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Abstract

The logarithmic coefficients γn of an analytic and univalent function f in the unit disc D = {z ∈ C : |z| < 1}
with the normalisation f (0) = 0 = f ′(0) − 1 are defined by log( f (z)/z) = 2

∑∞
n=1 γnzn. In the present

paper, we consider close-to-convex functions (with argument 0) with respect to odd starlike functions
and determine the sharp upper bound of |γn|, n = 1, 2, 3, for such functions f .
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1. Introduction

Let A denote the class of analytic functions f in the unit disc D = {z ∈ C : |z| < 1}
normalised by f (0) = 0 = f ′(0) − 1. Any function f in A has the power series
representation

f (z) = z +

∞∑
n=2

anzn. (1.1)

The class of univalent (that is, one-to-one) functions inA is denoted by S. A function
f ∈ A is called starlike (respectively, convex) if f (D) is starlike (respectively, convex)
with respect to the origin. Let S∗ and C denote the classes of starlike and convex
functions in S, respectively. It is well known that a function f ∈ A is in S∗ if and
only if Re(z f ′(z)/ f (z)) > 0 for z ∈ D. Similarly, a function f ∈ A is in C if and only
if Re(1 + z f ′′(z)/ f ′(z)) > 0 for z ∈ D. From the above it is easy to see that f ∈ C if
and only if z f ′ ∈ S∗. Given α ∈ (−π/2, π/2) and g ∈ S∗, a function f ∈ A is said to be
close-to-convex with argument α and with respect to g if

Re
(
eiα z f ′(z)

g(z)

)
> 0 for z ∈ D.

The first author was supported by the University Grants Commission through a UGC-SRF Fellowship.
The second author was supported by SERB (DST).
c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

228

https://doi.org/10.1017/S0004972716000897 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000897


[2] Logarithmic coefficients of some close-to-convex functions 229

Let Kα(g) denote the class of all such functions. Let

K(g) :=
⋃

α∈(−π/2,π/2)

Kα(g) and Kα :=
⋃
g∈S∗
Kα(g)

be the classes of close-to-convex functions with respect to g and close-to-convex
functions with argument α, respectively. The class

K :=
⋃

α∈(−π/2,π/2)

Kα =
⋃
g∈S∗
K(g)

is the class of all close-to-convex functions. It is well known that every close-to-convex
function is univalent in D (see [5]). Geometrically, f ∈ K means that the complement
of the image domain f (D) is the union of nonintersecting half-lines.

For a function f ∈ S, the logarithmic coefficients γn (n = 1, 2, . . .) are defined by

log
f (z)
z

= 2
∞∑

n=1

γnzn, z ∈ D. (1.2)

Bazilevich first noticed that the logarithmic coefficients are essential in the coefficient
problem of univalent functions. In [2, 3], he gave estimates in terms of the positive
Hayman constant (see [10]) for how close the coefficients γn (n = 1, 2, . . .) of the
functions of class S are to the relative logarithmic coefficients of the Koebe function
k(z) = z/(1 − z)2. He also estimated

∑∞
n=1 n|γn|

2r2n, which after multiplication by π is
equal to the area of the image of the disc |z| < r < 1 under the function 1

2 log( f (z)/z)
for f ∈ S. The celebrated de Branges’ inequalities (the former Milin conjecture) for
univalent functions f state that

n∑
k=1

(n − k + 1)|γk|
2 ≤

n∑
k=1

n + 1 − k
k

, n = 1, 2, . . . ,

with equality if and only if f (z) = e−iθk(eiθz), θ ∈ R (see [4]). De Branges [4] used this
inequality to prove the celebrated Bieberbach conjecture. Moreover, the de Branges’
inequalities have also been the source of many other interesting inequalities involving
logarithmic coefficients of f ∈ S such as (see [6])

∞∑
k=1

|γk|
2 ≤

∞∑
k=1

1
k2 =

π2

6
.

More attention has been given to the results in an average sense (see [5, 6, 14]) than
the exact upper bounds for |γn| for functions in the class S and few exact upper
bounds for |γn| have been established. For the Koebe function k(z) = z/(1 − z)2, the
logarithmic coefficients are γn = 1/n. Since the Koebe function k(z) plays the role of
an extremal function for most of the extremal problems in the class S, it is expected
that |γn| ≤ 1/n for functions in S. But this is not true in general, even in order of
magnitude. Indeed, there exists a bounded function f in the class S with logarithmic
coefficients γn , O(n−0.83) (see [5, Theorem 8.4]).
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By differentiating (1.2) and equating coefficients,

γ1 = 1
2 a2, (1.3)

γ2 = 1
2 (a3 −

1
2 a2

2), (1.4)

γ3 = 1
2 (a4 − a2a3 + 1

3 a3
2). (1.5)

If f ∈ S, then |γ1| ≤ 1 follows from (1.3). Using the Fekete–Szegö inequality [5,
Theorem 3.8] in (1.4), it is easy to obtain the sharp estimate

|γ2| ≤
1
2 (1 + 2e−2) = 0.635 . . . .

For n ≥ 3, the problem seems much harder and no significant upper bounds for |γn|

when f ∈ S appear to be known.
For functions in the class S∗, by the analytic characterisation Re(z f ′(z)/ f (z)) > 0

for z ∈ D, it is easy to prove that |γn| ≤ 1/n for n ≥ 1 and equality holds for the Koebe
function k(z) = z/(1 − z)2. The inequality |γn| ≤ 1/n for n ≥ 2 for functions in the class
K was claimed in a paper of Elhosh [7]. However, Girela [8] pointed out an error
in the proof of Elhosh [7] and, hence, the result is not substantiated. Indeed, Girela
proved that for each n ≥ 2, there exists a function f ∈ K such that |γn| > 1/n. Recently,
it has been proved [15] that |γ3| ≤

7
12 for functions in K0 (close-to-convex functions

with argument 0) with the additional assumption that the second coefficient of the
corresponding starlike function g is real. But this estimate is not sharp, as pointed
out in [1], where the authors proved that |γ3| ≤

1
18 (3 + 4

√
2) = 0.4809 for functions in

K0 without the additional assumption that the second coefficient of the corresponding
starlike function g is real. In the same paper, the authors also determined the sharp
upper bound |γ3| ≤

1
243 (28 + 19

√
19) = 0.4560 for close-to-convex functions with

argument 0 and with respect to the Koebe function and conjectured that this upper
bound is also true for the whole class K0 (see also [13]).

Let S∗2 denote the class of odd starlike functions and F the class of close-to-convex
functions with argument 0 and with respect to odd starlike functions. That is,

F =

{
f ∈ A : Re

z f ′(z)
g(z)

> 0, z ∈ D, for some g ∈ S∗2
}
.

It is important to note that the class F is rotationally invariant. In the present article,
we determine the sharp upper bound of |γn|, n = 1, 2, 3, for functions in F .

2. Main results

Let P denote the class of analytic functions P of the form

P(z) = 1 +

∞∑
n=1

cnzn (2.1)

such that Re P(z) > 0 in D. Functions in P are sometimes called Carathéodory
functions. To prove our main results, we need some preliminary lemmas.
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Lemma 2.1 [5, page 41]. For a function P ∈ P of the form (2.1), the sharp inequality
|cn| ≤ 2 holds for each n ≥ 1. Equality holds for the function P(z) = (1 + z)/(1 − z).

Lemma 2.2 [12]. Let P ∈ P be of the form (2.1) and µ be a complex number. Then

|c2 − µc2
1| ≤ 2 max{1, |2µ − 1|}.

The result is sharp for the functions P(z) = (1 + z2)/(1 − z2) and P(z) = (1 + z)/(1 − z).

Lemma 2.3 [11]. Let P ∈ P be of the form (2.1). Then there exist x, t ∈ C with |x| ≤ 1
and |t| ≤ 1 such that

2c2 = c2
1 + x(4 − c2

1) and
4c3 = c3

1 + 2(4 − c2
1)c1x − c1(4 − c2

1)x2 + 2(4 − c2
1)(1 − |x|2)t.

Theorem 2.4. Let f ∈ F be of the form (1.1). Then we have |γ1| ≤
1
2 , |γ2| ≤

1
2 and

|γ3| ≤
1

972 (95 + 23
√

46). The inequalities are sharp.

Proof. Let f ∈ F be of the form (1.1). Then there exist an odd starlike function
g(z) = z +

∑∞
n=1 b2n+1z2n+1 and a Carathéodory function P ∈ P of the form (2.1) with

z f ′(z) = g(z)P(z). (2.2)

Comparing the coefficients on both sides of (2.2),

a2 = 1
2 c1, a3 = 1

3 (b3 + c2) and a4 = 1
4 (b3c1 + c3). (2.3)

Substituting a2, a3 and a4 given by (2.3) in (1.3), (1.4) and (1.5) and simplifying,

γ1 = 1
2 a2 = 1

4 c1, (2.4)

γ2 = 1
2 (a3 −

1
2 a2

2) = 1
6 b3 + 1

6 (c2 −
3
8 c2

1), (2.5)

2γ3 = a4 − a2a3 + 1
3 a3

2 = 1
24 (2c1b3 + c3

1 − 4c1c2 + 6c3). (2.6)

By Lemma 2.1, it follows from (2.4) that |γ1| ≤
1
2 and equality holds for a function f

defined by z f ′(z) = g(z)P(z), where g(z) = z/(1 − z2) and P(z) = (1 + z)/(1 − z). Since
g is an odd starlike function, |b3| ≤ 1 (see [9, Ch. 4, Theorem 3, page 35]). Using
Lemma 2.2, it follows from (2.5) that

|γ2| ≤
1
6 |b3| +

1
6 |c2 −

3
8 c2

1| ≤
1
6 + 1

3 = 1
2

and equality holds for a function f defined by z f ′(z) = g(z)P(z), where g(z) = z/(1 − z2)
and P(z) = (1 + z2)/(1 − z2).

From (2.6), after writing c2 and c3 in terms of c1 with the help of Lemma 2.3,

48γ3 = 2c1b3 + 1
2 c3

1 + c1x(4 − c2
1) − 3

2 c1x2(4 − c2
1) + 3(4 − c2

1)(1 − |x|2)t, (2.7)

where |x| ≤ 1 and |t| ≤ 1. Since the class F is invariant under rotation, without loss of
generality we can assume that c1 = c, where 0 ≤ c ≤ 2. Taking the modulus on both
the sides of (2.7) and then applying the triangle inequality and |b3| ≤ 1,

48|γ3| ≤ 2c + | 12 c3 + cx(4 − c2) − 3
2 cx2(4 − c2)

∣∣∣ + 3(4 − c2)(1 − |x|2),
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where we have also used the fact that |t| ≤ 1. Let x = reiθ, where 0 ≤ r ≤ 1 and
0 ≤ θ ≤ 2π. For simplicity, write cos θ = p. Then

48|γ3| ≤ ψ(c, r) + |φ(c, r, p)| =: F(c, r, p), (2.8)

where ψ(c, r) = 2c + 3(4 − c2)(1 − r2) and

φ(c, r, p) = ( 1
4 c6 + c2r2(4 − c2)2 + 9

4 c2r4(4 − c2)2 + c4(4 − c2)rp

− 3
2 c4r2(4 − c2)(2p2 − 1) − 3c2(4 − c2)r3 p)1/2.

Thus, we need to find the maximum value of F(c, r, p) over the rectangular cube
R := [0, 2] × [0, 1] × [−1, 1]. By elementary calculus,

max
0≤r≤1

ψ(0, r) = ψ(0, 0) = 12, max
0≤r≤1

ψ(2, r) = 4, max
0≤c≤2

ψ(c, 0) = ψ( 1
3 , 0) = 37

3 ,

max
0≤c≤2

ψ(c, 1) = ψ(2, 1) = 4 and max
(c,r)∈[0,2]×[0,1]

ψ(c, r) = ψ( 1
3 , 0) = 37

3 .

We first find the maximum value of F(c, r, p) on the boundary of R, that is, on the
six faces of the rectangular cube R. On the face c = 0, we have F(0, r, p) = ψ(0, r) for
(r, p) ∈ R1 := [0, 1] × [−1, 1]. Thus,

max
(r,p)∈R1

F(0, r, p) = max
0≤r≤1

ψ(0, r) = ψ(0, 0) = 12.

On the face c = 2, we have F(2, r, p) = 8 for (r, p) ∈ R1. On the face r = 0, we have
F(c, 0, p) = 2c + 3(4 − c2) + 1

2 c3 for (c, p) ∈ R2 := [0, 2] × [−1, 1]. Note that F(c, 0, p)
is independent of p. Thus, by using elementary calculus it is easy to see that

max
(c,p)∈R2

F(c, 0, p) = F( 2
3 (3 −

√
6), 0, p) = 8

9 (9 +
√

6) = 12.3546.

On the face r = 1, we have F(c, 1, p) = ψ(c, 1) + |φ(c, 1, p)| for (c, p) ∈ R2. We first
prove that φ(c, 1, p) , 0 in the interior of R2. On the contrary, if φ(c, 1, p) = 0 in the
interior of R2, then

|φ(c, 1, p)|2 =
∣∣∣ 1
2 c3 + ceiθ(4 − c2) − 3

2 ce2iθ(4 − c2)
∣∣∣2 = 0,

giving the simultaneous equations

1
2 c3 + cp(4 − c2) − 3

2 c(4 − c2)(2p2 − 1) = 0 and

c(4 − c2) sin θ − 3
2 c(4 − c2) sin 2θ = 0.

On further simplification, this reduces to

1
2 c2 + p(4 − c2) − 3

2 (4 − c2)(2p2 − 1) = 0 and 1 − 3p = 0,

which is equivalent to p = 1/3 and c2 = 6. This contradicts the range of c ∈ (0, 2).
Thus, φ(c, 1, p) , 0 in the interior of R2.
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Next, we find the maximum value F(c, 1, p) in the interior of R2. Suppose that
F(c, 1, p) has a maximum at an interior point of R2. At such a point ∂F(c, 1, p)/∂c = 0
and ∂F(c, 1, p)/∂p = 0. From ∂F(c, 1, p)/∂p = 0 (for points in the interior of R2), a
straightforward calculation gives

p =
2(c2 − 3)

3c2 . (2.9)

Substituting this value of p in ∂F(c, 1, p)/∂c = 0 and further simplification gives

2c − 3c3 +
√

6(c2 + 2) = 0.

Taking the last term to the right-hand side and squaring on both the sides yields

9c6 − 12c4 − 2c2 − 12 = 0. (2.10)

This equation has exactly one root in (0, 2), which can be shown using the well-known
Sturm theorem for isolating real roots and hence for the sake of brevity we omit the
details. By solving the equation (2.10) numerically, we obtain the approximate root
1.3584 in (0,2) and the corresponding value of p obtained from (2.9) is −0.4172. Thus,
the extremum points of F(c, 1, p) in the interior of R2 lie in a small neighbourhood of
the points A1 = (1.3584, 1,−0.4172) (on the plane r = 1). Clearly, F(A1) = 9.3689.
Since the function F(c, 1, p) is uniformly continuous on R2, the value of F(c, 1, p)
would not vary too much in the neighbourhood of the point A1.

Next, we find the maximum value of F(c, 1, p) on the boundary of R2. Clearly,
F(0, 1, p) = 0, F(2, 1, p) = 8,

F(c, 1,−1) =


2c + c(10 − 3c2) for 0 ≤ c ≤

√
10
3
,

2c − c(10 − 3c2) for

√
10
3
< c ≤ 2

and

F(c, 1, 1) =

2c + c(2 − c2) for 0 ≤ c ≤
√

2,
2c − c(2 − c2) for

√
2 < c ≤ 2.

By using elementary calculus,

max
0≤c≤2

F(c, 1,−1) = F
(2
√

3
3

, 1,−1
)

=
16
√

3
3

= 9.2376 and

max
0≤c≤2

F(c, 1, 1) = F
(2
√

3
3

, 1, 1
)

=
16
√

3
9

= 3.0792.

Therefore,
max

(c,p)∈R2
F(c, 1, p) ≈ 9.3689.

On the face p = −1,

F(c, r,−1) =

ψ(c, r) + η1(c, r) for η1(c, r) ≥ 0,
ψ(c, r) − η1(c, r) for η1(c, r) < 0,
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where η1(c, r) = c3(3r2 + 2r + 1) − 4cr(3r + 2) and (c, r) ∈ R3 := [0, 2] × [0, 1]. To find
the maximum value of F(c, r,−1) in the interior of R3, we need to solve the pair of
equations ∂F(c, r,−1)/∂c = 0 and ∂F(c, r,−1)/∂r = 0 in the interior of R3, but it is
important to note that ∂F(c, r,−1)/∂c and ∂F(c, r,−1)/∂r may not exist at points in
S 1 = {(c, r) ∈ R3 : η1(c, r) = 0}. Solving this pair of equations,

max
(c,r)∈int R3\S 1

F(c, r,−1) = F( 1
3 (
√

82 − 8), 1
57 (
√

82 − 5),−1)

= 4
81 (41

√
82 − 121) = 12.359.

Now we find the maximum value of F(c, r,−1) on the boundary of R3 and on the set
S 1. Note that

max
(c,r)∈S 1

F(c, r,−1) ≤ max
(c,r)∈R3

ψ(c, r) = 37
3 = 12.33.

On the other hand, by using elementary calculus as before,

max
0≤r≤1

F(0, r,−1) = max
0≤r≤1

12(1 − r2) = F(0, 0,−1) = 12, max
0≤r≤1

F(2, r,−1) = 8,

max
0≤c≤2

F(c, 0,−1) = max
(c,p)∈R2

F(c, 0, p) = F( 2
3 (3 −

√
6), 0,−1) = 8

9 (9 +
√

6) = 12.3546,

max
0≤c≤2

F(c, 1,−1) = F
(2
√

3
3

, 1,−1
)

=
16
√

3
3

= 9.2376.

Hence, by combining the above cases,

max
(c,r)∈R3

F(c, r,−1) = F( 1
3 (
√

82 − 8), 1
57 (
√

82 − 5),−1)

= 4
81 (41

√
82 − 121) = 12.359.

On the face p = 1,

F(c, r, 1) =

ψ(c, r) + η2(c, r) for η2(c, r) ≥ 0,
ψ(c, r) − η2(c, r) for η2(c, r) < 0,

where η2(c, r) = c3(3r2 − 2r + 1) − 4cr(3r − 2) for (c, r) ∈ R3. To find the maximum
value of F(c, r, 1) in the interior of R3, we need to solve the pair of equations
∂F(c, r, 1)/∂c = 0 and ∂F(c, r, 1)/∂r = 0 in the interior of R3, but again it is important
to note that ∂F(c, r, 1)/∂c and ∂F(c, r, 1)/∂r may not exist at points in the set S 2 =

{(c, r) ∈ R3 : η2(c, r) = 0}. Solving this pair of equations,

max
(c,r)∈int R3\S 2

F(c, r, 1) = F( 1
3 (8 −

√
46), 1

75 (11 −
√

46), 1)

= 4
81 (95 + 23

√
46) = 12.3947.
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Now we find the maximum value of F(c, r, 1) on the boundary of R3 and on the set S 2.
By noting that (see earlier cases)

max
(c,r)∈S 2

F(c, r, 1)≤ max
(c,r)∈R3

ψ(c, r) = 37
3 = 12.33,

max
0≤r≤1

F(0, r, 1) = 12, max
0≤r≤1

F(2, r, 1) = 8,

max
0≤c≤2

F(c, 0, 1) = 8
9 (9 +

√
6) = 12.3546,

max
0≤c≤2

F(c, 1, 1) =
16
√

3
9

= 3.0792

and combining all the cases,

max
(c,r)∈R3

F(c, r, 1) = F( 1
3 (8 −

√
46), 1

75 (11 −
√

46), 1)

= 4
81 (95 + 23

√
46) = 12.3947.

Let S ′ = {(c, r, p) ∈ R : φ(c, r, p) = 0}. Then

max
(c,r,p)∈S ′

F(c, r, p) ≤ max
(c,r)∈R3

ψ(c, r) = ψ(0, 1
3 ) = 37

3 = 12.33.

We prove that F(c, r, p) has no maximum value at any interior point of R \ S ′. Suppose
that F(c, r, p) has a maximum value at an interior point of R \ S ′. At such a point
∂F(c, r, p)/∂c = ∂F(c, r, p)/∂r = ∂F(c, r, p)/∂p = 0. Note that the partial derivatives
may not exist at points in S ′. From ∂F(c, r, p)/∂p = 0 (for points in the interior of
R \ S ′), a straightforward but laborious calculation gives

p =
3c2r2 + c2 − 12r2

6c2r
.

Substituting this value of p in ∂F(c, r, p)/∂r = 0 and simplifying,

(4 − c2)r(
√

6(c2 + 2) − 6) = 0.

This equation has no solution in the interior of R \ S ′ and hence F(c, r, p) has no
maximum in the interior of R \ S ′.

On combining all the above cases,

max
(c,r,p)∈R

F(c, r, p) = F( 1
3 (8 −

√
46), 1

75 (11 −
√

46), 1)

= 4
81 (95 + 23

√
46) = 12.3947

and hence, from (2.8),

|γ3| ≤
1

972 (95 + 23
√

46) = 0.2582. (2.11)

We now show that the inequality (2.11) is sharp. An examination of the proof
shows that equality holds in (2.11) if we choose b3 = 1, c1 = c = 1

3 (8 −
√

46),
x = 1

75 (11 −
√

46) and t = 1 in (2.7). For such values of c1, x and t, Lemma 2.3 gives
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c2 = 1
27 (134 − 19

√
46) and c3 = 2

243 (721 − 71
√

46). A function P ∈ P having the first
three coefficients c1, c2 and c3 as above is given by

P(z) = (1 − 2λ)
1 + z
1 − z

+ λ
1 + uz
1 − uz

+ λ
1 + uz
1 − uz

= 1 +
1
3

(8 −
√

46)z +
1
27

(134 − 19
√

46)z2 +
2

243
(721 − 71

√
46)z3 + · · · ,

(2.12)

where λ = 1
10 (−4 +

√
46) and u = α + i

√
1 − α2 with α = 1

18 (−1 −
√

46). Hence,
equality holds in (2.11) for a function f which is defined by z f ′(z) = g(z)P(z), where
g(z) = z/(1 − z2) and P(z) is given by (2.12). This completes the proof. �
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