J. Austral. Math. Soc. (Series A) 40 (1986), 153-160

C_p-CLASSES OF OPERATORS IN C*-ALGEBRAS

S. GIOTOPOULOS

(Received 5 June 1984)

Communicated by G. Brown

Abstract

We construct a "suitable" representation of a C^* -algebra that carries single elements to rank one operators. We also prove an abstract spectral theorem for compact elements in the algebra. This leads naturally to an abstract definition of C_p -classes of compact elements in the algebra.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 L 05, 47 B 10. Keywords. C*-algebra, minimal deal, representation, spectral theorem, C_{ρ} -classes of operators.

1. Introduction

The classes C_p (0 of linear operators on a Hilbert space <math>H were introduced by von Neumann and Schatten in [11] and have been studied in various articles (for example, [4, 7, 8 and 10]). Suppose T is a compact operator on H and μ_1, μ_2, \ldots are the eigenvalues of $(T * T)^{1/2}$ arranged in decreasing order and repeated according to their multiplicity. The numbers μ_n $(n = 1, 2, \ldots)$ are called the *characteristic numbers* of T and are noted by $s_n(T)$ $(n = 1, 2, \ldots)$. We define

(i)
$$||T||_p = \{\sum_n [s_n(T)]^p\}^{1/p} (0
(ii) $||T||_{\infty} = |s_1(T)| = ||T||,$
(iii) $C_p = \{T \in C(H): ||T||_p < \infty\}.$$$

If $1 \le p \le \infty$, then (i) C_p is a two-sided ideal of $\mathscr{L}(H)$, (ii) $\|\cdot\|_p$ is a norm on C_p and with this norm C_p is a Banach space (which is reflexive in case p > 1). The set F(H) of all operators of finite rank on H is an everywhere dense linear subspace of C_p .

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

S. Giotopoulos

This article is an attempt to introduce in an arbitrary C^* -algebra A a class of elements analogous to the von Neumann-Schatten classes C_p of compact operators on some Hilbert space. This is an application of some faithful representation of the algebra which carries single elements to rank one operators. This is Theorem 5 below.

An abstract spectral theorem for certain compact elements in A is needed and it is proved in Theorem 7.

Finally I wish to thank Dr. J. Erdos for his constant and valuable encouragement during the preparation of an earlier version of this work.

2. Representations

In this section we are concerned with C^* -algebras which contain non-zero single elements. An element s in a C^* -algebra A is called single if whenever asb = 0, a, b in A, then at least one of as, sb is zero. C^* -algebras are obviously semi-simple Banach algebras and single elements in C^* -algebras "act compactly" [5, 6].

If an addition we assume that a C^* -algebra A is separated by its single elements (i.e. the left annihilator $\tan \sigma$ of the set σ of all non-zero single elements of A is zero) then the representation constructed in [6, Theorem 6] is isometric and the Banach space X is in fact a Hilbert space. In fact, in that case, $\tan \sigma = \tan(\operatorname{soc} A) = (0)$ and X will be the direct sum of $\{Ae\}, (e \in \mathscr{E})$ [6], where $(e \in \mathscr{E})$ may be assumed self-adjoint ([5, Lemma 2.3] or [9, Lemma 4.9.2]). If $x, y \in Ae$ (for some $e \in \mathscr{E}$) then $y^*x \in eAe = \mathbb{C}e$, and thus we can define a scalar $\langle x, y \rangle$ by $y^*x = \langle x, y \rangle e$.

By a standard argument, $\langle x, y \rangle$ defines an inner product on the elements of Ae making it a Hilbert space, with the inner product norm identified with the algebra norm. Hence, the space X in [6, Theorem 6] can be regarded as a Hilbert space which we will denote in the following by H. The representation $a \to \pi(a)$ $(A \to \mathcal{L}(H))$ of [6, Theorem 6] is then an isometric *-representation of A on the Hilbert space H [3, 1.8.1]. Hence we have the following

THEOREM 1. Let A be a C*-algebra which is separated by the set of its non-zero single elements. Then there exists an isometric representation $a \rightarrow \pi(a)$ of A on a Hilbert space H such that $\pi(s)$ has rank one, if and only if, s is a non-zero single element of A.

Moreover, we can easily see that the closed linear span, $[\pi(s)H:s \in \sigma]$, of all vectors $\pi(s)h$, $s \in \sigma$, $h \in H$, is all of H. The converse is also true, as the following lemma shows.

LEMMA 2. Let A be a C*-algebra and π a faithful representation of A on a Hilbert space H such that $H = [\pi(s)H : s \in \sigma]$. Then A is separated by its single elements.

PROOF. Suppose that for some a in A we have as = 0 for all $s \in \sigma$. Since π is faithful, we have $\pi(as) = 0$ and hence $\langle \pi(as)x, y \rangle = 0$, or equivalently $\langle \pi(s)x, \pi(a^*)y \rangle = 0$, $(s \in \sigma, x, y \in H)$. By assumption, the latter implies that $\pi(a^*)y^{\perp}H$ for all $y \in H$ and therefore $\pi(a^*) = 0$. Hence $a^* = 0$ and so a = 0, and the lemma follows.

REMARK. The assumption that π is faithful cannot be discarded, as the following example shows. Let \mathscr{A} be a C^* -algebra with no non-zero single elements and suppose π is the representation of $A \oplus \mathscr{L}(H)$ on the Hilbert space H defined by $\pi(S \oplus T) = T$. The set of single elements of $\mathscr{A} \oplus \mathscr{L}(H)$ consists of all operators of the form $0 \oplus R$, with R either zero or rank one operator, in $\mathscr{L}(H)$. Clearly, π is not faithful and

$$H = \left[\pi(0 \oplus R) H : R \in \mathscr{L}(H), \text{ rank } R \leq 1 \right].$$

However, a non-zero operator $S \oplus 0$ annihilates every operator $0 \oplus R$ and thus $\mathscr{A} \oplus \mathscr{L}(H)$ is not separated by its single elements.

Let π and ρ be two representations of A, perhaps acting on different spaces Hand K. We say that π and ρ are *equivalent* ($\pi \sim \rho$) if there is a unitary operator $U: H \rightarrow K$ such that $U\pi(a)U^* = \rho(a)$, for all a in A. Equivalent representations are indistinguishable in the sense that any geometric property of one must be shared by the other, and it is correct to think of the unitary operator U as representing nothing more than a change of "coordinates".

LEMMA 3. Let A be a C*-algebra, and π and ρ two isometric representations of A acting on the Hilbert spaces H and K respectively, which map single elements to operators of rank one and such that $[\pi(s)H:s \in \sigma] = H$ and $[\rho(s)K:s \in \sigma] = K$. Then π and ρ are equivalent.

PROOF. By Zorn's lemma, there exists a family $\mathscr{E} = \{e_i\}$ of minimal idempotents in A which is maximal subject to the condition,

$$(Ae_iA) \cap (Ae_jA) = (0), \quad i \neq j, e_i, e_j \in \mathscr{E}.$$

We may also assume that $\{e_i\}$ are self-adjoint and hence each of the minimal left ideals Ae_i of A is a Hilbert space with the C*-algebra norm. Consider now, a family of vectors of unit norm $\{x_i\} \subset H$, such that $\pi(e_i) = x_i \oplus x_i$, and denote

 $H_{i} = \{\pi(a)x_{i} : a \in A\} \text{ for all } i. \text{ Since}$ $\|\pi(a)x_{i}\|^{2} = \|\pi(a)x_{i}\| \cdot \|\pi(a)x_{i}\|$ $= \|\pi(a)x_{i} \otimes \pi(a)x_{i}\| = \|\pi(a)(x_{i} \otimes x_{i})\pi(a^{*})\|$ $= \|\pi(a) \cdot \pi(e_{i}) \cdot \pi(a^{*})\| = \|\pi(ae_{i}a^{*})\|$ $= \|ae_{i}a^{*}\| = \|(ae_{i})(ae_{i})^{*}\| = \|ae_{i}\|^{2}$

we have that $\{H_i\}$ are isometrically isomorphic to the minimal left ideals $\{Ae_i\}$. Minimal left ideals are always closed so $\{H_i\}$ are closed. More precisely H_i is a closed $\pi(A)$ -invariant subspace of H, where the x_i are cyclic vectors for H_i , for all *i*. Now, for any elements *a*, *b* in *A* we have that

$$\pi(ae_i)x_i = \pi(a) \cdot \pi(e_i)x_i = \pi(a)(x_i \otimes x_i)x_i = \pi(a)x_i \in H_i$$

and

$$e_j b^* a e_i \in A e_j A \cap A e_i A = (0) \qquad (i \neq j).$$

Hence, if $i \neq j$, and \langle , \rangle is the inner product on H, then

$$\langle \pi(a)x_i, \pi(b)x_j \rangle = \langle \pi(ae_i)x_i, \pi(be_j)x_j \rangle$$
$$= \langle \pi(e_jb^*ae_i)x_i, x_j \rangle$$
$$= \langle 0, x_j \rangle = 0,$$

showing that H_i and H_j are orthogonal. Now, let π_i be the restriction of π on H_i . Then π_i is irreducible since every non-zero vector of H_i is cyclic. In fact

$$\{\pi_i(A)\pi_i(a)x_i\} = \{\pi_i(A)\pi_i(ae_i)x_i\} = \{\pi_i(Aae_i)x_i\}$$
$$= \{\pi_i(Ae_i)x_i\} = \{\pi_i(A)\pi_i(e_i)x_i\}$$
$$= \{\pi_i(A)x_i\} \qquad (a \in A).$$

To prove that $\pi(a) = \bigoplus \pi_i(a)$ $(a \in A)$, it is sufficient to show that $H = \bigoplus H_i$. But, this is true since $h \in H$ implies $\pi(e_i)h \in H_i$ and therefore $H = [\pi(s)H : s \in \sigma] \subseteq \bigoplus H_i \subseteq H$.

This completes the proof that there is a family $\{\pi_i\}$ of irreducible subrepresentations of π such that $\pi(a)$ is the direct sum of $\pi_i(a)$ ($a \in A$).

Also, if we denote $K_i = \{\rho(a)y_i : a \in A\}$ and ρ_i the restriction of ρ on K_i , then (as above) $K = \bigoplus K_i$ and $\rho(a) = \bigoplus \rho_i(a)$ $(a \in A)$. H_i and K_i are isometrically isomorphic since

$$\|\pi(a)x_i\| = \|ae_i\| = \|\rho(a)y_i\|$$
 $(a \in A),$

and therefore we may define a unitary operator $U_i: H_i \to K_i$ by $U_i \pi(a) x_i = \rho(a) y_i$, so that $U_i \pi_i(a) U^* = \rho_i(a)$ ($a \in A$) for all *i*. The operator $U = \bigoplus U_i$ is clearly a unitary operator from *H* onto *K* and

$$U\pi(a)U^* = \bigoplus U_i\pi_i(a)U_i^* = \bigoplus \rho_i(a) = \rho(a) \qquad (a \in A).$$

REMARKS. (a) The assumptions that $[\pi(s)H:s \in \sigma] = H$ and $[\rho(s)K:s \in \sigma] = K$ cannot be discarded, as the following example shows. Let H be an infinite dimensional Hilbert space and A the C*-subalgebra of $\mathscr{L}(H \oplus H)$ defined as follows:

 $A = \left\{ \begin{pmatrix} \lambda I & 0 \\ 0 & \lambda I + K \end{pmatrix}, & \text{where } \lambda \in \mathbb{C}, I \text{ is the identity} \\ \text{ and } K \text{ is a compact operator on } H \right\}.$

Let π be the identity representation of A on $H \oplus H$, and ρ the representation of A on H given

$$\rho\left(\begin{pmatrix}\lambda I & 0\\ 0 & \lambda I + K\end{pmatrix}\right) = \lambda I + K.$$

Clearly, the single elements of A are all elements of the form $\begin{pmatrix} 0 & 0 \\ 0 & R \end{pmatrix}$ with R either zero or rank one operator on H. We can easily see that π and ρ carry single elements to rank one operators. But there is no unitary operator $U: H \oplus H \to H$.

(b) Erdos in [5, Theorem 3.7] proved that for an arbitrary C^* -algebra A "there exists an isometric representation π of A on a Hilbert space H such that the image of each non-zero element has rank one". Along the lines of the proof of this theorem it is shown that π is the direct sum of irreducible representations, and therefore one can reobtain Lemma 3 as a consequence of the referred to Theorem 3.7 of [5]. In our case Erdos's Theorem can be deduced from Lemma 3.

Ylinen, drawing upon the representation referred to in that theorem, proved the following theorem [12].

THEOREM 4. Let A be a C*-algebra. Then there exists an isometric representation π of A on a Hilbert space H such that t is compactly acting element of A, if and only if, $\pi(t)$ is a compact operator on H. Furthermore, t is an element of the soc(A) (i.e., the operator $a \rightarrow tat$ on A has finite rank), if and only if, $\pi(t)$ is a finite rank operator on H.

Suppose now, that π is any faithful representation of a C^* -algebra A on a Hilbert space H. Choose any closed two-sided ideal J of A and define $H_J = [\pi(J)H]$. Clearly, since J is an ideal of A, $H = H_J \oplus H_J^{\perp}$ gives a decomposition of H into reducing subspaces for $\pi(A)$. Define representations π_J and π_J^{\perp} of A on H_J and H_J^{\perp} to be the restrictions of π on H_J and H_J^{\perp} respectively. Then in a natural sense we have that $\pi(a) = \pi_J(a) \oplus \pi_J^{\perp}(a) (a \in A)$ and $a \in J$ implies that

 $\pi_J(a) = 0$. Suppose now that J = cl(soc(A)) and π and ρ are two isometric representations of A, acting on the Hilbert spaces H and K respectively (as in Proposition 4). Define π' and ρ' to be the representations on J given by $\pi'(a) = \pi_J(a)$ and $\rho'(a) = \rho_J(a)$ ($a \in J$), respectively. Since J is separated by its single elements, Lemma 3 implies that π' and ρ' are equivalent and hence by [1, Theorem 1.3.4] their extensions π_J and ρ_J are also equivalent.

We summarize what we have just proved and discussed, in the following theorem.

THEOREM 5. Let A be a C*-algebra and J = cl(soc(A)). Then there exists an isometric representation π of A on some Hilbert space H such that the image of each non-zero single element has rank one. Moreover, if π and ρ are such representations of A, then

(i) π_J and ρ_J are equivalent, and

(ii) $a \in J$ if and only if $\pi(a) = \pi_J(a) \oplus 0$ is a compact operator.

(iii) In particular, $a \in soc(A)$ if and only if $\pi(a)$ is a finite rank operator.

3. Applications

Theorem 5 gives us a method of investigating the properties of compactly acting elements in C^* -algebras. For example, it can be used to introduce in an arbitrary C^* -algebra A, a class of elements analogous to von Neumann-Schatten classes C_p of compact operators on a Hilbert space H, by a reduction to the concrete case.

First, we need the following well-known proposition, which we state without proof.

PROPOSITION 6. If K is any compact operator on some Hilbert space H, and $\{T_n\}$ a sequence in $\mathcal{L}(H)$ converging to T, say, in the strong operator topology, then the sequence $\{T_nK\}$ converges to TK in the norm topology.

The following result is related to the spectral theorem for compact normal operators on Hilbert spaces.

THEOREM 7. Let A be a C^* -algebra and let a be a normal element in J = cl(soc(A)). Then a may be represented as a sum

$$(*) a = \sum r_n e_n$$

in which

(i) $\{r_n\}$ is a finite or a countable family of non-zero complex numbers consisting of the non-zero elements of the spectrum of a (repeated according to their multiplicity).

(ii) $\{e_n\}$ is a countable family of mutually orthogonal self-adjoint single idempotents. We have, $ae_n = e_n a = e_n ae_n = r_n e_n$, for each n; a is self-adjoint if and only if each r_n is real, and a is positive if and only if each $r_n > 0$.

Such a representation (*) of a, having properties (i) and (ii) of Theorem 7, is said to be a spectral representation of a.

PROOF. From Theorem 5, we have that a is in cl(soc(A)) if and only if $\pi(a)$ is a compact operator and a is normal, which is if and only if $\pi(a)$ is normal. By the spectral theorem for compact operators we have that $\pi(a) = \sum \lambda_i P_i$ where $\{\lambda_i\}$ is the sequence of distinct non-zero eigenvalues of $\pi(a)$, and P_i is the finite rank projection upon the eigenspace corresponding to the eigenvalue λ_i . Every projection P_i is then the strong limit of polynomials in $\pi(a)$, i.e. there exists a sequence of polynomials $q_n(\cdot)$ such that $q_n(\pi(a)) \to P_i$ (strongly). From Proposition 6 we have $q_n(\pi(a))\pi(A) \to P_i\pi(a)$ (in norm). Since $P_i\pi(a) = \lambda_i P_i$ we have $(1/\lambda_i)q_n(\pi(a))\pi(a) \rightarrow P_i$ (in norm) and so, every projection P_i belongs to the closed algebra generated by $\pi(a)$. Hence $P_i \in \pi(A)$, and therefore for every i there exists a self-adjoint idempotent f_i in A such that $P_i = \pi(f_i)$. From Theorem 5, since the $\{P_i\}$ are finite dimensional, we have that the $\{f_i\}$ are in soc(A) and therefore each f_i is a finite sum of orthogonal self-adjoint single idempotents $f_i = \sum_i e_{ij}$ say. Using Theorem 5 we obtain $a = \sum_i \lambda_i f_i = \sum_i \lambda_i (\sum_j e_{ij}) = \sum_i \sum_j \lambda_i e_{ij}$ and hence by a suitable modification of the notation, $a = \sum r_n e_n$. By multiplying the above equality by e_n we have $ae_n = e_n a = e_n ae_n = r_n e_n$. The latter part of the Theorem is now clear.

REMARK. From Theorem 5 it follows that $\{r_n\}$ in the spectral representation (*) of the element *a*, in Theorem 7, does not depend on the choice of the representation π of *A*.

If a is a non-zero element in cl(soc(A)) then a^*a is positive and clearly to cl(soc(A)) also. Let $a^*a = \sum r_n e_n$ be a spectral representation of a^*a . The numbers $\sqrt{r_n}$ (denoted by $s_n(a)$) are called the *characteristic numbers* of a.

DEFINITION 8. Let A be a C^* -algebra. Define

(i) $A_p = \{ a \in cl(soc(A)): [\sum_n s_n^p(a)]^{1/p} < +\infty \}$ $(0 and <math>A_{\infty} = cl(soc(A)),$

(ii) for $a \in A_p$, $||a||_p = [\sum_n s_n^p(a)]^{1/p}$ $(0 and for <math>a \in A_\infty$, $||a||_\infty = ||a||$ = max $\{s_n(a): n = 1, 2, ...\}$. S. Giotopoulos

From the above remark, $\|\cdot\|_p$ is well defined. An immediate consequence of the above definition is the following.

COROLLARY 9. (i) $a \in A_p$, if and only if, $\pi(a) \in C_p$. (ii) $||a||_p = ||\pi(a)||_p$.

Hence, by a reduction to the concrete case we can easily see that $||a||_p$ $(p \ge 1)$ is a norm on A_p making it a Banach space, and soc(A) is a $|| \cdot ||_p$ -dense subspace of A_p . Well-known results for the C_p class can be extended to results for the A_p class by means of Corollary 9.

References

- [1] W. Arveson, An invitation to C*-algebra (Springer-Verlag, Berlin 1976).
- [2] F. F. Bonsal and J. Duncan, Complete normed algebras (Springer-Verlag, Berlin 1973).
- [3] J. Dixmier, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).
- [4] N. Dunford and J. Schwartz, *Linear operators*, Part II (Interscience Publishers, a division of John Wiley & Sons, Inc. New York, 1963).
- [5] J. A. Erdos, "On certain elements of C*-algebras", Illinois J. Math. 15 (1971), 682-693.
- [6] J. A. Erdos, S. Giotopoulos and M. Lambrou, "Rank one elements of Banach algebras", Mathematica 24 (1977), 178-181.
- [7] Ch. A. McCarthy, "C_p", Israel J. Math. 5 (1967), 249-271.
- [8] Pak-Ken-Wong, "The p-class in a dual B*-algebra", Trans. Amer. Math. Soc. 200 (1974), 355-368.
- [9] C. E. Rickart, General theory of Banach algebras (Van Nostrand, New Jersey 1960).
- [10] J. Ringrose, Compact non-selfadjoint operators (Van Nostrand, 1970).
- [11] J. Von Neumann and R. Schatten, "The cross-space of linear transformations III", Ann. of Math. (2) 49 (1948), 557-582.
- [12] K. Ylinen, "A note on the compact elements of C*-algebras", Proc. Amer. Math. Soc. 35 (1972), 305-306.

Section of Mathematical Analysis and its Application Department of Mathematics University of Athens Panepistemiopolis 157 81 Athens Greece