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DISTRIBUTIONAL CONVERGENCE FOR THE
NUMBER OF SYMBOL COMPARISONS
USED BY QUICKSELECT
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Abstract

When the search algorithm QuickSelect compares keys during its execution in order
to find a key of target rank, it must operate on the keys’ representations or internal
structures, which were ignored by the previous studies that quantified the execution cost
for the algorithm in terms of the number of required key comparisons. In this paper
we analyze running costs for the algorithm that take into account not only the number
of key comparisons, but also the cost of each key comparison. We suppose that keys
are represented as sequences of symbols generated by various probabilistic sources and
that QuickSelect operates on individual symbols in order to find the target key. We
identify limiting distributions for the costs, and derive integral and series expressions for
the expectations of the limiting distributions. These expressions are used to recapture
previously obtained results on the number of key comparisons required by the algorithm.
Keywords: QuickSelect; QuickQuant; QuickVval; limit distribution; almost-sure
convergence; L”-convergence; symbol comparison; probabilistic source
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1. Introduction and summary

QuickSelect, introduced by Hoare [11] in 1961 and also known as Find or ‘Hoare’s
selection algorithm’, is a simple search algorithm widely used for finding a key (an object drawn
from a linearly ordered set) of target rank in a file of keys. We briefly review the operation of
the algorithm. Suppose that there are n keys (we will suppose that these are all distinct) and that
the target rank is m, where 1 < m < n. QuickSelect = QuickSelect(n, m) chooses a
uniformly random key, called the pivot, and compares each other key to it. This determines the
rank j (say) of the pivot. If j = m then the algorithm returns the pivot key and terminates. If
J > mthen QuickSelect is applied recursively to find the key of rank m in the set of j — 1
keys found to be smaller than the pivot. If j < m then QuickSelect is applied recursively
to find the key of rank m — j in the set of n — j keys larger than the pivot.

Many studies have examined this algorithm to quantify its execution costs—a nonexhaustive
list of references is [5], [8]1-[10], [12]-[16], [18], [23]; all of them except for Fill and Nakama [8]
and Vallée et al. [23] have conducted the quantification with regard to the number of key
comparisons required by the algorithm to achieve its task. As a result, most of the theoretical
results on the complexity of QuickSelect are about expectations or distributions for the
number of required key comparisons.
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However, one can reasonably argue that analyses of QuickSelect in terms of the number
of key comparisons cannot fully quantify its complexity. For instance, if keys are represented as
binary strings then individual bits of the strings must be compared in order for QuickSelect
to complete its task, and results obtained by analyzing the algorithm with respect to the
number of bit comparisons required to find a target key more accurately reflect actual execution
costs. (We will consider bit comparisons as an example of symbol comparisons.) When
QuickSelect (or any other algorithm) compares keys during its execution, it must operate
on the keys’ representations or internal structures, so these should not be ignored in fully
characterizing the performance of the algorithm. Also, symbol-complexity analysis allows
us to compare key-based algorithms such as QuickSelect and QuickSort with digital
algorithms such as those utilizing digital search trees.

Fill and Janson [7] pioneered symbol-complexity analysis by analyzing the expected number
of bit comparisons required by QuickSort. They assumed that the algorithm is applied to keys
that are independent and identically distributed (i.i.d.) from the uniform distribution over (0, 1)
and represented (via their binary expansions) as binary strings, and that the algorithm operates on
individual bits in order to do comparisons and find the target key. They found that the expected
number of bit comparisons required by QuickSort to sort n keys is asymptotically equivalent
to n(Inn)(Ign) (where Ig denotes the binary logarithm), whereas the lead-order term of the
expected number of key comparisons is 2n Inn, smaller by a factor of order logn. In their
Section 6 they also considered i.i.d. keys drawn from other distributions with density on (0, 1).

By closely following [7], Fill and Nakama [8] studied the expected number of bit comparisons
required by QuickSelect. More precisely, they treated the case of i.i.d. uniform keys
represented as binary strings and produced exact expressions for the expected number of bit
comparisons by QuickSelect(n, m) for general n and m. Their asymptotic results were
limited to the algorithms QuickMin, QuickMax, and QuickRand. Here QuickMin refers
to QuickSelect applied to find the smallest key, i.e. to QuickSelect(n, m) withm = 1;
and QuickMax similarly refers to QuickSelect(n, m) with m = n. QuickRand is the
algorithm that results from taking m to be uniformly distributed over {1, 2,...,n}. They
showed that the expected number of bit comparisons required by QuickMin or QuickMax is
asymptotically linear in n with lead-order coefficient approximately equal to 5.279 38. Thus,
in these cases the expected number of bit comparisons is asymptotically larger than that of key
comparisons required to complete the same task only by a constant factor, since the expectation
for key comparisons is asymptotically 2n. Fill and Nakama [8] also found that the expected
number of bit comparisons required by QuickRand is also asymptotically linear in n (with
slope approximately 8.207 31), as for key comparisons (with slope 3).

Vallée et al. [23] extended the average-case analyses of [7] and [8] to keys represented
by sequences of general symbols generated by any of a wide variety of sources that include
memoryless, Markov, and other dynamical sources. They broadly extended the results of [8]
in another direction as well by treating QuickQuant(n, «) for general o € [0, 1], not just
QuickMin, QuickMax, and QuickRand. Here the algorithm QuickQuant(n, ) (for
‘quick quantile’) refers to QuickSelect(n, m,) with m,/n — «. Roughly summarized,
Vallée et al. showed that if symbols are generated by a suitably nice source then the expected
number of symbol comparisons in processing a file of n keys is of order n log? n for Qui ckSort
and, for any «, of order n for QuickQuant(n, «). (For example, all memoryless sources are
suitably nice.) For a more detailed discussion of sources and the results of Vallée et al. [23] for
QuickQuant, see Section 2.
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The main purpose of this paper is to extend the average-case analysis of Vallée et al. [23] by
establishing limiting distributions for the number of symbol comparisons. To our knowledge the
present paper is the first to establish a limiting distribution for the number of symbol comparisons
required by any key-based algorithm. Our elementary approach allows us to handle rather
general kinds of ‘cost’ for comparing two keys, and in particular to recover in a rather direct
way known results about the number of key comparisons. There is no disadvantage to allowing
general costs, since our results rely on at most broad limitations on the nature of the cost.

Outline of the paper. We will be concerned primarily with QuickQuant = QuickQuant
(n, @), which is what we call the algorithm QuickSelect when applied to find the key of rank
my in afile of size n, where we are given 0 < o < 1 and asequence (m,) suchthatm,/n — «. It
turns out to be convenient mathematically to analyze a close cousin to QuickQuant introduced
by Vallée et al. [23], namely, QuickVal, and then treat QuickQuant by comparison. So,
after a careful description of the probabilistic models used to govern the generation of keys in
Section 2.1, a review of known results about key and symbol comparisons in Section 2.2, and a
description of QuickVval in Section 2.3, in Section 3 we establish limiting distribution results
for Quickval (whose main theorems are Theorem 3.1 and Theorem 3.2) and then move on
to QuickQuant in Section 4 (which contains Theorem 4.1, the main theorem of this paper).

Subsequent to the research leading to the present paper, and using a rather different approach,
the first author [6] has found a limiting distribution for the number of symbol comparisons used
by QuickSort for a wide variety of probabilistic sources.

Remark 1.1. Although the contraction method has been used in finding limiting distributions
for the number of key comparisons required by recursive algorithms such as QuickSort
(see, e.g. [20] and [21]), our analysis does not depend on it. In examining convergence for
the number of key comparisons used by QuickQuant, Griibel and Rosler [10] mentioned
that they did not use the contraction method due to the parameter that represents target rank.
(However, they did engage in contraction arguments to characterize the limiting distribution.)
Interestingly, Mahmoud et al. [16] succeeded in establishing a fixed point equation to identify the
limiting distributions of the normalized numbers of key comparisons required by QuickRand,
QuickMin, and QuickMax. Régnier [19] used martingales to show convergence for the
number of key comparisons required by QuickSort.

2. Background and preliminaries

2.1. Probabilistic source models for the keys

In this subsection we describe what is meant by a probabilistic source, our model for how
the i.i.d. keys are generated, using the terminology and notation of Vall€ et al. [23].

Let ¥ denote a totally ordered alphabet (set of symbols), assumed to be isomorphic either
to {0, ..., r — 1} for some finite r or to the full set of nonnegative integers, in either case with
the natural order; a word is then an element of £, i.e. an infinite sequence (or ‘string’) of
symbols. We will follow the customary practice of denoting a word w = (wp, wa, ...) more
simply by wjwy - - .

We will use the word ‘prefix’ in two closely related ways. First, the symbol strings belonging
to =¥ are called prefixes of length k, and so * := Uo<k<oo ¥ denotes the set of all prefixes
of any nonnegative finite length. Second, if w = wyw, - - - is a word then we will call

w(k) == wiwy - - wy € TF 2.1

its prefix of length k.
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Lexicographic order is the linear order (to be denoted in the strict sense by ‘<’ and in the
weak sense by ‘<’) on the set of words specified by declaring that w < w’ if (and only if) for
some 0 < k < oo the prefixes of w and w’ of length k are equal but wy1; < w1/<+1' We denote
the cost of determining w < w’ when comparing distinct words w and w’ by c(w, w’); we will
always assume that the function ¢ is symmetric and nonnegative.

Example 2.1. Here is an example of a natural class of cost functions. Start with nonnegative
symmetric functions ¢;: ¥ x ¥ — [0,00), i = 1,2, ..., modeling the cost of comparing
symbols in the respective ith positions of two words. This allows for the symbol-comparison
costs to depend both on the positions of the symbols in the words and on the symbols themselves.
Then, for comparisons of distinct words, define

k+1 k
c(w, w') = Zc,-(wi, w)) = Zcz'(wi, Wi) + Crg 1 (Wh 1, W), (2.2)

i=1 i=1
where k is the length of the longest common prefix of w and w’.

(a) If ¢; = §;,,; (independent of the symbols being compared) for given positive integer i
then c is the cost used in counting comparisons of symbols in position iy. (For example,
ifig = 1 then ¢ = 1 is the cost used in counting key comparisons.) Observe that all finite
linear combinations of such cost functions §;, . are of the form (2.2), and, therefore, by
the Cramér—Wold device (see, e.g. [1, Section 29]), if S;, denotes the total number of
comparisons of symbols in position iy then the joint distribution of (S, Sz, ...) can (at
least in principle) be obtained by studying cost functions of the form (2.2).

(b) If ¢; = 1 for all i then ¢ = k + 1 is the cost used in counting symbol comparisons.

A probabilistic source is simply a stochastic process W = W W, --. with state space X
(endowed with its total o-field) or, equivalently, a random variable W taking values in X
(with the product o-field). According to Kolmogorov’s consistency criterion (see, e.g. [2,
Theorem 3.3.6]), the distributions p of such processes are in one-to-one correspondence with
consistent specifications of finite-dimensional marginals, that is, of the probabilities

Pw = pn({wy - wi} x T, w=wiwy - wx € T*.

Here the fundamental probability p,, is the probability that a word drawn from w has wy - - - wy
as its length-k prefix.

Because the analysis of QuickSelect is significantly more complicated when its input
keys are not all distinct, we will restrict attention to probabilistic sources with continuous
distributions p. Expressed equivalently in terms of fundamental probabilities, our continuity
assumption is that, forany w = wjw, - - - € £°°, we have p,,) — 0as k — oo, recalling the
prefix notation (2.1).

Example 2.2. We present a few classical examples of sources. For more examples, and for
further discussion, see Section 3 of [23].

(a) In computer science jargon, a memoryless source is one with Wy, W5, ... i.i.d. Then the
fundamental probabilities p,, have the product form

k
Pw = Pw Pwy *** Puy> w=wjwy---wg € L.

(b) A Markov source is one for which W; W, - - - is a Markov chain.
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(c) An intermittent source over the finite alphabet ¥ = {0, ...,r — 1} models long-range
dependence of the symbols within a key and is defined by specifying the conditional
distributions L(W; | Wy, ..., W;_1) in a way that pays special attention to a particular
symbol o. The source is said to be intermittent of exponent y > 0 with respect to o
if L(W; | Wy, ..., W;_1) depends only on the maximum value k such that the last k
symbols in the prefix Wy --- W;_; are all o and (i) is the uniform distribution on X, if
k = 0;and (ii) if 1 < k < j — 1, assigns mass [k/(k + 1)]” to o and distributes the
remaining mass uniformly over the remaining elements of X.

We next present an equivalent description of probabilistic sources (with a corresponding
equivalent condition for continuity) that will prove convenient because it allows us to treat all
sources within a uniform framework. If M is any measurable mapping from (0, 1) (with its
Borel o -field) into £°° and U is distributed uniform(0, 1), then M (U) is a probabilistic source.
Conversely, given any probability measure p on X°°, there exists a monotone measurable
mapping M such that M (U) has distribution u when U ~ uniform(0, 1); here (weakly)
monotone means that M (1) < M (u) whenever ¢t < u. Indeed, if F is the distribution function

Fw) = pfw € T%°: w' < w}, wex®,
for u, then we can always use the inverse probability transform
M) :=inf{w € T%°: u < F(w)}, ue,1),

for M. The measure w is continuous if and only if this M is strictly monotone.

So, henceforth, we will assume that our keys are generated as M (Uy), ..., M(U,), where
M: (0,1) — X is strictly monotone and Uy, ..., U, (we will call these the ‘seeds’ of the
keys) are i.i.d. uniform(0, 1). Given a specification of costs c¢(w, w’) in comparing words, we
can now define a source-specific notion of cost by setting

Bu,t) :=c(M), M(1)).

In our main application, Bsymb(u, t) represents the number of symbol comparisons required to
compare words with seeds u and 7.

The following associated terminology and notation from [23] will also prove useful. For
each prefix w € X*, we let I, = (ay, by) denote the interval that contains all seeds whose
corresponding words begin with w and let 1,, denote its midpoint (a,, + by,)/2. We call T, the
Sfundamental interval associated with w. (There is no need to be fussy as to whether the interval
is open or closed or half-open, because the probability that a random seed U takes any particular
value is 0. Also, we always assume that a,, < by,, since the case that a,, = b,, will not concern
us.) The fundamental probability p,, can be expressed as b,, — a,,. The fundamental triangle
of prefix w, denoted by 77, is the triangular region

Tw ={(u,t):ay <u <t < by},
and, when w is the empty prefix, we denote this triangle by 7:
T :={(u,t):0<u<t<l}
For some of our results, the quantity
T = sup{py: w € Zk} 2.3)

will play an important role. The following definition of a IT-tame probabilistic source is taken
(with slight modification) from [23].
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Definition 2.1. Let 0 < y < ocoand 0 < A < co. We say that the source is [1-tame (with
parameters y and A) if the sequence () at (2.3) satisfies

mr < ACk+1)77  forevery k > 0.

Observe that a T1-tame source is always continuous. There is a related condition for cost
functions 8 that will be assumed (for suitable values of the parameters) in some of our results.

Definition 2.2. Let 0 < ¢ < oo and 0 < ¢ < co. We say that the symmetric cost function
B = 0is tame (with parameters ¢ and c) if

Bu,t) <c(t—u)"? forall (u,t)eT.

We say that S is e-tame if it is tame with parameters ¢ and ¢ for some c.

We leave it to the reader to make the simple verification that a source is I1-tame with
parameters y and A if and only if Bsymp is tame with parameters ¢ = 1/y and ¢ = Ay,

Remark 2.1. (a) Many common sources have geometric decrease in my (call these ‘g-tame’)
and so, for any y, are Il-tame with parameters y and A for suitably chosen A = A,
(equivalently, the symbol-comparisons cost Bsymp is £-tame for any ¢; in fact, if mp < b=k for
every k then

1
ﬁsymb(uy <1+ logb m

for all (u, t) € 7). For example, a memoryless source satisfies my = pfnax, where

Pmax = Sup py
weXx!

satisfies pmax < 1 exceptin the highly degenerate case of an essentially single-symbol alphabet.
We also have m; < pﬁm for any Markov source, where now pmax is the supremum of all one-
step transition probabilities, and so such a source is g-tame provided pmax < 1. Expanding
dynamical sources (cf. [3]) are also g-tame.

(b) For an intermittent source as in Example 2.2, for all large k, the maximum probability my is
attained by the word o* and equals

T = r kY

Intermittent sources are therefore examples of I1-tame sources for which 7y decays at a truly
inverse-polynomial rate, not an exponential rate as in the case of g-tame sources.

2.2. Known results for the numbers of key and symbol comparisons

In this subsection we give for QuickSelect an abbreviated review of what is already
known about the distribution of the number of key comparisons (8 = 1 in our notation) and
(from [23]) about the expected number of symbol comparisons (8 = Bsymb). To our knowledge,
no other cost functions have previously been considered, nor has there been any treatment of
the full distribution of the number of symbol comparisons.

Let K, denote the number of key comparisons required by the algorithm to find a key of
rank m in a file of n keys (with 1 < m < n). Thus, K, 1 and K, , represent the key comparison
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costs required by QuickMin and QuickMax, respectively. (Clearly, K, £ K, n). It has
been shown (see [16] and [12]) that, as n — o0, K, 1/n converges in law to the Dickman
distribution, which can be described as the distribution of the perpetuity

1+ZU1-~-U/<

k>1

where the Uy are i.i.d. uniform(0, 1). Mahmoud e al. [16] established a fixed-point equation
for the limiting distribution of the normalized (by dividing by n) number of key comparisons
required by QuickRand and also explicitly identified this limiting distribution.

By using process-convergence techniques, Griibel and Rosler [10, Theorem 8] identified,
for each 0 < @ < 1, a nondegenerate random variable K () to which K, |on)+1/7 converges
in distribution; see also the fixed-point equation in their Theorem 10, and Griibel [9], who used
a Markov chain approach and characterized the limiting distribution in his Theorem 3. Earlier,
Devroye [4] had shown that

sup max P(K,, >tn) < Cp'

n>1 1<m<n

for any p > % and some C = C(p).

Concerning moments, Griibel and Rosler [10, Theorem 11] showed that EK (o) =
2[1 —alna — (1 — o) In(1 — «)] and Paulsen [17] calculated higher-order moments of K («).
Griibel [9, end of Section 2] proved convergence of the moments for finite n to the corresponding
moments of the limiting K («).

Prior to the present paper, only expectations have been studied for the number of symbol
comparisons for QuickQuant. The current state of knowledge is summarized by part (i) of
Theorem 2 of Vallée ef al. [23] (see also their accompanying Figures 1-3); we refer the reader
to [23] for the other parts of the theorem, which routinely specialize part (i) to QuickMin,
QuickMax, and QuickRand.

To review their result, we need the notation and terminology of Section 2.1 and a bit
more. Using the nonstandard abbreviations y := % +yandy™ = % — ¥, and the convention
0In0 := 0, we define

_ _ . 1

H(y) = | Oy +yTInyT) 0 <y <,

y~(ny" —1In|y7)) if y >

and then set L(y) := 2[1 + H(y)]. According to Theorem 2(i) of [23], for any I1-tame

source, the mean number of symbol comparisons for QuickQuant(n, «) is asymptotically
pn—+ O (n'=?) for some § > 0. Here p = p(a) and § both depend on the probabilistic source,

with
= ( ) 2.4)

wex*
,0:/ Bu, (Vi) — (@ Au)] " duds
T

— Mw
Pw

They derived (2.4) by first proving the equality

for IT-tame sources with y > 1.
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2.3. QuickQuant and QuickVal

Let S,? = S,? (o) denote the total cost required by QuickQuant(n,w«). To prove
convergence of S,? /n (in suitable senses to be made precise later), we exploit an idea introduced
by Vallée et al. [23] and begin with the study of a related algorithm, called Quickval =
Quickval(n, o), which we now describe. QuickVval is admittedly somewhat artificial
and inefficient; it is important to keep in mind that we study it mainly as an aid to studying
QuickQuant.

Having generated n seeds and then n keys My, ..., M, (say) using our probabilistic source,
Quickval isarecursive randomized algorithm to find the rank of the additional word M (&) in
the set {M1, ..., M,,, M («)}; thus, while QuickQuant finds the value of the «-quantile in the
sample of keys, QuickvVal dually finds the rank of the population a-quantile in the augmented
set. First, Quickval selects a pivot uniformly at random from the set of keys {M1, ..., M,}
and finds the rank of the pivot by (a) comparing the pivot with each of the other keys (we will
count these comparisons) and (b) comparing the pivot with M («) (we will find it convenient
not to count the cost of this comparison in the total cost). With probability 1, the pivot key will
differ from the word M («). If M («) is smaller than the pivot key then the algorithm operates
recursively on the set of keys smaller than the pivot and determines the rank of the word M («)
in the set Mgmaner U {M ()}, where Mgmarier denotes the set of keys smaller than the pivot.
Similarly, if M («) is greater than the pivot key then the algorithm operates recursively on the
set of keys larger than the pivot (together with the word M («)). Eventually, the set of words on
which the algorithm operates reduces to the singleton {M («)}, and the algorithm terminates.

Note that the operation of QuickVal is quite close to that of QuickQuant, for the same
value of «; we expect running costs of the two algorithms to be close, since, when n is large, the
rank of M () in {My, ..., M,,, M(c)} should be close (in relative error terms) to an. In fact, we
will show that if S,Y = S,Y () denotes the total cost of executing QuickVal(n, «) then S,? /n
and SV /n have the same limiting distribution, assuming that only the cost function B is e-tame
for sultably small . In fact, we will show that, when all the random varlables S?, Sy, ...and
SY, 52 , . .. are strategically defined on a common probability space, then S /nand SY /n both
converge in L? to a common limit for 1 < p < oo.

3. Analysis of QuickVal

Following some preliminaries in Section 3.1, in Section 3.2 we show that, for 1 < p < oo,
a suitably defined S\ /n converges in L7 to a certain random variable S (defined at the end of
Section 3.1) provided that only ES < oco. We also show that, when the cost function is suitably
tame, S,Y /n converges almost surely (a.s.) to S; see Theorem 3.2 in Section 3.3. We derive an
integral expression for [ES valid for a completely general cost function g in Section 3.4 and
use it to compute the expectation when 8 = 1. In Section 3.5 we focus on ES with 8 = Bsymb
and derive a series expression for the expectation. Few comparisons of results obtained here
with the known results reviewed in Section 2.2 are made in the present section; most such
comparisons are deferred to (the first paragraph of) Section 4, where the previously studied
algorithm of greater interest, QuickQuant, is treated.

3.1. Preliminaries

Our goal is to establish a limit, in various senses, for the ratio of the total cost required by
Quickval when applied to a file of n keys to n. It will be both natural and convenient to
define all these total costs, one for each value of n, in terms of a single infinite sequence (U;);>1
of seeds that are i.i.d. uniform(0, 1). Indeed, let Ly := 0 and Ry := 1. For k > 1, inductively
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define
T i=inf{i: Ly < U; < Rk}, (3.1
Ly = 1(Us, < @)Uz, + 1(Uy, > o) Ly_1, (32)
Ry :=1(Uy, < a)Ry—1 +1(Uy, > @)Uy, (3.3)
Ski= Y L1 < Ui < Reey) (Ui Us). (3.4)
{i: e<i<n}

(Note that S, x vanishes if 7x > n.) We then claim that, for each n,

SY = Sux (3.5)

k>1

has the distribution of the total cost required by Quickval(n, ).

We offer some explanation here. For each & > 1, the random interval (Li_1, Rx—1)
(whose length decreases monotonically in k) contains both the target seed o and the seed
Uy, corresponding to the kth pivot; the interval contains precisely those seed values still
under consideration after k — 1 pivots have been performed. The only difference between
how we have defined SY and how it is usually defined is that we have chosen the initial
pivot seed to be the first seed rather than a random one, and have made this same change
recursively. But our change is permissible because of the following basic probabilistic fact. If
Ui, ..., Uy, M are independent random variables with Uy, . .., Uy i.i.d. uniform(0, 1) and M
uniformly distributed on {1, ..., N}, then Uy, like Uy, is distributed uniform(0, 1). Thus, the
conditional distribution of U, given (Lx_1, Rg—1) is uniform(Lg_1, Rg—1).

We illustrate our notation for the first two pivots. First, 7y = 1; that is, the seed of the first
pivot is the uniform(0, 1) random variable U;. After that, if « < U then the seed U, of the
second pivot is chosen as the first seed falling in (0, Uy), while if @ > Uj then Uy, is the first
seed falling in (U, 1). We note that if « = 0 (which means that we are dealing with the total
cost required by QuickMin) then the first of these two cases is always the one that applies and
so, for every k > 1, we have Ly = 0 and Ry = Uy,; then Uy, is just the kth record low value
among Uy, Us, .. ..

In order to describe the limit of S /n, we let

I(t,x,y) = /y,B(u, t)du,

Iy .= I(Uy, Li—1, Rk—1), (3.6)
S:=Y L. (3.7)
k>1

Note that in the case 8 = 1 of key comparisons we have I(¢,x,y) = y — x and so I} =
Rig—1 — Li—1.

In Section 3.2 we show that, for 1 < p < oo, S,Y/n converges in L” to § as n — oo under
proper technical conditions. Under a stronger assumption, we will also prove almost-sure
convergence in Section 3.3.
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3.2. Convergence of S,Y/ nin L? for1 < p <

Theorem 3.1 is our main result concerning Quickval. To state the result, we need the
following notation, extending that of (3.6):

y
I,(t,x,y) = / BP(u,t)du,

X
I == 1,(Uy, Li—1, Ri—1). (3.8)

Theorem 3.1. If1 < p < oo and

> ® I, 0P < oo, (3.9)
k>1

then S,Y /n converges in LP (and, therefore, also in probability and in distribution) to S as
n — oo.

Remark 3.1. For p = 1, note that the assumption of Theorem 3.1 only requires that ES < oo,
which is equivalent to the assertion that ) ;.| Ely < oo.

Proof of Theorem 3.1. We use || - || to denote the L”-norm. We will utilize the L” law
of large numbers (LPLLN), which asserts that, for 1 < p < oo and i.i.d. random variables
£1, &, ... with finite L”-norm, the sample means &, = n~! ZLI & converge in L? to the
expectation. Because the L”LLN is not as well known as the strong law of large numbers,
we provide a proof. We may assume with no loss of generality that E£; = 0. Let Z_,, := &, for
n = 1,2,...; then Z is a martingale (see, e.g. [2, Proof of Theorem 9.5.6]), and,
therefore, the process (|Z,])?),=....—2.—1 is a nonnegative submartingale. It therefore follows
[2, Theorem 9.4.7(d) = (b)] that |€,|” converges in L' to 0 as n — 00, as desired.

Returning to the setting of the theorem, fix k. Conditionally given the quadruple C; =
(Lk—1, Rk—1, T, Uy,), the random variables U; with i > 7 are i.i.d. uniform(0, 1). By the
LPLLN we have (using the convention 0/0 = 0 for S, x/(n — 7) whenn = ;)

1

since, with U uniformly distributed and independent of all the U;s,

Sn,k P

n— T

— I

Ck}ﬂo asn — oo (3.10)

E1(Li-1 <U < R—1) BUU, Ugy) | Ci] = Ii. (3.11)

For our conditional application of the LPLLN in (3.10), it is sufficient to assume only that the
probabilistic source and the cost function 8 > 0 are such that I, 4 is a.s. finite, and this clearly
holds by (3.9).

Our next goal is to show that the left-hand side of (3.10) is dominated by a single random
variable (depending on the fixed value of k) with finite expectation, and then we will apply the
dominated convergence theorem. For every n, using the convexity of x” for x > 0, we obtain

E[ ck] < zp—1<11«:[(nsj—*’;k>p ck] +I,f’>.

We claim that each of the two terms multiplying 2”7 ~! on the right-hand side is bounded by 1 Dk
First, using the triangle inequality for the conditional L?-norm given Cy, the fact that the random

Sn,k P

n— T

_Ik
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variables summed to obtain S, j are conditionally i.i.d. given Cy, and the definition of 1), ; given
in (3.8), we can bound the pth root of the first term by

S p 1/p
LG e
n—rTtT
1
<—— Y {ElLi1 < Ui < Re-)BP(Ui, Ug) | Ci}'/P
n K {i: p<i<n}
= {E[1(Lk—1 < U < Re—)BP(U, Uy) | CI}V/P
— 1;/,5 (3.12)

with U as at (3.11). For the second term, we observe that [I; /(Rx—1 — Lx—1)]? is the pth power
of the absolute value of a uniform average and so is bounded by the corresponding uniform
average of absolute values of pth powers, namely, 1), x/(Rx—1 — Li—1); thus,

IV < (Reet — Lie)P M < Iy (3.13)

1

Thus, it follows from E/,, x < oo (which follows from (3.9)) and the dominated convergence
theorem that

So we conclude that

Sn,k P

n— T

_Ik

Cki| < Zplp’k.

p

S
nok -0 asn— oo. (3.14)

n— T

E

_]k

Next, we will show from (3.14) that, for each k,

Sn,k p
E —Iy] -0 asn— oo (3.15)
by proving that
S S P % S P
g = dy g e B Sk Suk |7 E(_k n.k )
n n—7t nn-—7tg

vanishes in the limit as n — oo. Indeed, the corresponding conditional expectation given Cy, is

P P p
17 < n)(%) E[(;ﬁ;) ck} <1y < n)(%) L.

recalling inequality (3.12). So, again using E/,; < oo and applying the dominated
convergence theorem, we find that d, y — 0, as desired.

Finally, we show that S\ /n converges to S in L. Since we have termwise L”-convergence
of S,Y /n to S by (3.15), the triangle inequality for the L”-norm and the dominated convergence
theorem for sums imply that S,Y /n converges in L? to S provided we can find a summable
sequence by such that

Sn,k

max{sup ,||1k||p} < bg.
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Sn,k

n

Sn,k

n—7Tk

But, for any n > 1, we have (by taking pth powers in (3.12), then taking expectations, then
taking pth roots)

‘ < < EL,0"7.
p P

Furthermore, |||, < (Elp,k)l/p follows from (3.13). Finally, by := (Elp,k)l/p is assumed
to be summable. Thus, S,Y /n converges to S in L?.

Remark 3.2. Letting K,, denote the number of key comparisons required by Quickval(n, ),
we find from Theorem 3.1 with 8 = 1 that K,,/n converges in L? (1 < p < 00) to

o]

K= (R — L.

k=0

(In Section 3.4 we will explicitly show the required condition that EK < oco; see Remark 3.3.)
Suppose that « = 0; then the number of key comparisons K, for QuickvVal(n, «) is the
same as for QuickMin. In this case Theorem 3.1 gives

K D
S k=14) U, (3.16)
n

k>1

for 1 < p < oco. The limiting random variable K has mean 2 and the same so-called Dickman
distribution as the perpetuity

o0
L+ U+ U (3.17)
k>1
That (3.16)—(3.17) hold is well known (see, e.g. [16] and [12]).
3.3. Almost-sure convergence of SY /n

Under a tameness assumption, we can also show that S,Y /n converges to S a.s. (Recall
Definition 2.2.)

Theorem 3.2. Suppose that the cost § is e-tame for some & < %. Then S,Y /n defined at (3.5)
converges to S a.s.

Before proving this theorem, we establish three lemmas bounding various quantities of
interest.

Lemma 3.1. Forany p > 0and k > 1, we have

5 ) 2 2P\
R — Ly)P < )
(R k) _<p+1>

Here note that, for all p > 0, we have

1. 3.18
p+1 = ( )

Proof of Lemma 3.1. Fix p > 0and k > 1. Since Ry — Ly = 1, it is sufficient to prove that
_2-P

2
E[(Rx — Ly)? | Li—1, Rk—1] <
[(R 7 | Lik—1, Re—1] < 1

(Rk—1 — Lxk—1)*.

https://doi.org/10.1239/aap/1370870125 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1370870125

Convergence in distribution for QuickSelect 437

Condition on (Lk_1, R¢—1); then with U uniformly distributed over (Li—1, Rx—1) we have the
stochastic inequality
Ry — Ly < max{U — Ly—1, Ry—1 — U}.

Thus, for Lx—1 # Rj—1, with
Ak—1 = $(Lg—1 + Re—1),
we have

E[(Rx — Lx)? | Li—1, Rk-1]
< E[(max{U — Lx—1, Rk—1 —U}D? | Li—1, Rk—1]

A Ri_
= (Re—1 — L) ™! [/ A 1(Rk—1 —u)P du +/ k 1(u —Li)? du}
L

k—1 A1
_ 2-—-27° (R Li )P
= D+ 1 k—1 k—1)" >
as desired.

Lemma 3.2. Suppose that the cost B is tame with parameters € and c. Then, for any interval
(a,b) € (0,1),anyt € (a,b), and any 0 < g < 1/¢, we have

qe

1—

b C
/ Bl(u, t)du < (b—a)' e,
a qe

Proof. Using the tameness assumption, integration immediately gives

cq

b
/ﬂqw,r)dusl [(t —a)' 79 4+ (b — 1) —9°].

a —q¢
The lemma now follows from the concavity of x'~4¢ for x > 0.
The next lemma is a simple consequence of the preceding two.

Lemma 3.3. Suppose that the cost B is tame with parameters ¢ < 1 and c. Then, forany k > 1

and any g > 0, we have
£ q _ n—q(l—e)\ k-1
EI,? - 2%¢ 2-2 ’
1—¢ g(l—ge)+1

andso ) , EI ,? < 00 geometrically quickly.

Proof. Recalling
Ri—1
Iy = / B, Uy) du,
L1
we find from Lemma 3.2 that

2% 1—¢
I < (Rk—1 — Lg—1) .

1—¢

By application of Lemma 3.1 we thus obtain the desired bound on E/ Z . The series-convergence
assertion follows from observation (3.18).

https://doi.org/10.1239/aap/1370870125 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1370870125

438 J.A. FILL AND T. NAKAMA

Now we prove Theorem 3.2.

Proof of Theorem 3.2. Clearly, it suffices to show that

sV S
| (3.19)
n n
and ~
Sn a.s.
25250, (3.20)
n
where

Sy = Z(n — 1) Ix.
k>1
We tackle (3.20) first and then (3.19).

By the monotone convergence theorem, En/ n 1 S almost surely. But, from Lemma 3.3
(using only ¢ < 1) we have ES = )", EIx < oo, which implies that § < oo a.s. Hence,
(3.20) follows. -

Our proof of (3.19) both is inspired by and follows along the same lines as the ‘fourth-
moment proof” of the strong law of large numbers described in [22, Chapter 8]; as in that
proof, we prefer easy calculations involving fourth moments to more difficult ones involving
tail probabilities—perhaps with the expense that the value }‘ in the statement of Theorem 3.2
could be raised by more sophisticated arguments. For (3.19), it suffices to show that, for any

5§ >0,
7

for which it is sufficient by the first Borel-Cantelli lemma and Markov’s inequality to show
that
sV S\
ZE(—" - —”) < . (3.21)
n n

Here, by the triangle inequality for the L*-norm,

sV oS,

n n

>4 i.o.) =0,

Snk _ (0 = m)"

(-2 =2l ]
nx1 n " n>1"-k>1 n 4
(n — Tk)+ Sn,k 4
B ZJ% n <n . ’k> J , (3.22)

where we again use the convention 0/0 = 0 for S, x/(n — 7x) when n = ;. As in the proof of
Theorem 3.1, we let Cy, denote the quadruple (Lg_1, Rx—1, T, Ug, ). Also, we define

I =1Ly < U < Re_)BWU, Uy)

and
My (k) :=E[(Ix — I)™ | Cl,
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where U is uniform(0, 1) and independent of C. Then routine calculation (see [22, Section 8.4])
shows that

E[(” —rm( Suk Ik)T
n n— T
4
=s[= [ ()] o]
n n— T

_ E[[m - rk>+]4[(n — 1) M) + 3 — 1)t — i — 1)+M§<k>ﬂ

[(n — 7)1

n
< E[n~*[nMs(k) + 3n(n — DHM4(k)]]
< 3n 2 EMa(k), (3.23)

where the first inequality holds because My (k) > M22(k).
We will show that EM4 (k) decays geometrically and then use that fact to prove (3.21). Since
(a — b)4 < 8(a4 + b4) for any real a and b, we have

My(k) < 8(E[L} | Cil + 1}). (3.24)

First, using Lemma 3.3, we find (using only ¢ < 1) that I[-EI,E1 < 0o decays geometrically:

A 26 \* /2 —2740-e\ kI
EI} < : (3.25)

1—¢ 5—4e
Now we analyze, in a similar fashion, E[i,f | Cx] in (3.24). Using the assumption that
0<e< % and Lemma 3.2, we find that
4804

Rf_L71_48.
a0 Rt = Li)

E[f} | Ci] <

Applying Lemma 3.1 thus gives the geometric decay

248C4 2_2—(1—48) k—1
( ) . (3.26)

El} <
1—4e 2 —4e
Therefore, it follows from (3.22)—(3.23) and (3.25)—(3.26) that (3.21) holds:
sV 3‘ 4 4
Z]E(—" — —”> < 3(2;1—2) [Z(EM4(I<))1/4] < 0.
n n
n>1 n>1 k>1
This completes the proof of Theorem 3.2.

3.4. Computation of ES: an integral expression

In this section we derive the following simple double-integral expression for ES in terms of
the cost function B.

Theorem 3.3. For any symmetric cost function 8 > 0, we have

ES:Z// Bu,t)[( V1) — (@ Au)]~ " duds.
O<u<t<l
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Proof. Recall that ES = Zkzl EI, where

Ry—1
o= [ b U
L

k—1
Recall also that, for each k, the conditional distribution of U, given L_; and Rj_1 is uniform
(Lk—1, Rk—1). Thus,

Ri—1 Ri—1
El = E/ (Reey — L)~ ! / Bu, w) dw du
L

k-1 Ly

=/ B(w, E[(Re—t — Li1)" ' 1(Lir <, w < Ri_p)] dw du
O<w,u<l

= 2/ B(w, u)
O<w<u<l

x / (y —x)"M(x <w <u < y)P(Lyy € dx, Rk—; € dy)dwdu.
O<x<a<y<l

Hence,

ES = / B(w, u)
O<w<u<l

x / (y —x)""(x <w < u < y)v(dx, dy) dwdu, (3.27)
O<x<a<y<l
where v is the measure
v(dx, dy) := ZIP’(Lk € dx, R € dy). (3.28)
k>0

As established in Proposition A.1 in Appendix A, we have the tractable expression
v(dx, dy) = 8o(dx) 81(dy) + (1 —x)~" dx 81(dy) + do(dx) y~" dy +2(y — x) > dx dy.

Using this last expression, routine calculation shows that, for0 < w < u < 1,
/ (y— x)_ll(x <w<u<yvddx,dy) =[(e¢Vvu) — (e w)]_l. (3.29)
O<x<a<y<l

Substitute (3.29) into (3.27) to complete the proof of the theorem.

Remark 3.3. We now let B = 1 and use Theorem 3.3 to analyze the expectation of the
number K, of key comparisons required by Quickval(n, «). Then the expected value in
Theorem 3.3 is

2// [(@Vit)—(xA u)]_1 dudt =2[1 —alna — (1 —a)In(l —a)] < co. (3.30)
O<u<t<l

It follows by (3.30) that, for « = 0, we have
. EK,
lim

n—oo n

=2,

which is well known since K, in this case represents the number of key comparisons required
by QuickMin applied to a file of n keys (see, e.g. [16]). Thus, we are now able to conclude
that, for any o (0 < o < 1), EK,,/n converges to the simple constant in (3.30). Also, note that
we have verified the hypothesis of Theorem 3.1 for p = 1 (see also Remark 3.1) by (3.30), as
we promised in Remark 3.2 that we would.
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3.5. Computation of ES: a series expression

We now restrict to the cost function Bsymp and use Theorem 3.3 to derive a series expression
for ES. In the notation of Section 2.1, we have

1
SES = > / [(@ V)= (@Auw)] " dudt,
weXx*
which is easily obtained by noting that, for u < ¢, we have
Bu,t) = Z 1(ay, <u <t < by).

wex*

Define
Jw):= | [avi)—(@Auw)) " dud:.

7‘11)
) )

where the reader should recall the definition of L near the end of Section 2.2. Thus,

ES= Y pul (

wex*

Then routine calculation shows that

— Hw
Pw

F(w) = pr(‘“

— Hw

w

), (3.31)

This last equation is in agreement with Theorem 2(i) of Vallée et al. [23] (see also their Figure 1).
But, unlike in [23], our calculation requires no assumptions of tameness, nor even that ES is
finite.

4. Analysis of QuickQuant

Followmg some preliminaries in Section 4.1, in Section 4.2 we show that a suitably defined
S /n converges 1n L? to S for 1 < p < oo provided that the cost function § is e-tame with
¢ < 1/p;hence, S /n and SV /n have the same limiting distribution provided that only the cost
function f is e-tame for suitably small ¢. Granting that result for a moment, we can now relate
three of the results obtained in Section 3 to previously known results reviewed in Section 2.2.
From Remark 3.2 we recover the result of [10, Theorem 8] (in a cosmetically different, but
equivalent, form; compare [9, Theorem 3]) for the limiting distribution of the number of key
comparisons, and from Remark 3.3 we recover first-moment information for the same. Finally,
recalling that L'-convergence implies convergence of means, from (3.31) we recover at least
the lead-order term in the asymptotics of [23] discussed at (2.4).

4.1. Preliminaries

We will closely follow the framework descrlbed in Section 3 for the analysis of Quickval
and construct a random variable, call it Sn , that has the distribution of the total cost required
by QuickQuant when applied to a file of n keys. Our goal is to show that, under suitable
technical conditions, S, ({ n converges in L? to S defined at (3.7).

Again, we define S, in terms of an infinite sequence (U;);>; of seeds that are i.i.d.
uniform(0, 1). Let m,, (with m,/n — «) denote our target rank for QuickQuant. Let tx(n)
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denote the index of the seed that corresponds to the kth pivot. As in Section 3.1, we will set
the first pivot index 71 (n) to 1 rather than to a randomly chosen integer from {1, ..., n}. For
k > 1, we will use Lx_1(n) and Ry_1(n), as defined below, to denote the lower and upper
bounds, respectively, of seeds of words that are eligible to be compared with the kth pivot.
(Note that 1% (n), Lx(n), and Ry (n) are analogous to ti, L, and Ry defined in Section 3.1; see
(3.1)—~(3.3).) Hence, we let Lo(n) := 0 and Ro(n) := 1, and, for kK > 1, we inductively define

() :=inf{i <n: Ly_1(n) < U; < Rk—1(m)},

and
Ly (n) := 1(pivrank, (n) < m,) Uy, ) + 1(pivrank, (n) > m,) Ly_1(n),
Ry (n) := 1(pivrank; (n) > my,) Ug, 4y + 1(pivrank, (n) < m,) Rx_1(n)

if 7x(n) < o0, but
(Lk(n), Rx(n)) := (Lk—1(n), Rx—1(n))

if 74 (n) = oo. Here pivrank, (n) denotes the rank of the kth pivot seed Uy, () if 4 (n) < 00
and m,, otherwise. Recall that the infimum of the empty set is co; hence, t;(n) = oo if and
only if Ly_1(n) = Rx—1(n).

Using this notation, let

Sho= )WL) < Ui < Reey())BU;, Ugyny)

{i: e(n)<i<n}

be the total cost of all comparisons (for the first n keys) with the kth pivot key. Then

. Q
SY=)"8% 4.1
k>1

has the distribution of the total cost required by QuickQuant.
Note that (4.1) is analogous to (3.5). In fact, we will prove the L?-convergence of S,? /nto
S by comparing the corresponding expressions for Quickval and QuickQuant.

4.2. Convergence of S,? /nin LP for1 < p < o

The following is our main theorem regarding QuickQuant.

Theorem 4.1. Let 1 < p < oco. Suppose that the cost function B is e-tame with ¢ < 1/p.
Q D
Then S, /n converges in L? to S.

Remark 4.1. Note that, as p increases, getting LP-convergence requires the increasingly
stronger condition ¢ < 1/p. Thus, we have convergence of moments of all orders provided
the source is y-tame for every y > O0—for example, if it is g-tame as in Remark 2.1, as is true
for memoryless and most Markov sources.

The proof of Theorem 4.1 will make use of the following analogue of Lemma 3.1, whose
proof is essentially the same and therefore omitted.

Lemma 4.1. Forany p >0,k > 1, andn > 1, we have

— k
EMAM—LAMVS(Z_ZP>.
p+1
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Proof of Theorem 4.1. Part of our strategy in proving this theorem is to compare Quick-
Quant with Quickval. Hence, we will frequently refer to the notation established in
Section 3.1 for the analysis of QuickVal. For each k, observe that, as n — oo, we have

w25, Ugm) — Uy, L) =5 Ly, Re(n) =5 Ry,

where t;, L, and Ry, are defined in Section 3.1 (see (3.1)—(3.3)). (In fact, in each of these
four cases of convergence, the left-hand side a.s. becomes equal to its limit for all sufficiently
large n.) Thus, for each k > 1, we have

SE = Suk =0, 4.2)

where S, i is defined at (3.4); indeed, again the difference a.s. vanishes for all sufficiently
large n. In proving Theorem 3.1, we showed (at (3.15)) that

Spk LP
— I,

n
where I is defined at (3.6), and it is somewhat easier (by means of conditional application of
the strong law of large numbers, rather than the LPLLN, together with Fubini’s theorem) to

show that
Sn,k as.

— I. 4.3)
n
Combining (4.2) and (4.3), for each k > 1, we have
Q

n,k as.
—

n

I. (4.4)

What we want to show is that

Q Q

Sn Snk LP
— = = Ir =S. 4.5
" E " E k 4.5)

k>1 k>1

Choose any sequence (ax)i>1 of positive numbers summing to 1, and let A be the probability
measure on the positive integers with this probability mass function. Then, once again using
the fact that the pth power of the absolute value of an average is bounded by the average of pth
powers of absolute values,

Q
sP [ Sk T
Lo e[
n =ln
S
:[Zakak_ —’—Iki|
k>1 n
Q
S p
SZakak_p UL
k>1 n

So, for (4.5), it suffices to prove that, with respect to the product probability P x A, asn — 00,
the sequence

-p P
a, " |—— —Ix

n

converges in L' to 0. What we know from (4.4) is that the sequence converges a.s. with respect
toP x A.
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Now almost-sure convergence together with boundedness in L!*? are, for any 8 > 0, suffi-
cient for convergence in L! because the boundedness condition implies uniform integrability
(see, e.g. [2, Exercise 4.5.8]). Thus, our proof is reduced to showing that, for some g > p, the

sequence
sQ, q

IR KL

k>1
is bounded in n, for a suitably chosen probability mass function (ay). Indeed, by convexity of
the gth power,

sQ
2703 g TR ] <Y gy ~ | Sk +Z R, (4.6)
k>1 k>1 k>1

and we will show that each sum on the right-hand side of (4.6) is bounded in order to prove the
theorem. The value of ¢ that we use can be any satisfying e < 1/g < 1/p.
First we recall from Lemma 3.3 that

26 \9 /2 — p—all—e)\ k=1
Ell < . k=1 4.7
1—¢ qg(l—¢e)+1
with geometric decay. Thus, the second sum on the right-hand side of (4.6) is finite if the cost

is e-tame with ¢ < 1 and the sequence (ay) is suitably chosen not to decay too quickly.
Next we analyze E|S,(12 /114 for the first sum on the right-hand side of (4.6). Let

ve—1(n) = [{i: Ly—1(n) < Ui < Re—1(n), p(n) <i < njl.

Until further notice our calculations are done only over the event {vi_1 (n) > 0}. Then, bounding
the gth power of the absolute value of an average by the average of gth powers of absolute

values,
SQ, |4 1 | e
LILY - Z 1(tx(n) < i <n) B(U;, < )
n vk—1(n) {i: Loy (0)<U; <Ri_1 ()} p
< 1 Z I(tr(n) <i < ”)ﬁq(Ui U, )<vk_1(n)>q'
e = s U ) n

{i: Li—1(m)<U;i <Rp—1(n)}
4.8)

Let Dy(n) denote the quintuple (Li_1(n), Rx—1(n), 7 (n), Uy ), vk—1(n)), and note that,
conditionally given Dy (n), the vg_1 (n) values U; appearing in (4.8) are i.i.d. uniform(L_1 (n),
Rix_1(n)). Using (4.8), we bound the conditional expectation of |Sn /1l given Dp(n). We

have
S| Ria () ve—1(m)\?
E[ : Dk(”):| < [Rk—1(n) — Lk—l(”)]_I/ B (u, Urk(n))du< ) :
Li—1(n) n
4.9)
Under e-tameness of g with ¢ < 1/g, we find from Lemma 3.2 that
Ri—1(n) 2498 04 1
/ B (u, Ur,n)) du < [Ri—1(n) — Lg—1(m)] 7%, (4.10)
Lic1() I—gqe
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From (4.9)—(4.10), it follows that if ¢ < 1/g then

Q
S 3 q
E[ nk [Re—1(n) — Li (n)]HS( Vi1 () ) .
n(Rg—1(n) — Lg—1(n))
Until this point we have worked only over the event {vy_1(n) > 0}, but now we enlarge our
scope to the event {Li_1(n) < Ri—1(n)} and note that the preceding inequality holds there as
well.

Next note that, conditionally given the triple
Di(n) := (Lk-1(n), Ri—1(n), w (),

the values U; with 7 (n) < i < n are i.i.d. uniform(0, 1), and so the number of them falling
in the interval (L;_1(n), Rx—1(n)) is distributed binomial(m, t) with m = n — t;(n) and
t = Ry_1(n)— Lr_1(n), and, hence (representing a binomial as a sum of independent Bernoulli
random variables and applying the triangle inequality for L7), has moment of order ¢ bounded

q 98 4

Dk(ﬂ)} < I

_qg

by m7t. Thus,
Vg—1(n) >q ~ -
E Di(n) | < [Rk—1(n) — Lk—1(m)]" 79,
[(”(Rkl(”) — Lg_1(n))
so that o
AL 249¢ o4
E[ mk Dk(n)] < =R (n) — Lmi (]9
1—gqe
Since this inequality holds even when Li_1(n) = Ryx_1(n), we can take expectations to
conclude that
Q —(1— k—1
S< |19 2454 24¢cq (9 — p—(1=q¢)
B[~ < Z S BIR (1) — Limi ()] 79 < —— @11
n 1 —ge 1 —ge 2 —gqe

where at the second inequality we have employed Lemma 4.1.
From (4.7) and (4.11) we see that we can choose (ay) to be the geometric distribution
ar = (1 —0)0%1, k > 1, with
2 —2—4q(l—¢)
—_— <<
gl —e)+1
‘We then conclude that Zkzl a,i 1R (Sn(%k/n) — It|? is bounded in n, and, therefore, that S,?/n
converges to S in L7, if the cost function is e-tame with ¢ < 1/p.

0 < 1.

Appendix A. A tractable expression for the measure v

The purpose of this appendix is to prove the following proposition used in the computation
of ES in Section 3.4.

Proposition A.1. With (Ly, Ry) defined at (3.2)—(3.3) as the interval of values eligible to be
compared with the kth pivot chosen by Quickval, and with

v(dx, dy) := ZIP’(Lk € dx, R; € dy)
k>0

as defined at (3.28), we have
v(dx, dy) = do(dx) §1(dy) + (1 — x) " ldx 61(dy) + o (dx) y_1 dy +2(y — x) "2 dx dy.
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Proof. To begin, since Lo := 0 and Ry := 1, we have
P(Lg € dx, Ry € dy) = 8o(dx) 8;(dy), (A.1)

where §, denotes the probability measure concentrated at z. Now assume that k > 1. If
0<A<a<p<Ilthen

P(Ly €edx, R edy | Li—1 =X, Rr—1 = p)
=38,(d)I(r <x <a)(p—2) " Hdx + 8,(dx) (@ < y < p)(p — 1)~ dy.

Hence,
P(Ly € dx, Ry € dy)
= [[Mdy)l(x <x<a)p—1""dx+ 80l <y < p)p— 1" dyl]
x P(Lx—1 € dA, Ry_1 € dp). (A.2)
We can infer (and inductively prove using (A.2)) that, for k > 1,

P(Ly € dx, Ry € dy) = 81(dy) fi(x) dx + do(dx)gr(y) dy + hx(x, y) dx dy, (A3)

where
fix) =10 <x < a), g1 =1la<y=<l, hi(x,y) =0,
and, for k > 2,
fitx) =10 <x <) / 100 <2 < x)(1—2) 7 fim1 (1) da, A4)
g =1la<y= 1)/1(y <p<Dp 'g_1(p)dp, (A5)

he(x,y) =10<x <a <y =< 1)[(1 —0) o)+ y a1 ()
+ / 10 <x <x)(y — A heo (0, y) da

+ / Ly <p < D(p—x)"h1(x, p) d,0:|- (A.6)

Henceforth, suppose that 0 < x < o« < y < 1. From (A.5) we obtain

_ (=lny)&!
gk(y) = W, k>1, (A7)
whence
> an =y". (A8)
k>1

By recognizing symmetry between (A.4) and (A.5), we also find that

—In(1 —x)]*!
fk(x)=%, k>1, (A.9)
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and so

Y A =0-n"" (A.10)

k>1
In order to compute ) k>1hik(x, y), we consider the generating function
H(x,y,2) =Y h(x,y) 2" (A.11)
k>1
From (A.6),
H(x,y,2) = z[(l —0DY Ay am

k=1 k=1

x 1
—i—/ (y—?»)_lH()»,y,Z)d)wL/ (P—x)_lH(x,,O,Z)d,O] (A.12)
0 y

Using this integral equation, we will show via a series of lemmas culminating in Lemma A.9
that

H(x,y):=H(x,y,1)= th(x, y) equals 2(y — x)_2. (A.13)
k>1
Combining equations (A.3), (A.8), (A.10), and (A.13), we obtain the desired expression for v.

Throughout the remainder of this appendix, whenever we refer to H (x, y), we tacitly suppose
that ) <x <o <y <1.

Lemma A.1. H(x, y) < oo almost everywhere.

Proof. Werevisit Remarks 3.2 and 3.3 and consider the number of key comparisons required
by Quickval(n, a). As shown at (3.30), we have ES < oo in this case. On the other hand,
with 8 = 1, from (3.27)—(3.28), (A.1), (A.3), and (A.8)—(A.10), we have

]ES:Z/ [1+/ (1—x)—11(x<w)dx+/ y 11y > u)dy
O<w<u<l 0<x<«a a<y<l

—i—/ (y—x)_ll(x<w<u<y)H(x,y)dxdy]dwdu.
0<x<a<y<l

Thus, H(x, y) < oo almost everywhere.
The next lemma establishes monotonicity properties of H (x, y).
Lemma A.2. H(x, y) is increasing in x and decreasing in y.

Proof. For each k > 1, we see from (A.9) that f(x) is increasing in x and from (A.7) that
gr(y) is decreasing in y. Since h; = 0, it follows by induction on k from (A.6) that A (x, y)
is increasing in x and decreasing in y for each k. Thus, H(x, y) = > ;- hx(x, y) enjoys the
same monotonicity properties. -

LemmaA.3. H(x,y) < oo forall x and y.

Proof. This is immediate from Lemmas A.1-A.2.
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Lemma A 4. The generating functzon H(x, y z) at (A.11) is (with ho := 0) the unique power-
series solution H(x y,2) = Zk>0 hk(x y)z (in 0 < z < 1) to the integral equation (A.12)
such that 0 < h(x, y) < hi(x, y) forall k, x, y.

Proof. We have already seen that H is such a solution. Conversely, if H is such a solution
then by equating coefficients of z* in the integral equation (which is valid because we know by
Lemma A.3 that H (x, y, ), and hence also H (x, y, z), is finite for 0 < z < 1) we find that the
functions hk (x, y) satisfy hk = ( for k = 0, 1 and the recurrence relation (A.6) for k > 2. It
then follows by induction that I (x, y) = hyx(x, y) forall k, x, y.

Next we let Hy(x, y, z) := 0 and, for 0 < z < 1, inductively define H, (x, y, z) by applying
successive substitutions to the integral equation (A.12); that is, for each n > 1, we define

Hy(x,y,2) = z[(l -0 Y Ay Y am
k>1 k>1
X 1
+/ (y_)\')_lHn—l()\" Y, Z)d)"_'_/ (,O—x)_lHn_l(x, P, Z)dpi|
0 ]
’ (A.14)

Let [z¥] H, (x, v, z) denote the coefficient of X in H, (x, v, 2).
Lemma A.5. Foreachk > 1, [zk] H,(x,y, 2) is nondecreasing inn > Q.

Proof. The inequality [z¥1 H, x,y,2) > [zX1 H,,— 1(x, y, z) is proved easily by induction
onn > 1.

According to the next lemma, H dominates each H,,.

Lemma A.6. Foralln > 0and k > 1, we have
0 <[ Hy(x, y,2) < hy(x, , 2). (A.15)

Proof. Lemma A.5 establishes the first inequality, and the second is proved easily by
induction on n.

Lemmas A.4-A.6 lead to the following lemma.

LemmaA.7. ForO<x <a <y <1land0 <z <1, we have
Hn(x’yaZ)TH(xay,Z) asnTOO.

Proof. Recalling Lemmas A.5-A.6, define H (x,y,z) to be the power series in z with
coefficient of z¥ equal to ﬁk({’ y) = limmoo[zk] H,(x,y, z), which satisfies 0 < e (x, y) <
hi(x, y). On the other hand, H satisfies the integral equation (A.12) by applying the monotone
convergence theorem to (A.14). Thus, it follows from LemmaA.4 that H = H. Finally, another
application of the monotone convergence theorem shows that H (x, y, z) = limj00 Hy (%, ¥, 2).

Our next lemma, when combined with the preceding one, immediately leads to inequality
in one direction in (A.13).

LemmaAs8. ForO<x <a <y<landalln >0,

Hy(x,y,1) <2(y —x)~2.
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Proof. We will prove this lemma by induction on rn, starting with
Ho(x,y) =0 <2(y —x) 2.
Suppose that the claim holds for n — 1. Then, from (A.14), (A.8), and (A.10), we have
Hyx,y, D <(1=07 4y 4+ 0 =07 =y 2+ -0 =1 -0~
=20y —x)".

Finally, we are ready to prove (A.13).

LemmaAl9. ForO0<x <a <y <lI,
Hx,y,) =2y —x)"%

Proof. Define _
H(x,y) =2 — x)_2 — H(x,y).

Then, to prove the desired equality, it suffices to show that, for any integer r > 0, we have
0<Hx.y) <(3) x2 -0~ (A.16)

As remarked earlier, the nonnegativity of H follows from Lemmas A.7-A.8. We prove the
upper bound on H in (A.16) by induction on r. The bound clearly holds for r = 0. Note that,
by substituting z = 1 and H (x, y) = 2(y — x)2— ﬁ(x, y) into the integral equation (A.12),
we find that

Hx,y) =20y —x) 2= H(x,y)

=2(y—x)"*— {(1 —x) P 4y? +/0 -G =02 = HR, yldr
1
+ / (0 -0 200 — )2 — Hix, )] dp}
y

x 1
=f0 O-=NTHOM ydri+ | (o —x)""Hx, p)dp.
y

Thus, if we assume that the upper bound in (A.16) holds for r — 1 then

R Ay
Hx,y) < (= x2/<y—x) dx+/(p—x> dp}
3 0 y

<(3) x205 -0

Hence, (A.16) holds for any nonnegative integer r.
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