PERFECT POWERS THAT ARE SUMS OF TWO POWERS OF FIBONACCI NUMBERS

ZHONGFENG ZHANG and ALAIN TOGBÉ®

(Received 30 May 2018; accepted 17 July 2018; first published online 30 August 2018)

Abstract

In this paper, we consider the Diophantine equations $$
F_{n}^{q} \pm F_{m}^{q}=y^{p}
$$ with positive integers $q, p \geq 2$ and $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$, where F_{k} is a Fibonacci number. We obtain results for $q=2$ or q an odd prime with $q \equiv 3(\bmod 4), 3<q<1087$, and complete solutions for $q=3$.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: exponential equation, Fibonacci number.

1. Introduction

The Fibonacci numbers are the sequence of numbers $\left(F_{n}\right)_{n \geq 0}$ defined by the linear recurrence equation

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=0, \quad F_{1}=1 .
$$

The Lucas numbers are the sequence of numbers $\left(L_{n}\right)_{n \geq 0}$ defined by the linear recurrence equation

$$
L_{n+1}=L_{n}+L_{n-1}, \quad L_{0}=2, \quad L_{1}=1 .
$$

Finding all perfect powers in the Fibonacci sequence was a fascinating longstanding conjecture. In 2006, this problem was completely solved by Bugeaud et al. [6], who innovatively combined the modular approach with linear forms in logarithms. Also, Bugeaud et al. [3] found all the integer solutions to $F_{n} \pm 1=y^{p}, p \geq 2$. Luca and Patel [11] consider the generalisation $F_{n} \pm F_{m}=y^{p}, p \geq 2$.

In this paper, we consider the Diophantine equation

$$
F_{n}^{q} \pm F_{m}^{q}=y^{p} \quad \text { with } \operatorname{gcd}\left(F_{n}, F_{m}\right)=1 \text { and } q, p \geq 2
$$

We obtain the following results.

[^0](c) 2018 Australian Mathematical Publishing Association Inc.

Theorem 1.1. All solutions of the Diophantine equation

$$
\begin{equation*}
F_{n}^{2}+F_{m}^{2}=y^{p} \quad \text { with } \operatorname{gcd}\left(F_{n}, F_{m}\right)=1, p \geq 2, \tag{1.1}
\end{equation*}
$$

in integers (n, m, y, p) with $n \not \equiv m(\bmod 2), n>m \geq 0$ and $y>0$ are of the form $(1,0,1, k)$, with integer $k \geq 2$. The integer solutions of the Diophantine equation

$$
\begin{equation*}
F_{n}^{2}-F_{m}^{2}=y^{p} \quad \text { with } \operatorname{gcd}\left(F_{n}, F_{m}\right)=1, p \geq 2 \tag{1.2}
\end{equation*}
$$

in integers (n, m, y, p) with $n \equiv m(\bmod 2)$ and $n>m \geq 0$ and $y>0$ are

$$
(n, m, y, p)=(2,0,1, k),(4,2,2,3),(7,5,12,2)
$$

with integer $k \geq 2$.
Theorem 1.2. Let q be an odd prime. All solutions of the Diophantine equation

$$
F_{n}^{q} \pm F_{m}^{q}=y^{p} \quad \text { with } \operatorname{gcd}\left(F_{n}, F_{m}\right)=1, p \geq 2
$$

in integers (n, m, y, q, p) with $n \equiv m(\bmod 2), n>m \geq 0$ and $y>0$ are $(2,0,1, k, l)$, for $q<1087$ and $q \equiv 3(\bmod 4)$.

Theorem 1.3. The Diophantine equation

$$
F_{n}^{3} \pm F_{m}^{3}=y^{p} \quad \text { with } \operatorname{gcd}\left(F_{n}, F_{m}\right)=1, p \geq 3
$$

has only the integer solutions ($n, m, y, p)=(1,0,1, k),(2,0,1, k)$, with $n>m \geq 0$ and $y>0$.

We organise this paper as follows. In Section 2, we recall and prove some results that will be useful for the proofs of Theorems 1.1-1.3. These proofs follow in Section 3. Divisibility properties of Fibonacci and Lucas numbers play a key role in the proofs.

2. Preliminaries

The Binet formulas for F_{n} and L_{n} are

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right), \quad L_{n}=\alpha^{n}+\beta^{n}, \quad n \in \mathbb{Z}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2} .
$$

From the Binet formulas, we can obtain the useful formulas

$$
F_{2 n}=F_{n} L_{n}, \quad L_{3 n}=L_{n}\left(L_{n}^{2}+3(-1)^{n+1}\right),
$$

and Catalan's identity

$$
F_{n}^{2}-F_{n+r} F_{n-r}=(-1)^{n-r} F_{r}^{2}
$$

The following result can be obtained from [5, 6].

Lemma 2.1. If $F_{n}=2^{s} y^{b}$, for some integers $n \geq 1, y \geq 1, b \geq 2$ and $s \geq 0$, then we have $n \in\{1,2,3,6,12\}$. The solutions of the similar equation with F_{n} replaced by L_{n} have $n \in\{1,3,6\}$.

The next result is well known and can also be proved using Binet's formulas (see also [11, Lemma 2.1]).
Lemma 2.2. Assume $n \equiv m(\bmod 2)$. Then

$$
F_{n}+F_{m}= \begin{cases}F_{(n+m) / 2} L_{(n-m) / 2} & \text { if } n \equiv m(\bmod 4), \\ F_{(n-m) / 2} L_{(n+m) / 2} & \text { if } n \equiv m+2(\bmod 4)\end{cases}
$$

Similarly,

$$
F_{n}-F_{m}= \begin{cases}F_{(n-m) / 2} L_{(n+m) / 2} & \text { if } n \equiv m(\bmod 4), \\ F_{(n+m) / 2} L_{(n-m) / 2} & \text { if } n \equiv m+2(\bmod 4) .\end{cases}
$$

The following result can be found in [12].
Lemma 2.3. Let $n=2^{a} n_{1}$ and $m=2^{b} m_{1}$ be positive integers with n_{1} and m_{1} odd integers and a and b nonnegative integers. If $\operatorname{gcd}(n, m)=d$, then
(i) $\operatorname{gcd}\left(F_{n}, F_{m}\right)=F_{d}$;
(ii) $\operatorname{gcd}\left(F_{n}, L_{m}\right)=L_{d}$ if $a>b$ and 1 or 2 otherwise.

The following lemma is often set as an exercise in elementary number theory.
Lemma 2.4. Let p be an odd prime, a, b, c, k integers with $\operatorname{gcd}(a, b)=1$ and $k \geq 2$. If

$$
a^{p}+b^{p}=c^{k}
$$

then $a+b=d^{k}$ or $p^{k-1} d^{k}$, for some integer d.
The following lemma can be obtained from [11].
Lemma 2.5. All solutions of the Diophantine equation

$$
F_{n} \pm F_{m}=y^{p}, \quad p \geq 2
$$

in integers (n, m, y, p) with $n \equiv m(\bmod 2), \operatorname{gcd}(n, m)=1$ or 2 and $n>m$ are given by

$$
\begin{gathered}
F_{2}+F_{0}=1, \quad F_{4}+F_{2}=2^{2}, \quad F_{6}+F_{2}=3^{2}, \\
F_{2}-F_{0}=1, \quad F_{3}-F_{1}=1, \quad F_{5}-F_{1}=2^{2}, \quad F_{7}-F_{5}=2^{3}, \quad F_{13}-F_{11}=12^{2} .
\end{gathered}
$$

When $p=3$, the following lemma is a classical result. When $p \geq 17$ is a prime, it can be obtained from [10]. When $p=4,5,7,11,13$, it can be obtained from the result of Bruin [2] and Dahmen [7].
Lemma 2.6. Let p be a prime. Suppose (a, b, c) is an integer solution of the Diophantine equation

$$
x^{3}+y^{3}=z^{p}, \quad p \geq 3
$$

with $\operatorname{gcd}(a, b)=1, a b c \neq 0$ and $2 \mid a c$. Then $3 \mid c$ and $2 \mid a$ but $4 \nmid a$.

The next lemma is proved by Darmon [8] and Darmon and Merel [9].
Lemma 2.7. Let $n \geq 4$ be an integer, and $p=2$ or 3 . Then there are no integer solutions of the equations

$$
x^{n}+y^{n}=z^{p}
$$

with $\operatorname{gcd}(x, y)=1$ and $x y \neq 0$.
One can obtain the next lemma from [4] and [5].
Lemma 2.8. Let q be an odd prime, with $q \equiv 3(\bmod 4)$. Then the only nonnegative integer solutions (n, y, p) of the equations

$$
F_{n}=q^{a} y^{p}, \quad p \geq 2, a>0
$$

and

$$
L_{n}=q^{a} y^{p}, \quad p \geq 2, a>0
$$

with $q<1087$, are

$$
F_{0}=0, \quad F_{4}=3, \quad F_{12}=3^{2} \times 4^{2}=3^{2} \times 2^{4}
$$

and

$$
L_{2}=3, \quad L_{4}=7, \quad L_{5}=11, \quad L_{8}=47, \quad L_{9}=19 \times 2^{2}, \quad L_{11}=199
$$

The next lemma can easily be obtained from the definition of the Fibonacci and Lucas sequences.

Lemma 2.9. The Fibonacci and Lucas sequences have the following divisibility properties:

$$
\begin{aligned}
& 2 \mid F_{n} \Leftrightarrow n \equiv 0(\bmod 3) ; \\
& 4 \mid F_{n} \Leftrightarrow n \equiv 0(\bmod 6) ; \\
& 3 \mid F_{n} \Leftrightarrow n \equiv 0(\bmod 4) ; \\
& 9 \mid F_{n} \Leftrightarrow n \equiv 0(\bmod 12) ; \\
& 2 \mid L_{n} \Leftrightarrow n \equiv 0(\bmod 3) ; \\
& 4 \mid L_{n} \Leftrightarrow n \equiv 3(\bmod 6) ; \\
& 3 \mid L_{n} \Leftrightarrow n \equiv 2(\bmod 4) ; \\
& 9 \mid L_{n} \Leftrightarrow n \equiv 6(\bmod 12) .
\end{aligned}
$$

The residue of F_{n} modulo 9 depends on the residue of n modulo 12, as in the following table.

$$
\begin{array}{cllllllllllcc}
n(\bmod 12): & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
F_{n}(\bmod 9): & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 4 & 3 & 7 & 1 & 8
\end{array}
$$

Lemma 2.10. Let $q>3$ be an odd prime and $q \equiv 3(\bmod 4)$. Then there are no positive integer solutions (n, y, p) of the equations

$$
F_{n}=3^{a} q^{b} y^{p}, \quad p \geq 4, a \geq 2, b>0
$$

and

$$
L_{n}=3^{a} q^{b} y^{p}, \quad p \geq 4, a \geq 2, b>0
$$

with $q<1087$.
Proof. First, we consider the equation $L_{n}=3^{a} q^{b} y^{p}$. Since $a \geq 2$, Lemma 2.9 implies $n \equiv 6(\bmod 12)$. Let $n=6 k$. Then,

$$
3^{a} q^{b} y^{p}=L_{6 k}=L_{2 k}\left(L_{2 k}^{2}+3(-1)^{2 k+1}\right)=L_{2 k}\left(L_{2 k}^{2}-3\right) .
$$

As $3 \mid L_{n}$, we can see that $\operatorname{gcd}\left(L_{2 k}, L_{2 k}^{2}-3\right)=3$. We therefore consider two cases.
Case (i). $L_{2 k}=3^{a-1} z^{p}$. Here $2 k=2$ by Lemma 2.8, so $3^{a} q^{b} y^{p}=L_{6 k}=L_{6}=3^{2} \times 2$. Therefore, there are no integer solutions.

Case (ii). $L_{2 k}^{2}-3=3 z^{p}$. This gives the Diophantine equation $3 x^{2}-1=z^{p}$ with $L_{2 k}=3 x$, which has no integer solutions by [1, Theorem 1.1].

Next, we consider the equation $F_{n}=3^{a} q^{b} y^{p}$. By Lemma 2.9, we have $12 \mid n$ for $a \geq 2$. Put $n=12 k$. Then $3^{a} q^{b} y^{p}=F_{12 k}=F_{6 k} L_{6 k}$. By Lemma 2.9, $2\left|F_{6 k}, 2\right| L_{6 k}$ and by Lemma 2.3, $\operatorname{gcd}\left(F_{6 k}, L_{6 k}\right)=2$. Now there are three possibilities.

Case (1). $F_{6 k}=2^{s} w^{p}$ or $L_{6 k}=2^{s} w^{p}$ with $s=1$ or $p-1$. By Lemma 2.1, $6 k=6$ or 12 for the first and $6 k=6$ for the second. There are no integer solutions in any of these cases.

Case (2). $F_{6 k}=2^{s} \times 3^{a} w^{p}$ with $s=1$ or $p-1$. Here, $2^{s} \times 3^{a} w^{p}=F_{6 k}=F_{3 k} L_{3 k}$. Using Lemmas 2.3 and 2.9, we see that $\operatorname{gcd}\left(F_{3 k}, L_{3 k}\right)=2$. Thus, $F_{3 k}=2^{t} u^{p}$ or $L_{3 k}=2^{t} u^{p}$, for some integer u. We deduce that $3 k=3,6,12$ or 3,6 respectively, yielding no integer solutions.

Case (3). $L_{6 k}=2^{s} \times 3^{a} w^{p}$, with $s=1$ or $p-1$. By Lemma 2.8, we get $s=1$. Hence, from $2 \times 3^{a} w^{p}=L_{6 k}=L_{2 k}\left(L_{2 k}^{2}-3\right)$ and $\operatorname{gcd}\left(L_{2 k}, L_{2 k}^{2}-3\right)=3$, we obtain either $L_{2 k}=3^{a-1} z^{p}$, or $L_{2 k}^{2}-3=3 z^{p}$. Neither possibility yields any integer solutions by an argument similar to that at the beginning of the proof.

This completes the proof of Lemma 2.10.

3. Proofs of the main theorems

Let $\operatorname{gcd}(n, m)=d$, so that $\operatorname{gcd}\left(F_{n}, F_{m}\right)=F_{d}$ by Lemma 2.3. Thus $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$ means $\operatorname{gcd}(n, m)=1$ or 2 . We assume $y>0$ for the remainder of the proofs.
3.1. Proof of Theorem 1.1. Under the congruence conditions on n and m,

$$
y^{p}=F_{n}^{2} \pm F_{m}^{2}=F_{n+m} F_{n-m}
$$

by Catalan's identity. Since $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$, we get $\operatorname{gcd}(n, m)=1$ or 2 and then $\operatorname{gcd}(n+m, n-m)=1,2$ or 4. Hence, by Lemma 2.3(i), $\operatorname{gcd}\left(F_{n+m}, F_{n-m}\right)=1$ or 3 since $F_{1}=F_{2}=1, F_{4}=3$. Therefore, we have one of the two following cases:
(i) $F_{n+m}=z^{p}, F_{n-m}=w^{p}, y=z w$;
(ii) $\quad F_{n+m}=3^{s} z^{p}, F_{n-m}=3^{p-s} w^{p}, y=3 z w, s=1$ or $p-1$.

By Lemma 2.1, $n+m=1,2,6$, or 12 in Case (i) and $(n, m, y, p)=(1,0,1, k)$ for Equation (1.1) and $(n, m, y, p)=(2,0,1, k),(4,2,2,3),(7,5,12,2)$ for Equation (1.2). By Lemma 2.8, $n+m=4$ or 12 in Case (ii), which yields no integer solutions. Therefore, Theorem 1.1 is proved.
3.2. Proof of Theorem 1.2. Since $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$, Lemma 2.4 implies the two cases:
(1) $F_{n} \pm F_{m}=z^{p}$;
(2) $F_{n} \pm F_{m}=q^{p-1} z^{p}$.

Case (1). $F_{n} \pm F_{m}=z^{p}$. Recall the condition $n \equiv m(\bmod 2)$. By Lemma 2.5,

$$
\begin{gathered}
F_{2}+F_{0}=1, \quad F_{4}+F_{2}=2^{2}, \quad F_{6}+F_{2}=3^{2}, \\
F_{2}-F_{0}=1, \quad F_{3}-F_{1}=1, \quad F_{5}-F_{1}=2^{2}, \quad F_{7}-F_{5}=2^{3}, \quad F_{13}-F_{11}=12^{2} .
\end{gathered}
$$

This gives the potential solutions

$$
\begin{array}{ccc}
F_{2}^{q}+F_{0}^{q}=y^{p}, \quad F_{4}^{q}+F_{2}^{q}=y^{p}, \quad F_{6}^{q}+F_{2}^{q}=y^{p}, \\
F_{2}^{q}-F_{0}^{q}=y^{p}, \quad F_{3}^{q}-F_{1}^{q}=y^{p}, \quad F_{5}^{q}-F_{1}^{q}=y^{p}, \quad F_{7}^{q}-F_{5}^{q}=y^{p}, \quad F_{13}^{q}-F_{11}^{q}=y^{p},
\end{array}
$$

that is

$$
\begin{gathered}
1^{q}+0^{q}=y^{p}, \quad 3^{q}+1^{q}=y^{p}, \quad 8^{q}+1^{q}=y^{p}, \\
1^{q}-0^{q}=y^{p}, \quad 2^{q}-1^{q}=y^{p}, \quad 5^{q}-1^{q}=y^{p}, \quad 13^{q}-5^{q}=y^{p}, \quad 233^{q}-89^{q}=y^{p} .
\end{gathered}
$$

From $1^{q} \pm 0^{q}=1^{p}$, we get the integer solutions $(n, m, y, q, p)=(2,0,1, k, l)$ for the two equations. By the well-known result on the Catalan equation (that the Catalan equation $x^{p}-y^{q}=1$ only has the solution $3^{2}-2^{3}=1$), the only equations we need to treat are the last two, that is $13^{q}-5^{q}=y^{p}$ and $233^{q}-89^{q}=y^{p}$.

For the equation $13^{q}-5^{q}=y^{p}$, because $13-5=F_{7}-F_{5}=2^{3}$, we obtain $p=3$. Then, $13^{q}-5^{q}=y^{3}$, that is $13^{q}+(-5)^{q}=y^{3}$ since q is an odd prime. However, the equation $x^{3}+y^{3}=z^{3}$ has no integer solutions with $x y z \neq 0$, so $q \neq 3$ and then $q \geq 5$. This is impossible by Lemma 2.7.

For the equation $233^{q}-89^{q}=y^{p}$, because $233-89=F_{13}-F_{11}=12^{2}$, we obtain $p=2$. Thus, we consider the equation $233^{q}-89^{q}=y^{2}$, that is $233^{q}+(-89)^{q}=y^{2}$ as
q is an odd prime. Since $3 \mid 12^{2}$, we get $q \neq 3$ and deduce $q \geq 5$. This is impossible by Lemma 2.7.
Case 2. $F_{n} \pm F_{m}=q^{p-1} z^{p}$. From Lemma 2.7 we can assume $p \geq 5$. By Lemma 2.2, $F_{n} \pm F_{m}=F_{N} L_{M}$, with $N=(n \pm m) / 2$ and $M=(n \mp m) / 2$. As $\operatorname{gcd}(n, m)=1$ or 2 , we $\operatorname{get} \operatorname{gcd}(N, M)=1$ or 2 . Since $L_{2}=3$, by Lemma $2.3, \operatorname{gcd}\left(F_{N}, L_{M}\right)=1,2$, or 3 .

First, consider $\operatorname{gcd}\left(F_{N}, L_{M}\right)=3$. We have $F_{N}=3^{t} w^{p}$ or $L_{M}=3^{t} w^{p}$ with $t=1$ or $t \geq p-2 \geq 3$. Hence, by Lemma 2.8, $N=4, t=1$ or $M=2, t=1$. If $N=4=(n+m) / 2$ or $M=2=(n+m) / 2$, it is easy to see that there are no solutions since $F_{n} \pm F_{m}=$ $q^{p-1} z^{p} \geq 3 \geq 3^{4}=81$. Thus, $N=4=(n-m) / 2$ or $M=2=(n-m) / 2$, that is $n=m+8$ or $n=m+4$, and so $(n+m) / 2=m+4$ or $m+2$. Therefore, we must consider the following two cases.
(i) $F_{m+2}=3^{p-2} z^{p}$ or $L_{m+4}=3^{p-2} z^{p}$, for $q=3$. Since $p-2 \geq 3$, there are no integer solutions by Lemma 2.8.
(ii) $F_{m+2}=3^{p-1} q^{p-1} z^{p}$ or $L_{m+4}=3^{p-1} q^{p-1} z^{p}$, for $q>3$. There are no integer solutions by Lemma 2.10.

Now, we consider $\operatorname{gcd}\left(F_{N}, L_{M}\right)=1$ or 2 . Then, $F_{N}=2^{s} w^{p}$ or $L_{M}=2^{s} w^{p}$ with $s=0,1$, or $p-1 \geq 4$. Using Lemma $2.1, N=1,2,3,6,12$, or $M=1,3,6$. Since $F_{6}=2^{3}, F_{12}=2^{2} \times 6^{2}=2^{4} \times 3^{2}$ and $L_{3}=2^{2}, L_{6}=2 \times 3^{2}$, we only need to consider $N=1,2,3$, or $M=1$. Similarly, $N=(n-m) / 2=1,2,3$, or $M=(n-m) / 2=1$. For $N=(n-m) / 2=1,2$, or $M=(n-m) / 2=1$, we have $F_{1}=F_{2}=L_{1}=1$, so $L_{m+1}=q^{p-1} z^{p}$, or $L_{m+2}=q^{p-1} z^{p}$, or $F_{m+1}=q^{p-1} z^{p}$, none of which yield any integer solutions by Lemma 2.8 as $p \geq 5$.

Finally, we only need to deal with the case $N=(n-m) / 2=3$, that is, $n=m+6$. From $F_{2}=2$, we have $s=1$ and then $L_{m+3}=2^{p-1} q^{p-1} z^{p}$. By Lemma 2.9, we have $m+3 \equiv 3(\bmod 6)$ since $4 \mid L_{m+3}$, so $2 \mid m$. Let $m+3=3 k, 2 \nmid k$. Then $L_{m+3}=L_{k}\left(L_{k}^{2}+3\right)$. If $3 \mid L_{m+3}$, then $m+3 \equiv 2(\bmod 4)$ and thus $2 \nmid m$, which is a contradiction. Therefore, $3 \nmid L_{m+3}$ and $\operatorname{gcd}\left(L_{k}, L_{k}^{2}+3\right)=1$. We deduce that $L_{k}=2^{p-1} u^{p}, q^{p-1} v^{p}$ or $L_{k}^{2}+3=w^{p}$. The first two equations have no integer solutions by Lemma 2.1 and Lemma 2.8. The last equation also has no integer solution from Nagell [13] since $p \geq 5$. This proves Theorem 1.2.
3.3. Proof of Theorem 1.3. By Theorem 1.2, we only need to treat the case $n \not \equiv$ $m(\bmod 2)$ with $n>m$. If $m=0$, then $n=1 \operatorname{since} \operatorname{gcd}\left(F_{n}, F_{m}\right)=1$. Therefore, we assume $m \geq 1$, which gives $y F_{n} F_{m} \neq 0$ and $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1$. By Lemma 2.6, we have $3 \mid y$ and, by Lemma 2.4, $F_{n} \pm F_{m}=3^{p-1} z^{p}$. We deduce that $9 \mid F_{n} \pm F_{m}= \pm\left(F_{n^{\prime}} \pm F_{m^{\prime}}\right)$ with $2 \mid n^{\prime}$ and $2 \nmid m^{\prime}$. On the other hand, $2 \mid F_{k}$ but $4 \nmid F_{k}$ if and only if $k \equiv 3(\bmod 6)$ by Lemma 2.9. Moreover, by Lemma 2.6, $m^{\prime} \equiv 3(\bmod 6)$. Put $n^{\prime}=2 s$ and $m^{\prime}=6 t+3$. Then, by Lemma 2.9 and $3 \nmid F_{n}, 3 \nmid F_{m}$, we see that $F_{n^{\prime}}=F_{2 s} \equiv 1,8(\bmod 9)$ and $F_{m^{\prime}}=F_{6 t+3} \equiv 2,7(\bmod 9)$. Thus, $F_{n^{\prime}} \pm F_{m^{\prime}} \equiv 0(\bmod 9)$. This is impossible. Therefore, Theorem 1.3 is proved.

References

[1] M. Bennett and C. Skinner, 'Ternary Diophantine equations via Galois representations and modular forms', Canad. J. Math. 56 (2004), 23-54.
[2] N. Bruin, 'On powers as sums of two cubes', in: Algorithmic Number Theory, Lecture Notes in Computer Science, 1838 (ed. W. Bosma) (Springer, Berlin, 2000), 169-184.
[3] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, 'Fibonacci numbers at most one away from a perfect power', Elem. Math. 63 (2008), 65-75.
[4] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, 'Almost powers in the Lucas sequence', J. Théor. Nombres Bordeaux 20 (2008), 555-600.
[5] Y. Bugeaud, M. Mignotte and S. Siksek, 'Sur les nombres de Fibonacci de la forme $q^{k} y^{p}$ ', C. R. Math. Acad. Sci. Paris 339 (2004), 327-330.
[6] Y. Bugeaud, M. Mignotte and S. Siksek, 'Classical and modular approaches to exponential Diophantine equations I, Fibonacci and Lucas perfect powers', Ann. of Math. (2) 163 (2006), 969-1018.
[7] S. R. Dahmen, Classical and Modular Methods Applied to Diophantine Equations, PhD Thesis, University of Utrecht, 2008.
[8] H. Darmon, 'The equations $x^{n}+y^{n}=z^{2}$ and $x^{n}+y^{n}=z^{3}$, Int. Math. Res. Not. IMRN 72 (1993), 263-274.
[9] H. Darmon and L. Merel, 'Winding quotients and some variants of Fermat's Last Theorem', J. reine angew. Math. 490 (1997), 81-100.
[10] A. Kraus, 'Sur l'équation $a^{3}+b^{3}=c^{p}$, Exp. Math. 7 (1998), 1-13.
[11] F. Luca and V. Patel, 'On perfect powers that are sums of two Fibonacci numbers', J. Number Theory 189 (2018), 90-96.
[12] W. McDaniel, 'The g.c.d. in Lucas sequences and Lehmer number sequences', Fibonacci Quart. 29 (1991), 24-29.
[13] T. Nagell, 'Løsning til oppgave nr 2', Nordisk Mat. Tidskr. 30 (1948), 62-64.

ZHONGFENG ZHANG, School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, China e-mail: bee2357@163.com

ALAIN TOGBÉ, Department of Mathematics, Statistics and Computer Science, Purdue University Northwest, 1401 S. U.S. 421 Westville, IN 46391, USA
e-mail: atogbe@pnw.edu

[^0]: The first author was supported by NSF of China (No. 11601476) and the Guangdong Provincial Natural Science Foundation (No. 2016A030313013) and Foundation for Distinguished Young Teacher in Higher Education of Guangdong, China (YQ2015167). The second author thanks Purdue University Northwest for support.

