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In this work we introduce the notion of E-ideal, generalizing I. M. H. Etherington's idea. We study the
general characteristics of the lattice of E-ideals in baric algebras, and some properties inherited from an
arithmetic of train polynomials.
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1. Preliminaries

The concept of commutative train algebra over the real or complex field was introduced
by I. M. H. Etherington in [5]. In the same paper the author shows how to obtain train
algebras of rank two and three from an arbitrary baric algebra A. He defines the ideals P
and Qx as the ideals generated respectively by all elements of the form a2 — w(a)a and
a3 — (1 4- k)w(a)c? + Aw(afa, where X e F and a runs over A. Then A/P satisfies the train
equation x2 - w(x)x = 0 and A/Qk satisfies x3 — (1 4- A)w(x)x2 4- Aw(x)2x = 0. He also
shows that N2 c P c N, Qx c N and Qx + % = N (A + n), where N is the kernel of the
weight function of A. In this paper we generalize these constructions and introduce the
class of the E-ideals of an arbitrary commutative baric algebra A, with the purpose of
obtaining train algebras as homomorphic images of A. Before this, we recall some
concepts of genetic algebra theory.

Let F be a field of characteristic not 2, A be a commutative nonassociative algebra
over F of arbitrary dimension. If w : A -*• F is a nonzero homomorphism, the ordered
pair (A, w) is called a baric algebra over F, w is its weight function. For any a e A,
w(a) is the weight of a. The set N = {a e A : w(a) = 0} is an ideal of codimension 1 in
A. Several sub-classes of the class of all baric algebras have been defined along the time
by imposing some finiteness conditions on the baric algebra (A, w), usually with a
background in Population Genetics. As a rule, the ideal N has some property related
to nilpotency. In this direction, we have the Bernstein algebras, which satisfy the
equation (x2)2 = w(x)2x2. There exists an extensive bibliography on this subject.
Another class is formed by those baric algebras satisfying the equation
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x" 4-y,w(x)xn~1 + . . . + yn_lw(x)"~1x = 0, where y , yn_, are elements in the field F
satisfying 1 + y, + . . . + yn_, = 0. These are called train algebras of rank n (if the above
equation is minimal). The study of these two sub-classes has been the major concern
of the researchers in this field in the last 20 years. More recently algebras satisfying
(x2)2 = w(x)3x have been studied. Some generalizations of Bernstein algebras also have
been studied. For general results about these classes (and others not cited here) the
reader can consult [8] and [14].

We review some facts about the ideals P and Qx introduced by Etherington. If A is
a Bernstein algebra with Peirce decomposition A = Fe © Ue © Ze relative to an
idempotent e, then P = (UeZe 4- Z]) © Ze. For general train algebras, the situation is
much more difficult. It is known that train algebras A of rank 3, satisfying
x3 — (1 4- A)w(x)x2 4- Aw(x)2x = 0, where A ̂  \, have a Peirce decomposition relative to
an idempotent e : A = Fe © Ue © Ve. In this case P=UeVe@Ve and Qk = 0 but QI1 = P
if \i ^ k. We have some results for algebras of rank 4. If A satisfies
x4 — (1 4- r 4-s)w(x)x3 +(r + s 4-rs)w(x)2x2 - rsw(xfx = 0 and r, s, \ are distinct
elements in the field F, then A has a Peirce decomposition A = Fe © A\ © Ar © A, (see
[7, Theorem 3.1]) provided A has an idempotent e. If A± = 0 then Qx = P if A ^ r, s and
Q3 = Ar® A], Qr = A,® A). Baric algebras satisfying (x2)2 = w(x)3x also have a Peirce
d e c o m p o s i t i o n A = Fe © A\ © A \ . T h e n P = A\A_i + A \ , Qx = P if X^ —\ a n d
Q_i = Al © A\. See [13] for basic tacts about these algebras.

2. E-ideals

Let (A, w) be a commutative baric algebra of arbitrary dimension over the field
F and let y, , . . . , yn_i be arbitrary elements of F subject to the relation
1 4- y, 4- . . . 4- yn_i = 0. The generalized Etherington's ideal of A (in short, E-ideal)
corresponding to these scalars, is the ideal of A generated by all elements of the
form

a" 4- y,w(a)fl'-
1 4 . . . + 7^iMflTla (1)

where a runs over A. It is usual to call the formal expression

p(x) = x- + y, w(x)xn-1 4-. . . 4- y,_, w(x)"-1 x (2)

a train polynomial of degree n and coefficients y, , . . . , yB_i- Then (1) is the value of
this polynomial on a. The ideal defined above will be denoted by EA{\,yit ...,yB_,)
or EA(p). We denote by £A the class of all these ideals of A when p{x) runs over the
set of all train polynomials. The ideals P and Qx are denoted now by £4(1,—1)
and EA(1,—(I + A), X) respectively. Note that the powers a1 in (1) are the principal
powers defined by a1 = a, a2 = aa, a3 =(aa)a, ..., an = d'~la. Observe also that
w(a" + y1w(a)an-1 + . . . + yB_, w(a)n"'a)=(l 4- y, 4-. . . 4- y ^ M a ) " = 0 so that EA(p) c N
for all p(x). This allows us to form the quotient algebra A/EA{p) and to consider
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the induced homomorphism w : A/EA(p) -*• F given by w(a + EA(p)) = w(a). Then
w^O and the baric algebra (A/EA(p), w) satisfies the equation a" + ylw(a)a"~i + . . .
+ yn-|W(fl)n~!5 = 0 for a = a + EA(p). Clearly EA{p) is the smallest ideal of A
contained in N, such that A/EA(p) is train satisfying p(x) = 0. Then (A, w) is already
a train algebra if and only if {0} 6 £A. For future use, we introduce the following
definition.

Definition. Let Q be a fixed class of baric algebras over F. Two train polynomials
p(x) and q(x) are equivalent modulo Q if EA(p) — EA(q) for all A eQ. (In particular,
when SI = {A}, a unitary class, the equivalence classes, modulo Q, of train polynomials
correspond bijectively with the ideals in £A.)

3. An example

In general, given the baric algebra A, the determination of SA is a hard task. We
present now an example of this calculation for infinite dimensional algebras, showing
that £A may be a small or large set. In the forthcoming sections, we deal with algebras
satisfying some finiteness condition, which will imply that £A is finite. We shall use here
the fact (to be proved in the next section) that EA(p) is generated by all p{a) such that
w(a) = l.

Suppose A is an infinite dimensional vector space over an infinite field F with a
countable basis {c0, c,, c2,. . .}. Let w : A -*• F be the linear form defined by w(c0) = 1
and vv(Cj) = 0 (i > 1). Fix a train polynomial p(x) as given in (2). In each case, w will be
a homomorphism of F-algebras.

(a) Define in A the following commutative multiplication:

c? = c, (i > 0); other products are zero. (3)

We know already that EA{p) c N, for every A and p(x). In our case, EA(p) = N. In
fact, for i > 1, p(c,) = c" = c, e EA(p), thus N = EA(p) and SA is a unitary set.

(b) Define in A the following commutative multiplication:

cj = c, (i = 0, 1, . . . , r); other products are zero. (4)

We have ker w=N = (c,, c2,...) and N2 = (c, , . . . . cr>. If a = c0 + $^a,c, (finite sum) then,
!>1

by induction, a; = c0 + 52afc, for ; > 2. From this, p(a) = $3p(a,)c, + Vn-i(IZ
a^ci)- If

yn_, = 0 then p{a) e N2 which implies EA(p) c N2. For the converse inclusion take c,,
1 < i < r. Then p(cf) = c, € E^p) so that EA(p) — N2. Suppose now yn_, ^ 0. We have
already proved that EA{p) contains c cr. Suppose now r + l < f c < o o and let
b = c0 + ct. Then if = c0 for j > 2, thus p(i») = yn_tck, which implies that ck € EA{p) and
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EA(p) = N. We have proved that £A = {N, N2}.

(c) Fix a sequence t0, t , , t2 , . . . of elements in the field F, with to = l. Define a
commutative multiplication by

coct = tfi; (i > 0); other products are zero. (5)

As N2 = 0 every subspace of N is an ideal of N. Every subset of the basis c,, c2,. . . of
N generates additively an ideal of A. If a = c0 + £ u,c, (finite sum) then
a2 — a = £(2*| — l)a,c,. We distinguish some cases. '-'

c(i) All tt = \ for i>\. Then a =a for every a such that w(a)—\. Then
EA(l, — 1) = 0 and so £A — {0} and so A is a train algebra of rank 2.

c(ii) There is only a finite number of t-s distinct from \. Let us call them t ( | , . . . , t,r.

Then for a = c0 + £a,Cj, a2 — a = £ ( 2 ^ — l f o ^ and it is easily seen that £^(1, -1)

is the subspace generated by ch,..., cir. The remaining E-ideals are obtained as follows.
r

We have (a2 - a)a - {a2 - a)th — XX2fu - 1)(^ - '•,)«*ci4- If we suppose that t, tir

are all distinct, then it is easily seen that the E-ideal associated to the train polynomial
x(x - l)(x - th), 1 <l<r, is the subspace (cM,..., c,,_,, c,,, c,1+1,..., cjr> where " A "
denotes absence. In a similar way the E-ideal associated to the train polynomial
x(x — l)(x — t(()(x — t^) is the subspace (c,, cj ( ,.... clni,..., c,r>. The reader can see
easily that this can be extended to three, . . . , r factors. The E-ideals are the subspaces
generated by all the subsets of {c,,,... ,c,r} so that £A is anti-isomorphic, as a partially
ordered set (by inclusion), to the set of divisors of the polynomial (x — tf l) . . . (x — tir).

c(iii) There is an infinite number of scalars £,'s distinct from \. A similar
argument will show that £A is infinite. Let tijtti2,... be the scalars distinct from \.
It follows that EA(\,-\) is the subspace generated by all c,,, cJ2,... because, for

a = Ylaici> °2 ~ a — 5Zait
cu- The remaining E-ideals are the subspaces generated by

finite subsets of the complementary set of {c, , ch,...}.

4. Properties of E-ideals

In this section we establish some properties of the E-ideals of an arbitrary
commutative baric algebra. Our naive definition of train polynomial will suffice for the
moment. But we are obliged to give a more precise construction of train polynomials
in Section 5 to derive some other properties of £A.

Proposition 1. For every baric algebra (A, w) and every train polynomial p(x) as in
(2), we have EA{p)Q EA{\,—\), that is, £^(1,-1) is the maximum element of £A

{ordered by inclusion).

https://doi.org/10.1017/S001309150002397X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002397X


E-IDEALS IN BARIC ALGEBRAS: BASIC PROPERTIES 495

Proof. Denote by pnt(x) the train polynomial pn,k(x) = x" — w(x)"~kxk for
1 < k < n - 1. Given the train polynomial p(x) as in (2) and a e A, we have p(a) =
a" + y,w(a)a^ + . . . + y^ w^a = a"- (1+ y2 + ... + y^)w(a)a^ + ... +yn_iw(a)n-ia =

' 1 - W(a)a-2) - . . . - yn_, w(a) (a""1 - w(a)"-2
fl) e £„(?„.„_,) +

n-yn-2) + • • • + EA(pn-u) and this implies that EA(p) Q EA(pnn_i) + EEA(pn_lk)
k=\

as the elements p{a), a e A, generate EA(p). Similarly, for each Jfc = 1, . . . , n — 2 we
n-3

have EA(pn_lik)cEA(pn_,n_2) + J2EA(Pn-2.r) and by repeated application of this
n

method we get EA(p) c.'£EA(pkk_]). But each of the ideals EA(pkk_t) is contained
k=2

in £^(1,-1) because each generator ak — w(a)ak~l can be put in the form
a* - w(a)ct~* ={... ((a2 - w(a)a)a).. .)a, which belongs to £^(1, -1 ) . •

Denote by E\(p) the ideal of A generated by the elements p(a) such that w(a) = 1
and by EA(p) the ideal of A generated by the elements p(a) such that w(a) = 0. Clearly
both El

A(p) and E°A(p) are contained in EA(p) so that E°A(p) + E\(p) c EA(p).

Proposition 2. With the above notation we have EA(p) — E\(p) + E°A(p).

Proof. Suppose a e A and let p(a) be one of the generators of EA(p). If w(a) = 0
then p(a) is a generator of E°A(p). If w(a) =£ 0 then for b = (w(a))~la we have
p(a) = w(ayP(b) e E\{p). D

For the proof of the next proposition, we need to introduce some notation and quote
a result from [6]. Let A be an arbitrary algebra over F and let ft : A -> Ki3 where
Kt = A or F, i = 1 , . . . , m, be arbitrary functions. We define recursively the function
(fi,--.,fm):A®...®A-+K, where K = F if all f, takes values in F and K = A
otherwise, by:

(1) (/,) =/,
m-l

(2) (/, /J(a, O = i E(/i /m-iX^o) it'tm-oXfmto'on)), where
(0

(a,, ...,am)eA®...(BA and T is the cycle (1, 2 , . . . , m) in the symmetric group

sm.
Lemma ([6, Lemma 2.1]). If all f, are linear functions then ( / , , . . . ,fm) is a m-linear

symmetric function ofm variables defined in A® ... © A with values in A (or F).

Let now f,g:A-*K be as above, a,b e A. We introduce the notation:
/<•> = / ; r = ( / / ) ; (/m), tf*) = ( / , . . . , / , 3 , . . . 5); ( A ^ = J»; (/"•>, »(0)) = / M ) ;
am = a; a™ = (a a); ( a w , 6") = (a,..., a, b,..., b); (a("°, fc(0)) = a(m); (a(0), b^) = ti>\
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Lemma ([6, Lemma 2.2]). If A is an arbitrary nonassociative algebra over F,

a,beA and m > 1, then (a + b)m = ^i . I idA (a(m~°,b(0) where idA is the identity

function on A.

Proposition 3. If F is an infinite field, (A, w) an arbitrary baric algebra and p(x) a
train polynomial then E°A(p) c EA(p).

Proof. A typical generator of EA{p) is p(b) = b" where b e N — ker w. Fix one of
these generators and consider the one parameter family (ax)XeF of elements of A defined
by ax = e + kb where e is an element of weight 1 in A. Then w(ax) = 1 so that

p{ax)eEA(p). But p(ax) = Eyfc + kby-' = g y . g f " 7 ' ) idTV-'-k\ (kb)w) =
i=0 i=0 *=0 K

k), bw), which we may write as p(ax) — c0 + Ac, + . . . + k"cn, with

id(-r\e{n-J-k\bw), for fc = 0 , l , . . . , « . In particular, cn = b". As

p(ak) & E\(p) for all XeF, we can choose A , , . . . , A n e F , mutually distinct, thus

obtaining a Vandermonde system of equations

c0 + AiC, + X]Cl...+ k1cn e EA(p) ( i = l n)

The solution of this system shows that each c, e EA(p) and so also
cn = b" = p(fc) G EA(p) and this proves the proposition. D

Corollary. Under the same conditions of Proposition 3, we have EA(p) = E\(p).

From now on, we shall assume that F is an infinite field so that each EA(p) is
generated by the elements p{a) where w(a) — 1.

Suppose (A, w) is a baric algebra over the field F and consider the n-linear functions
(w(/), idiT0) : A © . . . © A -»• /I, for 0 < ; < n - l . Take a linear combination
^ = id ( ; )

+ y 1 (w, id ( r 1 ) ) + . . - + yn-.(w(B"l),i^), where 1 +y , + . . . + yn_l = 0. This «-
linear symmetric function n is called the complete linearisation of the train polynomial
p{x) = x" + y,w(x)x""' + . . . + yn_x w(xy~lx.

Theorem 1. ([6, Theorem 2.1]) For any baric algebra (A, w) the following conditions
are equivalent:
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(i) (A, w) satisfies identically a" + y,w(a)an~l + . . . + y^wfaf^a - 0.

(ii) n = id*? + y,(w, i<f(;~°) + ••• + y ^ w 0 " 0 , idA) is identically zero on A®...® A.

Proposition 4. For each train polynomial p(x), the ideal EA(p) is generated by the
values ii(alt..., an), where at runs over A.

Proof. For each a e A, /z(a(n)) = id(
A\ain)) + y,(w, M j " 1 * ) ^ ) + . . . +

?n-i(w("""- »^)(a(n)) = a" + 7iw(fl)a"~' + . . . 4- yn_,w(a)""'a = p(a), showing that each
generator of EA(p) belongs to the ideal generated by the values of \i on A © . . . © A. For
the converse, consider the quotient algebra A — A/EA(p) with its weight function vv
defined by w(a + EA(p)) = w(a). It satisfies the train polynomial p(x) = x"+ ytw(x)x"~l +
• • • + yn_tw(x)n~lx and according to Theorem 1 above, we must have Ji{a an) = 0
on A © . . . © / ! . This shows that fi{ax an) e EA(p) and this is the end of the
proof. •

Corollary. If A is finite dimensional, EA(p) is generated by the finite set
H(ci,. ci2. • • •. c0 where i, < i2 < ... < in and c , , , . . . , cin are chosen among the vectors of a
basis of A.

We recall now the Krull-Schmidt theorem for baric algebras [3, Theorem 2] and
the concept of closed class [4]. Our aim is to reduce the determination of £A to the case
where A is indecomposable.

Suppose (Auwx) and 042>
 W2) are commutative baric algebras over the field F

both having idempotents of weight 1. Choose e, e Alt e\ — ex and w(e,) = 1 and
similarly e2 e A2. Then Ax= Fex@Nx and A2 = Fe2® N2, Ni, = ker w,(i = 1,2). Let
A — Fe © N where N = N, © N2 and e satisfies enx — e,n,, en2 = e2n2, where n, e Nu

n2 e N2. This baric algebra, which is called the join of Ay and A2, is denoted by
y4, v A2. A baric algebra (A, vv) is called decomposable in the case that it can be
put in the form Ax v A2, where both Ax and A2 have dimensions at least two.
Otherwise, it is indecomposable. For further details, see [3] and [4]. A class Q of
baric algebras with idempotent of weight 1 is closed when Ax v A2 belongs to Cl if
and only if both At and A2 belong to Q. We assume now that our baric algebra
A satisfies the following conditions: every strictly ascending (resp. descending) chain
of ideals of A, contained in N, is finite. We refer, as usual, as the a.c.c. and
d.c.c. conditions.

Theorem 2. ([3, Theorem 2]) If (A, w) satisfies both a.c.c. and d.c.c. then {A, vv) can
be uniquely decomposed {up to isomorphisms and permutations) as the join of a finite
number of indecomposable baric algebras.

Proposition 5. Let (At,wt) and (A2,w2) be baric algebras, <p : Ax-*• A2 a baric
homomorphism and p{x) a train polynomial. Then (p(EAt(p)) = E^A^{p) C EAl(p).
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Proof. It is enough to show that q> takes generators of EAl(p) into generators of
E^Ax)(p) and conversely. As q> is baric, we have w2 o q> = w, and so for a e Ax with
w , ( a ) = l , we have (p(p(a)) = q>(an +y, a""1 + . . . + yn_,a) = (?(*)" + y,^(a)""1 + . . . +
yn_, <p(a), which proves what is wanted. •

Corollary 1. Under the same conditions, if <p is an epimorphism, <p(EAt(p)) = EAl(p)
and so <p induces a surjective function from £Al to £Al.

Corollary 2. Under the same conditions, if At is a train algebra satisfying the train
equation p(x) = 0 of degree n, then A2 is also train, satisfying some train equation of
degree < n.

Proof. Follows from {0} e£Ar •

For the next corollary, we recall that the commutative duplicate of a commutative
baric algebra (A, w) is the baric algebra (AD, wD), where AD = S2(A), the second
symmetric power of A, endowed with the product (a.b)(c.d) = ab.cd and where
wD(a.b) — w(a)w(b). The function \i: AD -*• A2 given by n(a.b) = ab gives rise to the
exact sequence

0 ->• ker n -+ AL

where fi: AD -*• A2 is defined by fi(a.b) = ab.
For further details, see [11].

Corollary 3. If {A, w) is a baric algebra with commutative duplicate (AD, wD) and
p(x) is a train polynomial, then fi(EAD(p)) = EAi(p).

Corollary 4. Let (A, w) be a baric algebra, I an ideal of A contained in N — ker w.
Then (A/1, w), where w(a + I) = w(a), is a baric algebra and for every train polynomial
p(x), we have n(EA(p)) = EA/I(p) = (EA{p) + / ) / / where n : A -*• A/I is the canonical
projection.

Corollary 5. Let (A, w) be a baric algebra, B a baric sub-algebra of A. Then
c EA(p).

Proposition 6. Let {Ax, w,) and (y42, w2) be baric algebras with idempotents of weight
1 andp(x) a train polynomial. Then EAlVA2(p) = EAl(p) 0 EAl(p).

Proof. Consider the canonical projections <p0 : A, v A2 -*• Fe, <p, : At v A2 -*• Ax and
q>2: Ax v A2 -> A2 given by <po(ae + n, + n2) = ««. <i()1(ac + n , + n 2 ) = a e , + n , and
<p2(ae + n, + n2) = <xe2 + n2, where a € F, n, e JV, and n2 e N2. They are clearly baric
homomorphisms. Moreover a = — ae + (ae + n,) + (ae + n2) so that — cp0 + q>x + q>2 = idA.
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Let now p(a) be one of the generators of EAlvAl(p). Then p(a) = (—cp0 + <p, + cp2)(Pia)) =

-<Po(p(a)) + <Pi(P(a)) + <P2(Ka))=<Pi(p(a)) + <P2(P(a))=P(<iPi(a)) + Pi(P2(
a))> w h i c h belongs

to EAl(p) © EAl(p) so that EAlvAl(p) c £Xl(p) © EAl(p). The other inclusion follows from
Corollary 5. •

Corollary 6. If (A, w) satisfies a.c.c. and d.c.c. then EA(p) is the direct sum of the E-
ideals EAl(p),..., EAr(p) where each A{ is indecomposable and A = Ax v A2 v . . . v Ar.

We close this section with a brief discussion of the equality TV = £^(1, — 1). We
have seen before that for every baric algebra (A, w) and every train polynomial
p(x), EA(p) c £4(1, — 1) c N, N = kerw. As stated by Etherington, we have
TV2 c £^(1, — 1) c TV so a sufficient condition for the equality N = E^(1,—1) is
N = N2. But this condition, which will occur rarely in genetic algebra theory, is
not necessary, as shown by the following example. Let A be the Bernstein algebra
with basis {e, u, z] and multiplication table e2 — e, eu = \ u, uz — u, all other
products are zero. Then £^(1,-1) = .^ but N2 = Fu. In general, for a Bernstein
algebra A-Fe®Uc®Ze, we have £^(1,-1) = TV if and only if UeZc + Z2 = Ut.
Similar statements for other classes of baric algebras are easy consequences of the
equations appearing in Section 1. For general baric algebras, we have the following
sufficient condition, which, unfortunately, is not efficient in the context of genetic
algebra theory, where \ is, in many situations, a proper value of L€.

Proposition 7. Let {A, w) be a baric algebra (possibly infinite dimensional) and
suppose that, for some idempotent e of weight 1, the linear operator Lc : N -*• N satisfies
a polynomial identity Q[Le) = 0 where the roots of Q are in F, are simple and all distinct
from \. Then N = EA(l, -1).

Proof. It is enough to prove that N c EA(\, -1). By elementary linear algebra, we
have N = TV, © . . . © N,, where Nt = ker(Le-aj) (i = 1 s) are the proper
subspaces corresponding to the proper values m,,.... a, of Le. If a — e + nt, nt e N, then
a2 = e + 2ent + nf = e + 2af«,. + n2 so a2 - w(a)a = (2af - l)n, + n] e EA(l, -1) . As
n2 G £^(1, -1) we have (2a( - l)n, e £^(1, -1) so n, e £^(1, -1). Then N, c £^(1, -1)
and so N = ©J=l/V, c £,(1,-1). •

5. Train polynomials

The above "definition" of a train polynomial as a formal expression must be
reformulated in order to prove some properties of £A. We describe how to do this but
proofs are only sketched.

Let £ be a field and (A, w) a commutative baric algebra over F. Consider the vector
space AA of all functions from A to A and, in this space, take the infinite family of
functions f{j, where i = 0,1,2, . . . and j = 1, 2 , . . . , defined by _/j,(a) = w(a)'aJ for all
a e A. These functions generate GTF(A): the subspace of generalized train functions of
AA. Every element / in this subspace has at least one representation of the form
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so that for a € A

With this definition, (A, w) is a train algebra if and only if for some elements
n - l

y0. Ti.y2 y«-i e F> w i t h Vo = 1 . / = £ V.An-iis identically zero on A.
i=0

For a given representation of / in the form (6), we consider the integer
max{; : ytJ ^ 0} and define the degree of/ as the minimum of these numbers, when we
allow all possible representations of / in the form (6). The corresponding representa-
tion will be referred to as the minimal representation of/.

Proposition 8. The following conditions are equivalent:

(i) (A, w) is a train algebra.

(ii) The family (fy)for 0 < i and 1 <j, is linearly dependent in GTF(A).

Proof, (i) =^ (ii): Suppose y, yn_, are elements in F such that for all a e A,
a" + y.wCOfl""' + • • • + y- iw(ar la = 0. Then fOn + ?,/,,„_, + . . . + y..,/._,., = 0 which
implies that the whole family is linearly dependent.

(ii) => (i): Suppose the whole family is linearly dependent. Choose a finite subfamily
which is linearly dependent. We may suppose this subfamily has the form (/-,),
0 < i < m; 1 < j < n, for some integers m, n. Let ytj e F, not all zero, such that
E yyfi,r = 0 (i = 0, 1 m; j = 1 n), so that, for every a e A, "£ yljw(a)iai = 0. If

we choose a such that w(a) = 1, then 0 = £ ŷ â ' = XXH Vy)^ = Z! aiai- ^ o r every

y € A such that w(y) / 0 the element y' = -^- has weight 1 so that 0 = JZ ay(/);- Then

/ - \ - i

wO0~"(Ea/wO')"~V) = 0 which means that £Z a,wCy)""V = 0 for all y such that

w(y) ^ 0. As this set of vectors is dense in A (Zariski's topology) and E <*;/*-;; ' s

7 - 1
n

continuous, we must have Ylajfn-jj — 0 o n ^- This proves that (/4, w) is a train

algebra. •

Remark. Using the same argument, we can see easily that the rank of the train
algebra (A, w) is n if and only if the rank of the set of functions /„_;,;(« > 0,; > 1) is
also n.
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Proposition 9. Suppose (A, w) is a train algebra of rank n. Then:
n- l

(i) there exists, up to a scalar factor, a unique function £ ViAn-f- w*tn Vo = 1< which
is zero on A; i=0

(ii) every function f e GTF(A) can be represented as a linear combination of fOn,
/l,n-l> • • • ./n-l.l-

Proof, (i) Suppose we have £ Viw(<0'fl"~' = 5Z 8,w(a)laH~t for all a e A, with
i=0 i=0

n— 1

yo = 5o = l. Then XXy. - W*) ' """ ' = ° which implies that yf = <5f.
i=0

n—\

(ii) By hypothesis, we have/On = - T,yJiin_, and/On+1 =/0,n/0,, so that, by recurrence,
i=l

e v e r y fOn+k(k > 1) wi l l b e a l i n e a r c o m b i n a t i o n o f / n _ ! j l f . . . ,fx n_P

Corollary. //~04, w) is a train algebra, every element ofGTF(A) has a unique minimal
representation.

The elements/ = J2fin-ifi.n-i of GTF(/1) are called train functions of (4, w) and the
i

set of all train functions is denoted TF(A). In this subset of GTF(A), we select the

elements of the above form such that J2 ?i,n-, = 0 and call them train polynomials over
i

A, denoted by TP(A).
Consider now the usual algebra of polynomials over F in the indeterminate x and

n- l n-1

its ideal (x), generated by x. We define t: (x) ->• TF(A) by t: ^ y / ^ T.y,fi.n-t-
i=0 i=0

n-l

We denote by p, the image of p e (x) under this map, so that pt(a) = J2 ?iw(a)'fl""' f°r

i=0

every a & A. We always have p, e TF(,4) and p, is a train polynomial if 1 is a root of
p. If / = X! y../i,»-i ' s ^ e minimal representation of / then p = £ Vix" ' is called the
canonical antecedent of/. The following equalities are easily proved:

kp, = (Ap),

where p, + q, is defined by (p, + q,)(a) = pt{a) + w(a)m"n^,(a). a e A, if degree p(x) = m,
degree q(x) = n, with m>n. Observe that for elements a of weight 1,
(Pt +4t)(a) = Pt(a) + Qi(a)- Moreover the product p,q, must be understood to obey the
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rule a1 a* = ai+k. That is, for p,(x) = £ yIw(x)'x'" and qt{x) = £ Ayw(x);xm-'' then
i=0 ;=0

where Rx is the operator multiplication by x. In this way, TF(A) is an associative algebra
and t is an epimorphism. The restriction of the mapping t to (x(x — 1)> is an epimorphism
over TP(A). We see that (A, w) is a train algebra if and only if ker t ^ 0. If A satisfies
some equation (which we take minimal) p,(x) = x" + y,w(x)x"~1 -1- . . . + y^w^x)""^ = 0,
then ker t = (p(x)) and t is an isomorphism when A is not a train algebra.

The concepts of divisibility, greatest common divisor and least common multiple of
two train polynomials are defined by imposing the same conditions on their canonical
antecedents.

Proposition 10. If {A, w) is a baric algebra, p(x) and q(x) are train polynomials such
that p(x) is a divisor of q{x) then EA(q) c EA(p).

Proof. By hypothesis there exists a polynomial /(x) such that q,(x) = (p/),(x) for
all x € A, which belongs to EA(p). •

Corollary. For every baric algebra (A, w) and y, , . . . , yn_, e F, EA(\, y, , . . . , yn_,, 0)

Proposition 11. Let (A,w) be a baric algebra, p(x) and q(x) train polynomials and
r(x) the least common multiple ofp(x) andq(x). Then EA(r) c EA(p) f~l EA{q).

Proof. The proof follows from Proposition 10. •

Remark. The intersection of two E-ideals is not, in general, an E-ideal.

Proposition 12. Let {A, w) be a baric algebra, p(x) and q(x) train polynomials and
r(x) the greatest common divisor ofp(x) and q{x). Then EA(r) = EA(p) + EA(q).

Proof. The proof follows from the Bezout identity. •

Corollary (Etherington). For every baric algebra (A, w) and train polynomials p(x),
#(x) which are relatively prime, we have EA(\, —1) = EA(p) + EA{q).

Final remark. In a forthcoming paper, the authors study properties of E-ideals for
train algebras and Bernstein algebras. An alternative method for calculating E-ideals,
based on recurrent sequences, will be introduced. This method works when there is a
Peirce decomposition and kerco is nilpotent.
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REFERENCES

1. T. CORTES and F. MONTANER, On the structure of Bernstein algebras, Proc. London Math.
Soc, to appear.

2. R. COSTA, Principal train algebras of rank 3 and dimension < 5, Proc. Edinburgh Math.
Soc. 33 (1990), 61-70.

3. R. COSTA and H. Guzzo Jr., Indecomposable baric algebras, Linear Alg. Appl. 183
(1993), 223-236.

4. R. COSTA and H. Guzzo Jr., Indecomposable baric algebras II, Linear Alg. Appl. 196
(1994), 233-242.

5. I. M. H. ETHERINGTON, Genetic algebras, Proc. Royal Soc. Edinburgh 59 (1939), 242-258.

6. H. Guzzo Jr., Embedding nil algebras in train algebras, Proc. Edinburgh Math. Soc. 37
(1994), 463-470.

7. H. Guzzo Jr., The Peirce decomposition for commutative train algebras, Comm. Algebra
11 (1994), 5745-5757.

8. I. LJUBICH, Mathematical Structures in Population Genetics (Biomathematics, 22, Springer,
1992).

9. C. MARTINEZ, Isomorphisms of Bernstein algebras, J. Algebra 160 (1993), 419-423.

10. A. MICALI and M. OUATTARA, Dupliquee d'une algebre et le theoreme d'Etherington,
Linear Alg. Appl. 153 (1991), 193-207.

11. J. M. OSBORN, Varieties of algebras, Adv. Math. 8 (1972), 163-369.

12. M. OUATTARA, Sur les T-algebres de Jordan, Linear Alg. Appl. 144 (1991), 11-21.

13. S. WALCHER, Algebras which satisfy a train equation for the first three plenary powers,
Arch. Math. 56 (1991), 547-551.

14. A. WORZ, Algebras in Genetics (Lecture Notes in Biomathematics, 36, 1980).

ABDON CATALAN AND CRISTIAN MALLOL ROBERTO COSTA
DEPTO DE MATEMATICA INSTITUTO DE MATEMATICA E ESTATISTICA-USP
UNIVERSIDAD DE LA FRONTERA CAIXA POSTAL 66.28 1-AGENCIA CIDADE DE SAO PAULO
CASILLA 54-D 05389-970-SAO PAULO
TEMUCO, CHILE BRASIL
E-mail address: E-mail address: rcosta@ime.usp.br

acatalan@epu.dmat.ufro.cl
cmallol@werken.ufro.cl

https://doi.org/10.1017/S001309150002397X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002397X

