires the existence of certain contracting blocks for the
associated vector fields, (see [6] and[4]).

Finally we show that if the bundle is assumed to be of finite length L, then the resting
equilibrium is globally stable when L is small enough.

Although we obtain results concerning the action potentials for each fibre within the
bundle, we do not gain much insight into the precise nature of ephaptic stimulation
between fibres. An alternative approach using comparison principals and explicit
solutions for a simplified twin fibre problem yields more qualitative information for this
problem (see [5]).

1. Existence of solvability of solutions

Firstly we consider a general system of coupled non-linear diffusion equations and
ordinary differential equations. We state two theorems which are due to Schonbeck [7],
which provide a base from which we can go to discuss boundary value problems for
coupled nerve fibre models.

Before proceeding we pause to make the following definitions.

Definition 1.1. Let p:[0, oo)->lR be a bounded continuous function with support
contained in [0,so]. Then we define the norm II-IL by

If P(s) = (pl(s),...,pm(s))T is such that for k=l,...,m, pk:[0,oo)-»IR is a bounded
continuous function with support in [0,s0] then we extend the norm 11 -11 -̂  by defining

m

\\P\U.n= I Nil-
k = l

If the a s sumpt ion of c o m p a c t suppo r t is d ropped we define the n o r m HHco by

| | I U |
and

m

..-=4Z N l -4Z

Fina l ly if W e i ™ , where W=(wu...,wm)T, say, then we define the n o r m ||||m on
by
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We consider a general system of the form

V, = BVXX + G(V) x^0,t^0 (1.1)

where V is a function of two independent variables x and t, and V(x, t) e W; G is a
smooth vector field over IRm satisfying G(0) = 0 and B is a non-negative mxm diagonal
matrix say B = dmg(bub2,...,bm).

We will assume that the equations have been ordered so that for some integer p we
have

bk>0 for lg / cg

bk = 0 for

If p^O, then in order to have a well posed problem, we will impose some boundary
conditions at x = 0. Firstly we adopt the following conventions. Let BC(R+,IRm) denote
the space of continuous bounded functions from (R+ to Um.

Let
d\J

— ) WeBC(U+,Um); for j=O,...,k

and w(x)->0 as x->oo}

4-)WeLp for

Finalh let B denote any one of the Banach spaces above, and define C([0, T] IB) to be
the sp;ice of continuous functions from the interval [0, T] into B, with norm

||l/||cao.ni«= ^ p \\U{t)\\B.
o g g r '

Returning to (1.1) we write V(x,t)=(vl(x,t),...,vJix,t))T and impose the following
initial and boundary conditions

vk(x, 0)=gk(x)eB for l | B m
(1.2)

for l ^ / c^p .

Notice that the boundary conditions at x = 0 are only given on i^ vp.
A general problem of the form (1.1), (1.2) has been considered by Schonbeck ([7], §2),

who obtained the following two theorems.

Theorem 1.1. Suppose gu...,gm, hu...,hp satisfy hkeB, gkeB, gk(0) = /it(0) for
l^k^p and gkeBnCco for p+l^k^m, then there exists a constant to>0, depending
only on G, g} and hk such that the Dirichlet problem (1.1), (1.2) has a unique solution V in
C([O,to]|B) and | |M|cao.«dW^2(2IHLp| | | |
(Hereh = (hu...,hp)

T and g = (gl,...,gm)
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Theorem 1.2. Suppose that KeC([0,to]|B) is a solution of (1.1), (1.2) and g and h
satisfy

(i) gkeBC°(U+) k = l,...,p

(ii) gkeC°(U+) k = p+l,...,n

(iii) hkeBC(U+) k = l,...,p.

ThenVeCm{Cl) where Q = R+xlR+.

2. Contracting blocks and global existence

We consider the system (*) that is

(2.1)
Z, = aW-yZ

where W(x, t), Z(x, t) e W and a, y, M and F satisfy the following hypotheses.

(i) (T = diag(<7!,...,<rn)> y = diag(y!,...,yn) are diagonal matrices and ab y,>0 for
i = l,...,n.

(ii) M is a real symmetric matrix with strictly positive eigenvalues du...,dn

(iii) There exists a unitary matrix A such that

= D1=diag(d1,...,dn).

(iv) F ( ^ = (f(w1),/(w2))...)/(wn))rwherePy=(w1,w2,...,wn)7-andf{y)=y{\-y){y-a)
for some aE(0,^).

In view of (iii) above we may set U = ATW and obtain the new system

U, = D1UXX + ATF(AU)-ATZ
(2.2)

Z, = aAU-yZ.

Setting V = {U,Z)T we see that (2.2) is of the general form (1.1), so we may apply
Theorems 1.1 and 1.2 when considering the quarter plane Dirichlet problem for (2.2).

Definition 2.1. Let H denote a vector field over IRm and let S denote some bounded
convex set in Rm, with boundary dS.

S is contracting for H if for every W edS and for every outward normal, n, to dS at
W, we have H(W).n<0. If S is of the form 7t"=1 [-ott,/3t] where -<xk<fik,{k= \,...,m)
then it will be called a contracting block.

Also (2.2) is precisely the set of equations discussed in [4] and we state the following
Lemmas which concern the existence of contracting rectangles for the non-linear field G,
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given by

AT{F(AU)-Z)
G{U,Z) = oAU-yZ

(2.3)

Lemma 2.1. There exists a positive constant r, depending only on the matrix A, such
that if

a>r max —

then there exists a block cU2n, containing the origin, which is contracting for G.

Lemma 2.2. If a>rma\1^jSnaj/yj, then there exists a block RccU2n, containing the
origin, with the following property.

For any compact set Q<=int(Rc), there is a block R, containing the origin, and a
constant fc>0, such that QcRcRc, and for all re (0,1] we have, G(U,Z).n<—kz for
all (U,Z)ed(xR), and any outward normal n to d(zR) at (U,Z).

Lemma 2.3. / / 1 ^ n ̂  3, then there exists a block Rc c U2n, containing the origin with
the following property.

For any compact set Q in the exterior of Rc, there exists a block R such that

(i) R
(ii) Q is in the exterior of R and TR is contracting for G(U,Z)for all re [1, oo).

We remark that the hypothesis 1 ^ n ̂  3 in Lemma 2.3, may be relaxed in certain
cases, and we refer to [4] for a fuller discussion of the existence of large contracting
blocks for the field G. We use contracting blocks to define nonlinear functionals on the
solutions of (2.1)

Definition 2.2. Let R be a block in Um. Let | • |R be the norm on Um defined by

i.e. |L/|j,./? is the smallest multiple of R containing the point U.
We define a continuous map, PR:BC-*U by

= sup \W{x)\R.
xeR*

Lemma 2.4. Let G(W) be a vector field over Um and let R be a rectangle in Um with
Oeint(R). Suppose WeC((T-d,T + d)\BC0) is a solution of

\T-t\<3
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such that PR(W(T)) = S and PR(W(T,0))<S where D is a non-negative diagonal matrix. If
there exists n>0 such that for all Wed(SR) and n{W), normal to 3(SR) at W, we have

G(W)n(W)<-ri

then

where L is the length of the largest side of R.
The proof of Lemma 2.4 is almost identical to that of Lemma 3.8, [6]. The extra

condition PR(W(T,0))<S is needed to ensure that W{T,0)$d(SR).

Theorem 2.5. Suppose n ̂  3. Consider the system (2.2) together with initial and
boundary data given by

(t/(0, x), Z(0, x)) = (gl(x),... ,g2n(x))T=g(x)

U(t,O) = (h1(t),...,hn(t))
T=h(t),

where the functions gk,hk satisfy hkeBC, gjeBnBC0, and hk(0)=gk(0) for k = l,...,n;
andgk€CxnB for k = n+l,...,2n.

Then there is a unique solution (U,Z) in C([0, co)\BnBC0).

Proof. By Lemma 2.3 we may choose a sufficiently large rectangle R <= IR2" such that
R is contracting for the vector field G(U, Z) given by (2.3), and

PR(g(x))<l for all x^O.

and

PR(h(i))<l for all t^O. (2.4)

Now, Theorem 1.1 implies the existence of a solution (U,Z)eC([0,to]\B) of (2.2) with
the initial and boundary conditions given above.

We claim that PR(U(i), Z(t))< 1 for 0 < t < t o .
If this were not so then we may set

By the continuity of PR and (2.4) we have f >0.
By Lemma 2.4 we have

Thus for any te(f—e,f) we have PR(U(t),Z(i))>l, where e>0 is chosen small enough.
But this contradicts the definition of I.
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The estimate PR(U(t),Z(t))<l for te[0, to] is the sup norm estimate needed to extend
the local solution to a global solution with PR(U(t))<l for all t^O. Uniqueness
follows directly from the uniqueness of local solutions.

Theorem 2.6. (sup norm estimate theorem). Let 1 gn<3. / / (U,Z)eC([0, oo)|BCo) is a
solution of (2.2) together with Dirichlet boundary data

U(t,O)=(hl(t),..-Mt)) =

satisfying hkeBC for k=l,...,n and h(t) = 0 for t^T, then we have

||(I/(t),Z(t))||eo.2llgconstant||(l/(r),Z(T))||B>,2. for all tZT.

Proof. Since h(i) = 0 for t ̂  T, there exists a rectangle R which is contracting for G,
such that (U(T,x),Z(T,x)) lies in R for all x^O and for t ^ T ^ O

U(t,0) = 0eR.

Thus the rectangle R contains the solution for all time t ̂  T and provides the required
sup-norm estimate.

We remark that the hypothesis n ̂  3 in Theorems 2.5 and 2.6 is required to guarantee
the existence of large contracting rectangles for the field. If the coupling matrix M in
(2.1) is such that large rectangles exist for G, then Theorems 2.5 and 2.6 will apply.

3. The threshold problem

We consider the system (2.2) and seek solutions on the domain U+ x U+ together
with initial and boundary data given by

(l/(x,0),Z(jc,0))=g(x,0) = 0 for all xeU+ (3.1)

U{O,t) = Ht)=(hl(t),...,hJLt))T for all te®+ (3.2)

where each hk is a bounded continuous function satisfying

yo)=o
(3.3)

hk(t) = O for all t^t0

for some constant t0 ^ 0.
Through this section we will assume the following conditions hold on the field G

given by (2.3):
HI: There exists a rectangle i!ccR2", containing the origin with the following

property:
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For any compact set Qczint(Rc), there is a rectangle R, containing the origin and
a constant k>0 such that g c i ? c R c and for all re(0,1] we have G(C/,Z)n< -k%
for all (U,Z)ed(rR) and any outward normal, n, to d(xR) at (C/,Z).

H2: There exists a rectangle Rc<=U2n, containing the origin with the following
property:

For any compact set Q in the exterior of Rc there is a rectangle R such that
RC<=R,Q is in the exterior of R and T:R is contracting for G for all re[l,oo).

Remark. HI is precisely the consequence of Lemma 2.2 and, by Lemma 2.3, H2
certainly holds if n = 2 or 3. We make these hypotheses so that the Global Existence and
Sup Norm Estimate Theorems of §2 apply to the Dirichlet problem (2.2), (3.1), (3.2).

Returning to (3.2), since hk is a bounded continuous function, for each k, there is a
positive constant Mo such that

(3.4)

(Conversely H/ iH^^Mo implies H ^ H ^ M , , for all k = l,...,n.)
For k = 1,... , n define the following functions:

Kk(t, y, x) =-fL= {exp (-(y- x)2/4dkt) - exp {-(y + x)2/4dkt)} (3.5)
•J4dktn

Hk(t,x)=-2$hk(s)
dKk(t-s,y,x)

o dy
ds

(dk(t-s))3'2

Then if (U(x,t),Z(x,t)) is a solution of (2.2) subject to (3.1) and (3.2) then the
components uk(x, t), Zj(x, t) satisfy

uk(x, t) = Hk(t, x) + j J Rk(t - s, y, x)Gk(U(y, s), Z(y, s)) dy ds (3.7)
0 0

j(x, t) = j Gn+j(U(x, s), Z(x, s)) ds, (3.8)

where Gm is the mth component of the field G, given by (2.3).
Also from (2.2) we have

using Zj(x,0)=0, we may rearrange and integrate between 0 and t, to obtain
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which we write as the vector equation

Z(x,t) = a\ens't)AU(x,s)ds. (3.9)
o

The following Theorem is the main result of this section, and is a generalization of a
theorem due to M. Schonbeck, who proves the same result for the FitzHugh-Nagumo
equations ([7], Theorem 5.1).

Theorem 3.1. Suppose HI and H2 hold. For all T>t0, there exists a constant k* =
k*{T,to,Mo,G,D), growing at most like max{l/(T-£0),exp(r)} such that, if(U,Z) is the
solution of (2.2) subject to (3.1), (3.2), then

||(l/(-,t),Z(-,t))|U,2,,^*IHIi.n faraU tZT.

Proof. By the Global Existence Theorem 2.5, there is a unique solution (U,Z) to
(2.2), (3.1) and (3.2) and a constant k~ such that

\\(U(t,x),Z(t,x))\\2n^k~ for all x^O, t^O.

The non-linearity G is smooth and G(0) = 0. Since (U,Z) ranges over a bounded set,
there is a constant k~> 0, such that

\\G(U(x,t),Z(x,t))\\2n^k-\\(U(x,t),Z(x,t))\\2n for all x^O, tZO. (3.10)

We also note that for each k= 1,..., 2n we have

0^\Gk(U(x,t),Z(x,t))\^\\G(U(x,t),Z(x,t))\\2n. (3-11)

Now

||(C/(x,0,Z(x,0)||2n= t {\uk(x,t)\ + \zk(x,t)\} (3.12)

(from the definition of | | | |m in §2). So we will prove the following two inequalities

|M f c(7»| ^constant (T, t0, Mo, G, D). ||/i||1>n

for all k = l,...,n for T>t0, and (3.13)

all x^O

|zt(7;x)|gconstant(7:t0,M0,G,Z)).||/i||1>n for

all k = \,...,n for T>t0 and (3.14)

all x^O.

Then the "sup-norm estimate" Theorem 2.6 in §2 implies the desired result.
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Proof of (3.13). Let t^T>t0. Using (3.7) and (3.8) we obtain

\uk(x,t)\^\Hk(t,x)\ + \]Kk(t-s,y,x)\Gk(U(y,s),Z{y,s))\dyds (3.15)
o o

and

\zk(x, t)\ £ J \Gn+k(U(x,s),Z(x,s))\ds (3.16)

Consider (3.6), hk(t) = O for t^t0, so

Inconstant} i-^-ZJ
 1/2 —*v 'J ds

but

= e x p [ - x2/4dk(t - s)] g constant (dt)

for all x^O and se[0,to].

Thus

\Hk{t, x) | g constant J
o
J ^^
o (t —s)

constant ' s , , . . . . constant

Thus

\Hk(t,x)\^ constant ( r . ^H^Hi . (3.17)

This provides the estimate for the first term on the right hand side of (3.15). Notice
II^I IJ^H/I I I ! „. To estimate the second term in (3.15) we use (3.11) and (3.10) to bound
jGk{U,Z)\, again choosing t^T>t0.

]]Kk(T-s,y,x)\Gk(U(y,s),Z(y,s))\dyds
o o

(3.18)
Too

;g£J j Kk(T-S,y,x)\\U(y,S),Z{y,S)\\2ndyds.

Now from (3.5) we see that
^ ^ for all x,y>0. (3.19)

S)
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Since the numerator of Kk is bounded above by exp[—(y—x)2/4dk(T—s)]^l then using
(3.19) in (3.18) we obtain

Too

J J Kk(T-s,y,x)\Gk(U(y,s),Z(y,s))\dyds

Thus we need to show that

T<°\\U(y,s),Z(y,s)\\2n ]M0,G,T0)-\\h\\Un. (3.20)

This, together with (3.18), (3.17) and (3.15) will imply (3.13) as required.
In order to establish (3.20), we will prove the preliminary result

T ao

j j \\U(x,s),Z(x,s)\\2ndxds^constant(T,M0,G,t0,D).\\h\\Un. (3.21)

Using (3.12), (3.15), (3.16) and (3.10) we obtain for O^t^T

\]\\U(x,s),Z(x,s)\\2ndxds

f j j J j Kk(s-q,y,x)\\(U(y,q),Z(y,q))\\2ndydqdxds
0 0 0 0

l\]]\\(U(x,q),Z(x,q))\\2ndqdxds}. (3.22)

Rewrite the right hand side of (3.22) as

n

l c = l

Changing the order of integration in IIk we have

//* = } J } J Kk(s-q,y,x)\\(U(y,q),Z(y,q))\\2ndxdqdyds
0 0 0 0

= } I f \\(Wy,q),Z(y,q)\\2n]Kk(s-q,y,x)dxdqdyds.
0 0 0 0
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Using (3.5) and deleting the term in exp(—(x + y)2/4dk(s —q)) we can bound II k above
by

//, = } J 1 ||(^),Z(y,«))||2n f
o o o o

Now

°° exp(-(y-x)2/4dk(s-q))

o (4d()y»

^ constant

for all y^O, s>q^.O.

Thus

//^constant j J } \\(U(y,q),Z(y,q))\\2ndqdyds.

Comparing the right hand side with IIIk, we see that (3.23) implies

IIk + IIIk^constant j J J \\U(x,q),Z(x,q)\\2ndqdxds. (3.24)
0 0 0

Now returning to (3.22), we have

r ? ? l̂ kC^)lx exp(— x2/4dfc(s — q)) , , ,
/ inconstant I I I !—- ,̂,., ,,.., dqdxds

o o o {s-qyl2dl12

and on rearranging the order of integration

T <? t t r li. / \\ r 1 ? 2xexp(-x2/4^(s-g))
/^constant J |Mg) | j^1 / 2 ( s _ g ) 1 / 2 j 4dk(s-q) dxdsd4-

Now

so

1
/^constant(4) } \hk(q)\ f

o «
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Now

Thus

all t>q>0.

r
/^constant j tU2\hk(q)\dq

o

^constant T1/2 \\hk(q)\dq
o

^constant

Now using (3.24) and (3.25) in (3.22) we obtain

\]\\(U(x,s),Z(x,s))\\2ndxds

j J ]\\(U(x,q),Z(x,q))\\2ndxdqds.

(3.25)

(3.26)

Now applying Gronwall's inequality to (3.26) we obtain the estimate (3.21) as required.
Now we must establish (3.20), which in turn establishes (3.12). In a similar manner to

that by which we obtained (3.22) we have

\\(U(y,s),Z(y, \\2

(T-s)1'2

{! n (/-
T oo s conU H ^oooo('—

4(s-q)dk
dq dx ds

Say

ll
0 0

^constant £ {IVk+ Vk+ VIk}.
k l
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Now Vk ̂  constant VIk, by the same argument used to obtain (3.23). Thus we have

ffi
0 0 0

T J co s

^constant ^——-^jj ^J\(U(x,q),Z(x,q))\\2ndqdxds

Constant ||fc|| l i a J ^ p (3-28)

using (3.21).
Now rearranging the order of integration in IVk we obtain

J J/^constant J | ^ ) | J ^ p ^ r y i ?

Continuing as we did to obtain (3.25) we have

\ \ ]/^constant j \hk(q)\ ] ^ -

But

1 _
)1/2 ^

Thus
r

IVk^constant J |/

^constant ||li||ljB. (3.29)

Now using (3.28) and (3.29) in (3.27) we have (3.20) as required. This proves (3.13).

Proof of (3.14). From (3.9) we have

Z(x,t) = a\ ens-')AU(x,t)ds
o

so

0 *=1
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where

ff=max{ffJ} and y = min{y,}. (3.30)
j )

Now using (3.5), (3.6) and (3.15) we have for k= 1,...,n;

T s oo

(s-q)3

" H I Kk(S-q,y,x)\\(U(y,q),Z(y,q))\\2ndydqds\

T T x

^constant J \hk(q)\ J -Jf2-exp(-x2/4dk(s-q))dsdq
O q \S q)

T. s. °? ||(C/(y>fl),Z(y,q)) Un
+ constant J ) J -^—-—dydqds (3.31)

o o o (s — q)

where we have used (3.19) to bound Kk.
Now consider

f * exp(-x2/4dk{s-q))ds = J.
q I s H)

Set z = x/(y/s — q), then

00

J g j exp (— z2/Adk) dz=constant,
o

Thus the first term on the right of (3.31) is bounded by a constant multiplied by ||A||i,M-
Consider the second term in (3.31)

Y^\\U{y,g),Z{y,g)hn

o o o (s — q)

T oo T 1

= J J \\U(y,q),Z(y,q)\\2n J z znidsdydq.
o o q (s — q)

But
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Thus the right hand side of (3.31) is bounded above by

constant \\h\\Un + constent\]\\(U(y,q),Z(y,q))\\2ndydq

^constant \\h\\l<n, using (3.21).

Thus (3.30) is bounded above by a constant multiple of \\h\\Un, which establishes (3.14),
and proves the theorem.

Remark. The growth of k* follows from the constant in (3.17) which is 0((T—to)"1)
and the constant in (3.21) which is obtained via Gronwall's inequality.

4. Stability via contracting rectangles

In this section we study the stability of the zero solution of (2.2), (3.1) and (3.2). We
show that if ||/i||i>B is sufficiently small, then we have exponential decay.

Theorem 4.1. Suppose that HI of §J holds. Then there exist positive constants c, k and
X such that if

then the solution (U(x,t),Z(x,t)) of the Dirichlet problem (2.2), (3.1), (3.2) satisfies

where k and k depend on T, t0, Mo and G and c depends on G.

Proof. It suffices to show that for t^.t0 and x>0 there exists a rectangle RcRc,
contracting for G(U,Z), with the property

DPR((U(t),Z(t))^-cPR(U(t),Z(t)). (4.1)

To construct R, recall that by Theorem 3.1,

\\(U(;t),Z(-,t)\\Xt2n^k\\h\\Un t>t0.

Thus if ||Jii||i,B is sufficiently small, there is a compact set QdntRc (see HI, §3) such
that (U(t, x), Z(t, x)) e Q for all x^O. Hence there is a contracting rectangle for G such
that

PR((U(;t),Z(;t)))<l for t>t0.

We divide the proof that R has the property (4.1) into two cases. Suppose t>t0:
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(a) If t is such that

PR({U(; t), Z{; t))) > PR((U(0, t), Z(0, t)))

then Lemma 2.4 immediately implies (4.1).

(b) If t is such that

PR((U(;t), Z(; t))) = PR((U(0, t), Z(0, iff)

let

PR((U(-,t),Z{-,t))) = s and set

X = {x:(U(x,t),Z(x,t))ed(sR)}.

Then X is not empty, since 0 e X and X is compact since

Let © = ©1u{0}, be such that 0 is a bounded neighbourhood of X and O^Qj. For
t^.t0 we have

U(0, t) = 0 and Z,(0, t)=- yZ{0, t)

by hypothesis on h.
Thus Z(0,t + rj) = e~y"Z(0,t), which implies

DPR((U(0, t + r,),Z(0, t + r,))) = -PR((U(0, t + r,),Z(0, t + rj)))7< ~ •

So for |^| small,

^ ^ y (4.2)

Note by the proof of the Basic Lemma, §3.2, [6], there is a constant kl >0 depending
on R such that

(i) If \ri\ is small and

P^U&t + riZ&t + m^l-ktf). (4.3)

(ii) If \t]\ is small and xeR+ — &

S(l-kltl). (4.4)
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Now by (4.2), (4.3) and (4.4) we have for t>t0, x^O

where /c2 = min(fe1,y/2).

Thus DPR((U(-,t), Z(-,t)))^ -k2s which implies (4.1).
Putting parts (a) and (b) together we see that (4.1) is satisfied for all t>t0. Therefore

there exist positive constants k and c such that

for all t^O. This proves the theorem.

5. Global stability of zero for short nerve bundles

Consider the following model for a nerve bundle of length L > 0

, = MWXX + F(W)-Z
(5.1)

Here W{x,t),Z(x,t):[O,L]xU+->W, and a,y and F are as in (*), which is described
in the Introduction, §0. In particular, M is a real symmetric matrix with eigenvalues
dl,...,dn satisfying

We impose the following initial and boundary conditions on W and Z

W(x,0) = Wo(x);Z(x,0)=Zo(x), O^xrgX (5.2)

W(0,i) = h(t), t^O (5.3)

and either;

W(L,t) = 0, t^O (5.4)

or

(5.5)

Here Wo, Zo and h are prescribed functions and P is a real (n x n) matrix, such that the
product MP is positive definite.

We suppose that the stimulus h(t) is non-zero only over a finite time interval [0,t]
say. Then for l ^ T, (W,Z) satisfies a mixed problem with homogeneous boundary data.

https://doi.org/10.1017/S0013091500022689 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022689


INITIAL BOUNDARY VALUE PROBLEMS 267

Theorem 5.1. Suppose (W,Z) is a classical solution of (5.1)—(5.3) and one of (5.4) or
(5.5) and h(t) = O for t = T.

Set

s= max
* = 1 "

Then

implies

for some constants K, a > 0.

Proof. Suppose (W,Z) is a solution of (5.1)-(5.3) and one of (5.4) to (5.5). Using (5.1)
to express WTW, + ZTa~lZ, we obtain

^ !-{Zr<7-1Z+ WTW\ = WTF(W)-ZTa-1yZ+ WTMWXX.
2 at

Integrating with respect to x over [0, L], we obtain

\^]{ZT(j-lZ+WTW)dx=){WTF{W)-ZTo-lyZ+WTMWxx)dx. (5.6)
2 ot o o

Now

j WT.MWXX = - | ^jM^rfx + EW^MWyi
0 0

Now

W(0,t)TMWx(0,t) = 0 for t^T

by (5.3) and hypothesis on h. Either

W(L, t)T. MWX{L, t) = 0 by (5.4)

or

W(L, i)T. MWX(L, t)=- W(L, t)T. MPW(L, t)

= 0 by hypothesis on M and P.
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f WT • MWxxdx£ - j WlMWxdx
o o

(5.7)

where n=(n/2L)z is the smallest eigenvalue of the operator 82/dx2 with Dirichlet
boundary conditions at x = 0, and Neumann boundary conditions at x = L (see[2],
Chapter 6).

Now, for k = l,...,n, set sk = supylsR{fk(y)/y} (see Figure 1 below).

v - sky

Figure 1

Then

Let s = maxk{s/k}. Then

for all yeU.

sWT.W^WT.F(W) for all WeW (5.8)
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Using the estimates (5.7) and (5.8) in (5.6), we obtain

\ ^ \ ( W W + ZoZ)^U(snd1)WWZy<jZ)dx. (5.9)
2 ot o o

If s<ndl in(5.9), then

I K l l I K l U for t>T,

where C 1 =min{l ,a j ~
1 }>0

and C2 = min {yj/ff;, (ndt — s)} > 0.

It follows that ||(W;Z)||t2([oit]) decays exponentially for t^T. Since j|(PK-Z)||x.3<to.r.» i s

bounded for t e [0, t), the result follows by noticing that \idr > s is equivalent to

L2<n2dJ4s.
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