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VECTOR INVARIANTS OF SYMMETRIC GROUPS 

BY 

H. E. A. CAMPBELL, I. HUGHES, AND R. D. POLLACK 

ABSTRACT. Let M be a free module of rank n over a commutative ring 
R with unit and let X„ denote the symmetric group acting on a fixed basis 
of M in the usual way. Let Mm denote the direct sum of m copies of M and 
let S be the symmetric ring of M™ over R. Then each element of X„ acts 
diagonally on Af" and consequently on S; denote by Xn the subgroup of 
GliM"1) so defined. The ring of invariants, SLn, is called the ring of vector 
invariants by H. Weyl [ 3, Chapter II, p. 27] when R — Q. In this paper 
a set of generators valid over any ring R is given. This set of generators is 
somewhat larger than Weyl's. It is interesting to note that, over the integers, 
his algebra and S1" have the same Hilbert-Poincaré series, are equal after 
tensoring with the rationals, and have the same fraction fields, although they 
are not equal. 

0. Introduction. Let M be a free module of rank n over a commutative ring R with 
unit and suppose z\,..., zn is a basis for M. Let Z„ denote the symmetric group of all 
permutations of the zt. Let AT = M ® • • • 0 M (m copies); then M™ is a free module 
of rank mn. Denote by zu, •.., zni a basis for the ith copy of M in Mm. The symmetric 
/^-algebra S of M™ over R is isomorphic to the polynomial ring R[z\\,.. >,znm\- Each 
element g in Z„ acts diagonally on Mm, that is, g(zij) — Zgay. The reader might find it 
useful to think of the matrix of indeterminates 

/ Z\\ Z\2 . . . Z\m\ 

Z2\ Z22 • . . Zlm 
Z = * ' • ' * 

\ Zn 1 Zn2 • • • Znm I 

Elements of Zn act by permuting the rows of Z. Zn acts as a group of degree-preserving 
^-algebra automorphisms of S. The ring of invariants, Sln, is called the ring of vector 
invariants of Z„ by H. Weyl [3, Chapter II, p. 27] who computed a set of generators 
called 'generalized elementary symmetric functions' when R = Q, R, or C—see [3, 
pp. 36-39]. One can also find a brief discussion of this ring when R = C in Stanley's 
expository article [2, example 5.3, pp. 492-493]. 

In this paper a set of generators valid over any ring R is described (see Theorem 4.1). 
This set of generators is somewhat larger than Weyl's. It is interesting to note that over 
the integers his algebra and 5Z" have the same Hilbert-Poincaré series, are equal after 
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tensoring with the rationals, and have the same fraction fields, although they are not 
equal. 

The paper is organized as follows. Section 1 sets notations and conventions and dis­
cusses a homogeneous basis for the ring of invariants. In section 2, following a sug­
gestion of the referee, a partial order on the sequences comprising the columns of an 
'exponent' matrix is defined—this provides the key step in the proof of the main the­
orem. Section 3 discusses a set of exponent matrices which determines the generators 
for the ring of invariants. Section 4 is devoted to the main theorem (4.1). Finally, in 
Section 5 Weyl's algebra is shown not to equal the ring of invariants over Z, although 
they are equal over Q. 

We would like to thank D. Richman for detecting errors in an early version of this 
paper. In addition, Richman has a version of the main theorem, although his set of gen­
erators is somewhat larger than ours—see the remark following the proof of 4.1. We 
would also like to express our gratitude to the referee, who offered many suggestions 
and improvements, found errors, and even pointed out that we had proved more than we 
originally claimed. 

1. Preliminaries. Let / be any n x m matrix of non-negative integers. Then z1 de­
notes the monomial z\\ • • • zfy and / is called an exponent matrix. Denote the degree of 
z1 by | / | . Let 0(zJ) be the orbit of z1 under £„, that is, 

Otf) = {z'\3geInwithg(zr) = z!}. 

Write g(J) = I if g(zJ) = z1 and 0(1) = {J | 3g G Z„ with g(J) = / } . Note that 
J G 0(1) if and only if J is obtained from / by some permutation of the rows of /. In 
particular, if J G 0(1), \J\ = |/ | . 

Let s(I) = EyeO(/) ̂  a nd observe that s(I) G Sz\ for all /. 

LEMMA 1.1. {s(I) \I\ = t} is a basis for St", the homogeneous polynomials of 
degree t invariant under the action of^Ln. 

PROOF. Omitted. • 

2. A partial order on columns of exponent matrices. Elements of £n acts on any 
sequence a = (a i , . . . ,an) of n non-negative integers by permuting the entries of a; 
denote the orbit of a under this action by 0(a) and define the stabilizer of a, Stab(a), 
to be {g G Zn I g(a) = a } , a subgroup of Zw. Note that each orbit 6>(a) contains a 
unique sequence b = (bi , . . . ,b„) in descending order b\ > b^ > • • • > bn. Given 
two sequences in descending order b = (b i , . . . , bn) and c = (c i , . . . , cn) define b < c 
if £/=i bi < E/=i ct for 1 < r < n. This is a partial order on the set of descending 
sequences. Write 0(a) •< O(b) if a and b are in descending order with a < b. This is a 
partial order on the set of orbits. 

Sequences are added component by component. 

LEMMA 2.1. Suppose a and b are two sequences in descending order (so a + b is 
also). Ifc G O(a) andd G O(b) have the property that c + d is in descending order, then 
c + d -< a + b with equality if and only ifc = a and d = b. 

PROOF. Omitted. • 

https://doi.org/10.4153/CMB-1990-064-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1990-064-8


1990] VECTOR INVARIANST OF SYMMETRIC GROUPS 393 

Denote by P the ith column of the n x m exponent matrix /. Say exponent matrices 7 
and K cohere if there exist g\,...,gm Gl„ such that gi(Jl) and gi(Kl) are in descending 
order for i = 1, . . . , m. 

LEMMA 2.2. Suppose the exponent matrices J and K cohere. Then 
(1) IfL G 0(7) and M G O(K) and ifL + M = J + K, then L = J and M = K; 
(2) If g G I„, then for 1 < i < m, Oif+giK1)) < Oif + K1), with equality if and only 
if g G Stab(7,')Stab(tf/). 

PROOF. Choose g\,..., gm G X„ so that gt(Jl) and gt(Kl) are in descending order. 
(1) SincegiW + giiM) = giiU+M1) = gtif + K1) = gi(J

l) + gi(K
i) is in descending 

order, gi(Ll) + gi(Ml) is in descending order. Applying Lemma 2.1, gt(Ll) — gi{Jl) and 
gi(Af) = g^K1). So L = f and M = K\ 1 < i < m. 
(2) Choose h G ln so that h(f + g(IC)) is in descending order. But h(f + g(iÔ) = 
h(P) + Ag(A?) ^ g/(7') + giifC) by Lemma 2.1. Hence the first statement. 
If h(f) + hg(K() = gW) + gtiK1) then, by Lemma 2.1, h(f) = g/(7

/) and hg(Kl) = 
#(A*). Thus gr 1 /^ e Stab(AT') and so g G Stab(7/)Stab(^/)- • 

The following lemma provides the key step in the proof of the main theorem (4.1). 

LEMMA 2.3. Suppose J and K cohere and J + K = /. Then 

s{J)s{K) = s(D + YJs{Mr), 
r 

where \Mr\ = |/|, s(Mr) ^ s(I) and 0(Ml
r) < 0(P), 1 < / < m, for each r. If K is 

concentrated in its jth column (L e. Kl = 0, for i ^ j) and Stab(77) C Stab(K^) then 
0{^r)<0{P), for each r. 

PROOF. By Lemma 1.1 s(J)s(K) = ts(I) + £ r s(Mr) for t in R and s(M,) ^ s(I) for all r. 
Monomials which occur in the expansion of s{J)s{K) have exponent matrices g(J)+h(K) 
for some g and /* in E„. By Lemma 2.2 (1) and since J-\-K — I,t — 1. 

Now Mr = g(7) + /i(^) for some g , / iE l„ (in particular | Afr| = |/|) ands(Mr) ^ £(/) 
so that g(J) ^ h(J) and g(£) ^ /z(/Q. Consider s"1 Mr = 7 + g"1 /z(/0 G 0(Mr) with I7/I 
column7/+g-1/z(^).ByLemma2.2(2)0(M^) = OiP+g^KK1)) < 0{J+Kl) = 0(7), 
1 < / < ra, so the first part of the lemma is proved. 

Let K be concentrated in its jth column, so that 7' +g~lh(Kl) — J1 is the ith column of 
g-\Mr) and / alike, for / ^ j . If 0{P + g~x h{RJ)) = 0(JJ+ti) = 0(f) then, by Lemma 
2.2 (2) g"1/* = g'hr for g' G Stab(7>), h' G Stab(A^). So 7> + g~lh(Kj) = 7* + g7i'(#) = 
Jj + g'(Kj) = Jj + Kj = P, since Stab(7>) C Stab(A7). Thusg-!(Afr) = /, a contradiction. 

3. A set of exponent matrices. View each sequence 

a = (a!, . . . ,an) 

of non-negative integers as a function (without changing notation) a : { 1 , . . . , n} —-» N, 
with a(k) = ak. Here N denotes the set of non-negative integers. Define Ker(a) = { k I 
a(k) = 0}. 
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Let Q be the set of exponent nicitrices satisfying / = 0, or both of 
(1) the image of each P is an interval in N; and 
(2) { Ker(/*) I 1 < i < m} has no minimum element. 

The set { Ker(/') I 1 < / < m} is partially ordered by inclusion; a minimum element 
of this set is a set Ker(/') such that Ker(/') Ç Ker(/7), for ally, 1 <j<m. For example, 
if P has all entries positive, then Ker(/') = 0 and so Ker(T) is a minimum element of 
{ Ker(T) | 1 < / < m} . 

Note that J G 0(f) and / G Q implies / Ç Q . 
In fact, it isn't difficult to see that 0 ^ / G £1 if and only if there is an element J in 

0(f) of the form 
E^ y = ' o 

where E is / x m (and has no zero rows), 1 < / < n and where each column of E viewed 
as a function has image an interval in N of the form [0, . . . , k] for k < I — 1. 

4. The theorem. Let K be the exponent matrix which is concentrated in its jth col­
umn where Kj — ( 1 , . . . , 1,0,..., 0)(/ ones) and denote by a^ the orbit polynomial s(K). 
Note that à y is the ith elementary symmetric function in the variables z\j,.. •, znj, so that, 
for example, a\j = z\j + Zy + • • • + znj, and anj = z\jZij • • • znj- Set B = R[Gtj | 1 < / < 
n, 1 < j < m] C SLn C S — R[Zij]', then B is the /?-subalgebra of polynomials left 
invariant under the group (Xn)

m. 
The reader might find it helpful to recall the matrix of indeterminates 

/ Z\\ Z\l . -• Z\m\ 

Z2\ Z22 ••• Zlm 

\ Zn 1 Zn2 • • • Znm I 

Elements of E„ act as permutations of the rows of Z, while elements of (Ln)
m act by 

permuting the entries of each column of Z independently. 
In any event, B is a polynomial algebra over which S and hence Sln is integral. Con­

sequently, Sln is finitely generated as a ^-module; in this situation the a^ are said to be 
a homogeneous system of parameters for S^n. 

Let A be the 5-module generated by { s(I) | / e Q} so that B CA Ç S1". 

THEOREM 4.1. A = S z \ 

PROOF. Since {s(I)} is a basis for S1"1 (by Lemma 1.1) it suffices to show s(/) G A, 
for all / £ Q. _ _ _ 

For each /, let 0(1) be the (I„)m-orbit of /. Partially order these orbits by 0(1) < 0(J) 
if O(P) < 0(f) for all /. The proof proceeds by induction on the ordering of the (Zn)

m-
orbits. The general step of the induction is the same as the first so suppose that s(J) G A 
for all J with 0(J) < 0(1). Define /(/) to be the number of non-zero rows in / and 
suppose /(/) = /. Observe that J G 0(I) implies /(/) = 1(1). 
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CASE (1): For some j , the image of V is not an interval in N. 
Replacing / by an element of 0(1), if necessary, assume that P' = (c\,..., Q, 0 , . . . , 0) 

with c\ > C2 > • • • > Q and this column is not the image of an interval. Let q be the 
least integer for which cq — cq+\ > 2, 1 < q < I. 

Let K be the matrix concentrated in its jth column with A7 = ( 1, . . . , 1,0,..., 0) (q 
ones) so that s(K) = a^ is one of the generators for B.SctJ = I — K. The columns of 
J are those of / except for Jj — (a\,..., au 0 , . . . , 0) where at = ct — 1, 1 < / < q, and 
at = ch q< i<l. Clearly 0(7) < 0(1), so s(J) G A. 

It is easy to verify that J and K cohere. Further, Stab(Kj) D Stab(7y) since Jj is in 
descending order and aq > aq+\. And so by Lemma 2.3 

s(j)s(K) = s(r) + ^rs(Mr\ 
r 

where 0(NEr) < 0(P). But then 0(Mr) < O(f) and so by induction s(Mr) G A for each 
r. Thus s(I) G A in case (1). 

CASE (2): For some j, Ker(/y) is a minimum. 
By case (1) each column of / may be assumed to be the image of an interval in N. 

Replacing / by some element of 0(1), if necessary, and using the minimality of Ker(/7) 
assume that/7 = (c j , . . . , Q , 0 , . . . ,0), with/ > c\ > c2 > • • • > c/ = 1 andQ—1 < ci+\ 
fori < / < / - 1. 

Let K be the matrix concentrated in its jth column with Kj = ( 1 , . . . , 1,0,..., 0) (/ 
ones) so that s(K) = G\J is one of the generators of B. Set J — I — K. The columns of J 
are those of / except that JJ' = (a\,..., au 0 , . . . , 0) where at = ct — 1. Note that s(J) G A 
since 0(J) < 0(1). 

It is trivial to verify that J and K cohere. By Lemma 2.3 

s(J)s(K) = s(I) + Y,s(Mrl 
r 

where ~5(Mr) < 0(1), and Mr £ 0(1). Those terms s(Mr) with 0(Mr) < 0(1) are already 
in A by induction. 

So suppose 0(Mr) = 0(1) and recall Mr = g(J) + h(K) for some g, h G £„. Consider 
the matrix M G 0(Mr) defined by 

M = h~l(Mr) = h~lg(J) + K. 

Notice l(M) > 1(1). 
Suppose l(M) = 1(1). Then the first / rows of M are non-zero, since the first / rows of 

K are non-zero. It follows that 

where E is / x m (E may have zero rows). Observe that h~xg permutes the nonzero rows 
of J so that they all lie among the first / rows of the result—let h' be any element of 
£/ that acts on the non-zero rows of J in the same way. Then h~lg(J) = h'(J). Now 
/ l ' G l / C Stab(^) so M = h'(J) + K = h'(J + K) = h'(I), contradicting Mr £ 0(1). 
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Therefore l(M) > /(/). If 1(1) == n no such terms s(Mr) exist, and s(I) G A. Suppose 
1(f) < n. Consider the matrix N G 0(Mr) defined by 

N=g-xh(Mr) = J + g-xh(K), 

with n > l(N) > 1(1). No column N1 can have Ker(AP) a minimum for / ^ j because 
g~~lh £ Stab(A7) implies Nj has a non-zero entry below row /. Finally 0(Nj) = 0(F) 
implies that the entries in Nj are some permutation of those of P. In particular, Nj has 
n—I zeros. If all the zero entries in W occur in zero rows of TV it follows that l(N) = 1(f) a 
contradiction. Hence some zero entry of M occurs in a nonzero row ofN so that Ker(A^) 
is not a minimum. In this case N and hence Mr G Q so s(Mr) G A. Consequently, s(f) G A 
as required. • 

5. Remark. D. Richman (unpublished) can show that S1" is generated as a B-
module by {s(I) I no entry of I is larger than n — 1}. Indeed Tl"=i(t — Zij) = 
E?=0(—l)1'^!/^1-1' ( w i t n

 <*OJ = 1) yielding Newton's formula (set t = zij) tfj 
= T!}=o(—l)l+l&ijZlrl', inductively, one obtains formulae for zru when r> n. Intuitively, 
these formulae allow one to replace large entries in exponent matrices by smaller entries, 
using elements of B. 

6. An example. H. Weyl's "generalized elementary symmetric functions" do not in 
general generate SZn over Z. Let I4 act on M = Z® Z with basis {x, y} by permutations 
of x and_y. Denote a basis for MJ by {xi,^i,JC2,3^2,^3,^3} with 1 / g G £2 acting by 
g(xi) = yh g(yd = xh 1 = 1,2,3. Then S = S(M3) ^ Z[xi5 y{]. Let £ be the subalgebra 
generated by the elementary symmetric functions. That is, if etj is the 2 x 3 matrix which 
is zero everywhere except for a one in the (/,/)-position, B is generated by s(eu) = xt+yt 
and s(e\i + £2/) = xtyt, i = 1,2,3. 

It follows from the discussion in R. P. Stanley's paper (in particular, see [2, formula 
14, page 492 and the paragraph preceeding proposition 5.4]) that (S ®z Q)Sz is free as 
a module over B 0 z Q with basis {l,s(eu + £2/) = *iyj + */>>/, 1 < / < 7 < 3}. Weyl's 
algebra C C S1,2 is generated by B and 5(^1/ + £2/) = *iyj +Xjyi, 1 < i < J < 3 (see [3, 
pp. 36-39]). 

Now consider/ = s(f) for / = I Q Q Q J . Over Q, / = ^11)^12)^13) -

^(s(e\\)s(e\2 + 2̂3) + s(e\2)s(e\\ + ̂ 23)s(e\3)s(e\\ + £22)), and this expression is unique 
in the free basis over B <S>z Q- So 2/ G C while/ £ C. It also follows that A is not free 
as a ^-module. 

It is interesting and not difficult to see that in general C and A = S1" have the same 
Poincaré-Hilbert series, C 0 z Q = SSn 0z Q, and have the same fraction fields, but 
C ^ S1" for m > 2 and n > 1. 
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