
Bull. Aust. Math. Soc. 99 (2019), 34–41
doi:10.1017/S0004972718000916

PERFECT POWERS THAT ARE SUMS OF TWO POWERS OF
FIBONACCI NUMBERS

ZHONGFENG ZHANG and ALAIN TOGBÉ�
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Abstract

In this paper, we consider the Diophantine equations

Fq
n ± Fq

m = yp

with positive integers q, p ≥ 2 and gcd(Fn, Fm) = 1, where Fk is a Fibonacci number. We obtain results
for q = 2 or q an odd prime with q ≡ 3 (mod 4), 3 < q < 1087, and complete solutions for q = 3.
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1. Introduction
The Fibonacci numbers are the sequence of numbers (Fn)n≥0 defined by the linear
recurrence equation

Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1.

The Lucas numbers are the sequence of numbers (Ln)n≥0 defined by the linear
recurrence equation

Ln+1 = Ln + Ln−1, L0 = 2, L1 = 1.

Finding all perfect powers in the Fibonacci sequence was a fascinating long-
standing conjecture. In 2006, this problem was completely solved by Bugeaud
et al. [6], who innovatively combined the modular approach with linear forms in
logarithms. Also, Bugeaud et al. [3] found all the integer solutions to Fn ± 1= yp, p≥2.
Luca and Patel [11] consider the generalisation Fn ± Fm = yp, p ≥ 2.

In this paper, we consider the Diophantine equation

Fq
n ± Fq

m = yp with gcd(Fn, Fm) = 1 and q, p ≥ 2.

We obtain the following results.
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Theorem 1.1. All solutions of the Diophantine equation

F2
n + F2

m = yp with gcd(Fn, Fm) = 1, p ≥ 2, (1.1)

in integers (n,m, y, p) with n . m (mod 2), n > m ≥ 0 and y > 0 are of the form
(1, 0, 1, k), with integer k ≥ 2. The integer solutions of the Diophantine equation

F2
n − F2

m = yp with gcd(Fn, Fm) = 1, p ≥ 2, (1.2)

in integers (n,m, y, p) with n ≡ m (mod 2) and n > m ≥ 0 and y > 0 are

(n,m, y, p) = (2, 0, 1, k), (4, 2, 2, 3), (7, 5, 12, 2),

with integer k ≥ 2.

Theorem 1.2. Let q be an odd prime. All solutions of the Diophantine equation

Fq
n ± Fq

m = yp with gcd(Fn, Fm) = 1, p ≥ 2

in integers (n,m, y, q, p) with n ≡ m (mod 2), n > m ≥ 0 and y > 0 are (2, 0, 1, k, l), for
q < 1087 and q ≡ 3 (mod 4).

Theorem 1.3. The Diophantine equation

F3
n ± F3

m = yp with gcd(Fn, Fm) = 1, p ≥ 3

has only the integer solutions (n,m, y, p) = (1, 0, 1, k), (2, 0, 1, k), with n > m ≥ 0 and
y > 0.

We organise this paper as follows. In Section 2, we recall and prove some results
that will be useful for the proofs of Theorems 1.1–1.3. These proofs follow in
Section 3. Divisibility properties of Fibonacci and Lucas numbers play a key role
in the proofs.

2. Preliminaries

The Binet formulas for Fn and Ln are

Fn =
1
√

5
(αn − βn), Ln = α

n + βn, n ∈ Z,

where

α =
1 +
√

5
2

, β =
1 −
√

5
2

.

From the Binet formulas, we can obtain the useful formulas

F2n = FnLn, L3n = Ln(L2
n + 3(−1)n+1),

and Catalan’s identity
F2

n − Fn+rFn−r = (−1)n−rF2
r .

The following result can be obtained from [5, 6].
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Lemma 2.1. If Fn = 2syb, for some integers n ≥ 1, y ≥ 1, b ≥ 2 and s ≥ 0, then we have
n ∈ {1, 2, 3, 6, 12}. The solutions of the similar equation with Fn replaced by Ln have
n ∈ {1, 3, 6}.

The next result is well known and can also be proved using Binet’s formulas (see
also [11, Lemma 2.1]).

Lemma 2.2. Assume n ≡ m (mod 2). Then

Fn + Fm =

{
F(n+m)/2L(n−m)/2 if n ≡ m (mod 4),
F(n−m)/2L(n+m)/2 if n ≡ m + 2 (mod 4).

Similarly,

Fn − Fm =

{
F(n−m)/2L(n+m)/2 if n ≡ m (mod 4),
F(n+m)/2L(n−m)/2 if n ≡ m + 2 (mod 4).

The following result can be found in [12].

Lemma 2.3. Let n = 2an1 and m = 2bm1 be positive integers with n1 and m1 odd integers
and a and b nonnegative integers. If gcd(n,m) = d, then

(i) gcd(Fn, Fm) = Fd;
(ii) gcd(Fn, Lm) = Ld if a > b and 1 or 2 otherwise.

The following lemma is often set as an exercise in elementary number theory.

Lemma 2.4. Let p be an odd prime, a, b, c, k integers with gcd(a, b) = 1 and k ≥ 2. If

ap + bp = ck,

then a + b = dk or pk−1dk, for some integer d.

The following lemma can be obtained from [11].

Lemma 2.5. All solutions of the Diophantine equation

Fn ± Fm = yp, p ≥ 2

in integers (n,m, y, p) with n ≡ m (mod 2), gcd(n,m) = 1 or 2 and n > m are given by

F2 + F0 = 1, F4 + F2 = 22, F6 + F2 = 32,

F2 − F0 = 1, F3 − F1 = 1, F5 − F1 = 22, F7 − F5 = 23, F13 − F11 = 122.

When p = 3, the following lemma is a classical result. When p ≥ 17 is a prime, it
can be obtained from [10]. When p = 4, 5, 7, 11, 13, it can be obtained from the result
of Bruin [2] and Dahmen [7].

Lemma 2.6. Let p be a prime. Suppose (a,b, c) is an integer solution of the Diophantine
equation

x3 + y3 = zp, p ≥ 3

with gcd(a, b) = 1, abc , 0 and 2|ac. Then 3|c and 2|a but 4 - a.
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The next lemma is proved by Darmon [8] and Darmon and Merel [9].

Lemma 2.7. Let n ≥ 4 be an integer, and p = 2 or 3. Then there are no integer solutions
of the equations

xn + yn = zp

with gcd(x, y) = 1 and xy , 0.

One can obtain the next lemma from [4] and [5].

Lemma 2.8. Let q be an odd prime, with q ≡ 3 (mod 4). Then the only nonnegative
integer solutions (n, y, p) of the equations

Fn = qayp, p ≥ 2, a > 0,

and
Ln = qayp, p ≥ 2, a > 0,

with q < 1087, are

F0 = 0, F4 = 3, F12 = 32 × 42 = 32 × 24

and

L2 = 3, L4 = 7, L5 = 11, L8 = 47, L9 = 19 × 22, L11 = 199.

The next lemma can easily be obtained from the definition of the Fibonacci and
Lucas sequences.

Lemma 2.9. The Fibonacci and Lucas sequences have the following divisibility
properties:

2|Fn ⇔ n ≡ 0 (mod 3);
4|Fn ⇔ n ≡ 0 (mod 6);
3|Fn ⇔ n ≡ 0 (mod 4);
9|Fn ⇔ n ≡ 0 (mod 12);
2|Ln ⇔ n ≡ 0 (mod 3);
4|Ln ⇔ n ≡ 3 (mod 6);
3|Ln ⇔ n ≡ 2 (mod 4);
9|Ln ⇔ n ≡ 6 (mod 12).

The residue of Fn modulo 9 depends on the residue of n modulo 12, as in the following
table.

n (mod 12): 0 1 2 3 4 5 6 7 8 9 10 11
Fn (mod 9): 0 1 1 2 3 5 8 4 3 7 1 8
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Lemma 2.10. Let q > 3 be an odd prime and q ≡ 3 (mod 4). Then there are no positive
integer solutions (n, y, p) of the equations

Fn = 3aqbyp, p ≥ 4, a ≥ 2, b > 0

and
Ln = 3aqbyp, p ≥ 4, a ≥ 2, b > 0,

with q < 1087.

Proof. First, we consider the equation Ln = 3aqbyp. Since a ≥ 2, Lemma 2.9 implies
n ≡ 6 (mod 12). Let n = 6k. Then,

3aqbyp = L6k = L2k(L2
2k + 3(−1)2k+1) = L2k(L2

2k − 3).

As 3|Ln, we can see that gcd(L2k, L2
2k − 3) = 3. We therefore consider two cases.

Case (i). L2k = 3a−1zp. Here 2k = 2 by Lemma 2.8, so 3aqbyp = L6k = L6 = 32 × 2.
Therefore, there are no integer solutions.

Case (ii). L2
2k − 3 = 3zp. This gives the Diophantine equation 3x2 − 1 = zp with

L2k = 3x, which has no integer solutions by [1, Theorem 1.1].

Next, we consider the equation Fn = 3aqbyp. By Lemma 2.9, we have 12|n for
a ≥ 2. Put n = 12k. Then 3aqbyp = F12k = F6kL6k. By Lemma 2.9, 2|F6k, 2|L6k and by
Lemma 2.3, gcd(F6k, L6k) = 2. Now there are three possibilities.

Case (1). F6k = 2swp or L6k = 2swp with s = 1 or p − 1. By Lemma 2.1, 6k = 6 or 12
for the first and 6k = 6 for the second. There are no integer solutions in any of these
cases.

Case (2). F6k = 2s × 3awp with s = 1 or p − 1. Here, 2s × 3awp = F6k = F3kL3k. Using
Lemmas 2.3 and 2.9, we see that gcd(F3k, L3k) = 2. Thus, F3k = 2tup or L3k = 2tup, for
some integer u. We deduce that 3k = 3, 6, 12 or 3, 6 respectively, yielding no integer
solutions.

Case (3). L6k = 2s × 3awp, with s = 1 or p − 1. By Lemma 2.8, we get s = 1.
Hence, from 2 × 3awp = L6k = L2k(L2

2k − 3) and gcd(L2k, L2
2k − 3) = 3, we obtain either

L2k = 3a−1zp, or L2
2k − 3 = 3zp. Neither possibility yields any integer solutions by an

argument similar to that at the beginning of the proof.
This completes the proof of Lemma 2.10. �

3. Proofs of the main theorems

Let gcd(n,m) = d, so that gcd(Fn, Fm) = Fd by Lemma 2.3. Thus gcd(Fn, Fm) = 1
means gcd(n,m) = 1 or 2. We assume y > 0 for the remainder of the proofs.
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3.1. Proof of Theorem 1.1. Under the congruence conditions on n and m,

yp = F2
n ± F2

m = Fn+mFn−m

by Catalan’s identity. Since gcd(Fn, Fm) = 1, we get gcd(n,m) = 1 or 2 and then
gcd(n + m, n − m) = 1, 2 or 4. Hence, by Lemma 2.3(i), gcd(Fn+m, Fn−m) = 1 or 3
since F1 = F2 = 1, F4 = 3. Therefore, we have one of the two following cases:

(i) Fn+m = zp, Fn−m = wp, y = zw;
(ii) Fn+m = 3szp, Fn−m = 3p−swp, y = 3zw, s = 1 or p − 1.

By Lemma 2.1, n + m = 1, 2, 6, or 12 in Case (i) and (n,m, y, p) = (1, 0, 1, k) for
Equation (1.1) and (n,m, y, p) = (2, 0, 1, k), (4, 2, 2, 3), (7, 5, 12, 2) for Equation (1.2).
By Lemma 2.8, n + m = 4 or 12 in Case (ii), which yields no integer solutions.
Therefore, Theorem 1.1 is proved.

3.2. Proof of Theorem 1.2. Since gcd(Fn, Fm) = 1, Lemma 2.4 implies the two
cases:

(1) Fn ± Fm = zp;
(2) Fn ± Fm = qp−1zp.

Case (1). Fn ± Fm = zp. Recall the condition n ≡ m (mod 2). By Lemma 2.5,

F2 + F0 = 1, F4 + F2 = 22, F6 + F2 = 32,

F2 − F0 = 1, F3 − F1 = 1, F5 − F1 = 22, F7 − F5 = 23, F13 − F11 = 122.

This gives the potential solutions

Fq
2 + Fq

0 = yp, Fq
4 + Fq

2 = yp, Fq
6 + Fq

2 = yp,

Fq
2 − Fq

0 = yp, Fq
3 − Fq

1 = yp, Fq
5 − Fq

1 = yp, Fq
7 − Fq

5 = yp, Fq
13 − Fq

11 = yp,

that is

1q + 0q = yp, 3q + 1q = yp, 8q + 1q = yp,

1q − 0q = yp, 2q − 1q = yp, 5q − 1q = yp, 13q − 5q = yp, 233q − 89q = yp.

From 1q ± 0q = 1p, we get the integer solutions (n,m, y, q, p) = (2, 0, 1, k, l) for the two
equations. By the well-known result on the Catalan equation (that the Catalan equation
xp − yq = 1 only has the solution 32 − 23 = 1), the only equations we need to treat are
the last two, that is 13q − 5q = yp and 233q − 89q = yp.

For the equation 13q − 5q = yp, because 13 − 5 = F7 − F5 = 23, we obtain p = 3.
Then, 13q − 5q = y3, that is 13q + (−5)q = y3 since q is an odd prime. However, the
equation x3 + y3 = z3 has no integer solutions with xyz , 0, so q , 3 and then q ≥ 5.
This is impossible by Lemma 2.7.

For the equation 233q − 89q = yp, because 233 − 89 = F13 − F11 = 122, we obtain
p = 2. Thus, we consider the equation 233q − 89q = y2, that is 233q + (−89)q = y2 as
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q is an odd prime. Since 3|122, we get q , 3 and deduce q ≥ 5. This is impossible by
Lemma 2.7.

Case 2. Fn ± Fm = qp−1zp. From Lemma 2.7 we can assume p ≥ 5. By Lemma 2.2,
Fn ± Fm = FN LM , with N = (n ± m)/2 and M = (n ∓ m)/2. As gcd(n,m) = 1 or 2, we
get gcd(N,M) = 1 or 2. Since L2 = 3, by Lemma 2.3, gcd(FN , LM) = 1, 2, or 3.

First, consider gcd(FN , LM) = 3. We have FN = 3twp or LM = 3twp with t = 1 or
t ≥ p − 2 ≥ 3. Hence, by Lemma 2.8, N = 4, t = 1 or M = 2, t = 1. If N = 4 = (n +m)/2
or M = 2 = (n + m)/2, it is easy to see that there are no solutions since Fn ± Fm =

qp−1zp ≥ 3 ≥ 34 = 81. Thus, N = 4 = (n −m)/2 or M = 2 = (n −m)/2, that is n = m + 8
or n = m + 4, and so (n + m)/2 = m + 4 or m + 2. Therefore, we must consider the
following two cases.

(i) Fm+2 = 3p−2zp or Lm+4 = 3p−2zp, for q = 3. Since p − 2 ≥ 3, there are no integer
solutions by Lemma 2.8.

(ii) Fm+2 = 3p−1qp−1zp or Lm+4 = 3p−1qp−1zp, for q > 3. There are no integer
solutions by Lemma 2.10.

Now, we consider gcd(FN , LM) = 1 or 2. Then, FN = 2swp or LM = 2swp with
s = 0, 1, or p − 1 ≥ 4. Using Lemma 2.1, N = 1, 2, 3, 6, 12, or M = 1, 3, 6. Since
F6 = 23, F12 = 22 × 62 = 24 × 32 and L3 = 22, L6 = 2 × 32, we only need to consider
N = 1, 2, 3, or M = 1. Similarly, N = (n − m)/2 = 1, 2, 3, or M = (n − m)/2 = 1.
For N = (n − m)/2 = 1, 2, or M = (n − m)/2 = 1, we have F1 = F2 = L1 = 1, so
Lm+1 = qp−1zp, or Lm+2 = qp−1zp, or Fm+1 = qp−1zp, none of which yield any integer
solutions by Lemma 2.8 as p ≥ 5.

Finally, we only need to deal with the case N = (n − m)/2 = 3, that is, n = m + 6.
From F2 = 2, we have s = 1 and then Lm+3 = 2p−1qp−1zp. By Lemma 2.9, we have
m + 3 ≡ 3 (mod 6) since 4|Lm+3, so 2|m. Let m + 3 = 3k,2 - k. Then Lm+3 = Lk(L2

k + 3).
If 3|Lm+3, then m + 3 ≡ 2 (mod 4) and thus 2 - m, which is a contradiction. Therefore,
3 - Lm+3 and gcd(Lk, L2

k + 3) = 1. We deduce that Lk = 2p−1up, qp−1vp or L2
k + 3 = wp.

The first two equations have no integer solutions by Lemma 2.1 and Lemma 2.8. The
last equation also has no integer solution from Nagell [13] since p ≥ 5. This proves
Theorem 1.2.

3.3. Proof of Theorem 1.3. By Theorem 1.2, we only need to treat the case n .
m (mod 2) with n > m. If m = 0, then n = 1 since gcd(Fn, Fm) = 1. Therefore, we
assume m ≥ 1, which gives yFnFm , 0 and gcd(Fn, Fm) = 1. By Lemma 2.6, we have
3|y and, by Lemma 2.4, Fn ± Fm = 3p−1zp. We deduce that 9|Fn ± Fm = ±(Fn′ ± Fm′)
with 2|n′ and 2 - m′. On the other hand, 2|Fk but 4 - Fk if and only if k ≡ 3 (mod 6) by
Lemma 2.9. Moreover, by Lemma 2.6, m′ ≡ 3 (mod 6). Put n′ = 2s and m′ = 6t + 3.
Then, by Lemma 2.9 and 3 - Fn, 3 - Fm, we see that Fn′ = F2s ≡ 1, 8 (mod 9) and
Fm′ = F6t+3 ≡ 2, 7 (mod 9). Thus, Fn′ ± Fm′ ≡ 0 (mod 9). This is impossible.
Therefore, Theorem 1.3 is proved.
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