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Abstract
Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search
heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing, etc. The vast majority of
existing drift theorems yield bounds on the expected value of the hitting time for a target state, for exam-
ple the set of optimal solutions, without making additional statements on the distribution of this time. We
address this lack by providing a general drift theorem that includes bounds on the upper and lower tail of
the hitting time distribution. The new tail bounds are applied to prove very precise sharp-concentration
results on the running time of a simple EA on standard benchmark problems, including the class of gen-
eral linear functions. On all these problems, the probability of deviating by an r-factor in lower-order terms
of the expected time decreases exponentially with r. The usefulness of the theorem outside the theory of
RSHs is demonstrated by deriving tail bounds on the number of cycles in random permutations. All these
results handle a position-dependent (variable) drift that was not covered by previous drift theorems with
tail bounds. Finally, user-friendly specializations of the general drift theorem are given.

2020 MSC Codes: Primary: 68W50; Secondary: 68W20, 68Q87

1. Introduction
Randomized search heuristics (RSHs) such as simulated annealing, evolutionary algorithms
(EAs), ant colony optimization, etc., are highly popular techniques in black-box optimization,
i.e. the problem of optimizing a function with only oracle access to the function. These heuristics
often imitate some natural process, and are rarely designed with analysis in mind. Their extensive
use of randomness, such as in the mutation operator, render the underlying stochastic processes
non-trivial. While the theory of RSHs is less developed than the theory of classical, randomized
algorithms, significant progress has been made in the past decade [2, 10, 19, 33]. This theory has
mainly focused on the optimization time, which is the random variable TA, f defined as the num-
ber of oracle accesses the heuristic A makes before the maximal argument of f is found. Most
classical studies considered the expectation of TA, f , but more information about the distribution
of the optimization time is often needed. For example, the expectation can be deceptive when the
runtime distribution has a high variance. Also, tail bounds can be helpful for other performance
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measures such as fixed-budget computation, which seeks to estimate the approximation quality as
a function of time [8, 20, 25].

Results on the runtime of RSHs were obtained after relevant analytical techniques were devel-
oped, some adopted from other fields, others developed specifically for RSHs. Drift analysis, which
is a central method for analysing the hitting time of stochastic processes, was introduced to the
analysis of simulated annealing as early as 1988 [37]. Informally, it allows long-term properties of
a discrete-time stochastic process (Xt)t∈N0 to be inferred from properties of the one-step change
�t := Xt − Xt+1. In the context of EAs, there has been particular interest in the random variable
Ta defined as the smallest t such that Xt � a. For example, if Xt represents the ‘distance’ of the
current solution in iteration t to an optimum, then T0 is the optimization time.

Since its introduction to evolutionary computation by He and Yao in 2001 [16], drift analysis
has been widely used to analyse the optimization time of EAs. Many drift theorems have been
introduced, such as additive [16], multiplicative [7, 9], variable [21, 32, 36], and population [26]
drift theorems. Drift analysis is also used outside the theory of RSHs, for example in queuing
theory [3, 12]. The widespread use of these techniques in separated research fields has made it
difficult to get an overview and a unified presentation of the drift theorems; see the recent survey
by Lengler [30]. However, at least for the case of expected first hitting times under additive drift,
theorems that are as general as possible have been obtained in the meantime [24]. Drift analysis
is also related to other areas, such as stochastic differential equations and stochastic difference
relations.

Most drift theorems used in the theory of RSHs relate to the expectation of the hitting
time Ta, and there are fewer results about the tails P[Ta > t] and P[Ta < t]. From the simple
observation that

P[Ta > t]� P

[ t∑
i=0

�i < a− X0

]
,

the problem is reduced to bounding the deviation of a sum of random variables. If the �t
were independent and identically distributed, then one would be in the familiar scenario of
Chernoff/Hoeffding-like bounds. The stochastic processes originating from RSHs are rarely so
simple; in particular, the �t are often dependent variables, and their distributions are not explic-
itly given. However, bounds of the form E[�t | Xt]� h(Xt) for some function h often hold. The
drift is called variable when h is a non-constant function. The variable drift theorem provides
bounds on the expectation of Ta given some conditions on h. However, there have been no gen-
eral tail bounds from a variable drift condition. The only results in this direction seem to be the
tail bounds for probabilistic recurrence relations from [22]; however, this scenario is restricted to
monotonically decreasing stochastic processes.

Our contribution is a new, general drift theorem that provides sharp-concentration results
for the hitting time of stochastic processes with variable drift, along with concrete advice and
examples how to apply it. The theorem is used to bound the tails of the optimization time of
the well-known (1+ 1) EA [11] to the benchmark problems ONEMAX and LEADINGONES, as
well as the class of linear functions, which is an intensively studied problem in the area [40]. The
results show that the distribution is highly concentrated around the expectation. The probability
of deviating by an r-factor in lower-order terms decreases exponentially with r. In an application
outside the theory of RSHs, we analyse the drift in probabilistic recurrence relations, showing that
the number of cycles in a random permutation is sharply concentrated around the expectation
Hn ≈ ln n.

This paper is structured as follows. Section 2 introduces notation and basics of drift analysis.
Section 3 presents the general drift theorem with tail bounds and suggestions for user-friendly
corollaries. Section 4 applies the tail bounds from our theorem. Sharp-concentration results on
the running time of the (1+ 1) EA on ONEMAX, LEADINGONES and general linear functions are
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obtained. An application outside the theory of RSHs with respect to random recurrence relations
is described at the end of this section (Section 4.2). In all these applications, the probability of
deviating by an r-factor in lower-order terms of the expected time decreases exponentially with r.

2. Preliminaries
We analyse time-discrete stochastic processes represented by a sequence of non-negative random
variables (Xt)t∈N0 . For example, Xt could represent a certain distance value of an RSH from an
optimum. We adopt the convention that the process should pass below some threshold a� 0
(‘minimizes’ its state) and define the first hitting time Ta :=min{t | Xt � a}. If the actual process
seeks tomaximize its state, typically a straightforwardmapping allows us to stick to the convention
of minimization. In an important special case, we are interested in the hitting time T0 of target
state 0; for example when a (1+ 1) EA, a very simple RSH, is run on the well-known ONEMAX
problem and we are interested in the first point of time where the number of zero-bits becomes
zero. Note that Ta is a stopping time and that we assume that the stochastic process is adapted to
some filtration (Ft)t∈N0 , such as its natural filtration σ (X0, . . . , Xt).

Our main goal is to describe properties of the distribution of the first hitting time Ta, hence
some information about the stochastic process before that time is required. In particular, we
consider the expected one-step change of the process

δt :=E[Xt − Xt+1 ; Xt > a |Ft],

the so-called drift. For any event A and random variable X, we use the well-established notation
E[X ;A |Ft] :=E[X · 1[A] |Ft], where 1[] is the indicator function. Note that δt in general is a
random variable since the outcomes of X0, . . . , Xt are random. Suppose we manage to bound the
random variable δt from below by some real number δ∗ > 0, conditioning on Xt � a. This is the
same as bounding

E[Xt − Xt+1 − δ∗ ; Xt > a |Ft]� 0,

except for the case that P[Xt > a], where the conditioning does not work; however, this difference
is unimportant for our analysis of first hitting time. Then, informally speaking, we know that
the process, conditioned on not having reached the target, decreases its state in expectation by at
least δ∗ in every step, and the additive drift theorem (see Theorem 2.1 below) will provide a bound
on T0 that only depends on X0 and δ∗. In fact, the very natural-looking result E[T0 |F0]� X0/δ

∗
will be obtained. However, bounds on the drift might be more complicated. For example, a bound
on δt might depend on Xt or states at even earlier points of time, e.g. if the progress decreases as
the current state decreases. This is often the case in applications to EAs.

As pointed out, the drift δt is in general a random variable and should not be confused with
the ‘expected drift’ E[δt]=E[E[Xt − Xt+1; Xt > a |Ft]], which is rarely available since it averages
over the whole history of the stochastic process. Drift as used in this paper is based on the inspec-
tion of the progress from one step to another, taking into account every possible history. This
one-step inspection often makes it easy to come up with bounds on δt . Drift theorems could also
be formulated based on expected drift, possibly allowing a stronger statement on the first hitting
time. However, in many applications it is infeasible to bound the expected value of the drift in a
precise enough way for a stronger statement to be obtained. See [18] for one of the rare analyses
of ‘expected drift’, which we will not get into in this paper.

We now cite the first drift theorem for additive drift. It goes back to [16] and has subsequently
been generalized in various ways, for example by removing unnecessary assumptions such as a
discrete search space and the Markov property. The formulation closely follows [24]. For conve-
nience, we demand a bounded state space for the lower bound; variants for two-sided unbounded
spaces are discussed in [24].
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Theorem 2.1 (additive drift, following [24]). Let (Xt)t∈N0 , be a stochastic process, adapted to a
filtration (Ft)t∈N0 , over some state space S⊆R, and let b, δu, δ� > 0. Letting �t := Xt − Xt+1 and
T0 :=min{t | Xt � 0}, we have the following.

(i) If E[�t − δu ; Xt > 0 |Ft]� 0 and Xt � 0 for all t ∈N0, then E[T0 |F0]� X0/δu.
(ii) If E[�t − δ� ; Xt > 0 |Ft]� 0 and Xt � b for all t ∈N0, then E[T0 |F0]� X0/δ�.

Additive drift concerns the simple scenario where there is a progress of at least δu from all
non-optimal states towards the target in (i) and a progress of at most δ� in (ii). Since the δ-values
are independent of Xt , one has to use the worst-case drift over all non-optimal Xt . This might
lead to very bad bounds on the first hitting time, which is why more general theorems were
developed (as mentioned in the Introduction). Interestingly, these more general theorems are
often proved based on Theorem 2.1 using an appropriate mapping (sometimes called Lyapunov
function, potential function, distance function or drift function) from the original state space to
a new one. Informally, the mapping ‘smooths out’ position-dependent drift into an (almost)
position-independent drift. We will use the same approach when deriving concrete tail bounds
in Section 4.

3. General drift theorem
In this section we present our general drift theorem. As pointed out in the Introduction, we strive
for a general statement, partly at the expense of simplicity. More user-friendly specializations will
be given later. Nevertheless, the underlying idea of the complicated-looking general theorem is
the same as in all drift theorems. We look into the one-step drift δt =E[Xt − Xt+1 |Ft], which is
a random variable that may depend on the complete history of the process up to time t. Then we
assume we have an (upper or lower) bound h(Xt) on the drift, formally δt � h(Xt) or δt � h(Xt),
where the bound depends on Xt only, i.e. a possibly smaller σ -algebra than Ft . Based on h, we
define a new function g (see Remark 3.1), with the aim of ‘smoothing out’ the dependency, and
the drift with respect to g (formally, E[g(Xt)− g(Xt+1) |Ft]) is analysed. Statements (i) and (ii)
of the following Theorem 3.2 provide bounds on E[T0] based on the drift with respect to g. In
fact, g can be defined in a very similar way to existing variable-drift theorems [21, 32, 36], such
that statements (i) and (ii) can be understood as generalized variable drift theorems for upper and
lower bounds on the expected hitting time, respectively.

Statements (iii) and (iv) consider general a� 0 and concern tail bounds on the hitting time
Ta, the main focus of this paper. Here moment-generating functions (MGFs) of the drift with
respect to g come into play, formally E[e−λ(g(Xt)−g(Xt+1)) |Ft] is bounded. Bounds on the MGF
may depend on the point of time t, as captured by the bounds βu(t) and β�(t). Section 4 gives an
example where the mapping g smooths out the position-dependent drift into a (nearly) position-
independent and time-independent drift, while theMGF of the drift with respect to g still depends
on the current point (and indirectly on the expected position) of time t.

Our drift theorem generalizes virtually all existing drift theorems concerned with a drift
towards the target, including variable drift theorems for upper [21, 32, 36] and lower bounds
[5, 6, 14], a non-monotone variable drift theorem [13] and multiplicative drift theorems [4, 7, 40].
Our theorem also generalizes fitness-level theorems [38, 39], another well-known technique in the
analysis of randomized search heuristics. Some examples of such generalizations are shown in a
supplementary technical report [29]; however, often the proof in the original publication already
makes it explicit that the additive drift theorem is applied with respect to an appropriately defined
potential function. Note that we do not consider the case of negative drift (drift away from the
target) as studied in [31], [34] and [35], since this scenario is handled with structurally different
techniques.
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Remark 3.1. If, for some function h : R�xmin →R
+ where xmin > 0 and 1/h(x) is integrable on

R�xmin , we have either
E[Xt − Xt+1 − h(Xt) ; Xt � xmin |Ft]� 0

or
E[Xt − Xt+1 − h(Xt) ; Xt � xmin |Ft]� 0,

it is recommended to define the function g in Theorem 3.2 as g(x) := x/h(xmin) for all x< xmin,
and otherwise for all x� xmin

g(x) := xmin
h(xmin)

+
∫ x

xmin

1
h(y)

dy.

Theorem 3.2 (general drift theorem). Let (Xt)t∈N0 , be a stochastic process, adapted to a filtration
(Ft)t∈N0 , over some state space S⊆R. For some a� 0 (assumed 0 in (i) and (ii)), let Ta =min{t |
Xt � a}. Moreover, let g : S∪ {0, a} →R�0 be a function such that g(0)= 0 and g(x)> g(a) for all
x ∈ S∩ (a,∞).

(i) If
E[g(Xt)− g(Xt+1)− αu ; Xt > 0 |Ft]� 0 for all t ∈N0 and some αu > 0,

then E[T0 |F0]� g(X0)/αu.
(ii) If there is xmax > 0 such that g(Xt)� xmax and

E[g(Xt)− g(Xt+1)− α� ; Xt > 0 |Ft]� 0 for all t ∈N0 and some α� > 0,
then E[T0 |F0]� g(X0)/α�.

(iii) If there exists λ > 0 and a function βu : N0 →R
+ such that

E[e−λ(g(Xt)−g(Xt+1)) − βu(t) ; Xt > a |Ft]� 0 for all t ∈N0,
then

P[Ta > t∗ |F0]<

⎛
⎝t∗−1∏

r=0
βu(r)

⎞
⎠ · eλ(g(X0)−g(a)) for t∗ > 0.

(iv) If there exists λ > 0 and a function β� : N0 →R
+ such that

E[eλ(g(Xt)−g(Xt+1)) − β�(t) ; Xt > a |Ft]� 0 for all t ∈N0,
then

P[Ta < t∗ |F0]�

⎛
⎝t∗−1∑

s=1

s−1∏
r=0

β�(r)

⎞
⎠ · e−λ(g(X0)−g(a)) for t∗ > 0 and X0 > a.

If additionally the set of states S∩ {x | x� a} is absorbing, then

P[Ta < t∗ |F0]�

⎛
⎝t∗−1∏

r=0
β�(r)

⎞
⎠ · e−λ(g(X0)−g(a)).

Statement (ii) is also valid (but useless) if the expected hitting time is infinite.

Special cases of (iii) and (iv). If

E[e−λ(g(Xt)−g(Xt+1)) − βu ; Xt > a |Ft]� 0
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for some time-independent βu, then statement (iii) simplifies to the bound

P[Ta > t∗ |F0]< βt∗
u · eλ(g(X0)−g(a)),

and similarly for statement (iv).
The tail bounds in (iii) and (iv) are obtained easily by the exponential method (a generalized

Chernoff bound), which idea is also implicit in [15].

Proof of Theorem 3.2. Since g(Xt)= 0 if and only if Xt = 0, and since the image of g is bounded
from below by 0 and additionally by xmax in item (ii), the first two items follow from the classical
additive drift theorem (Theorem 2.1). To prove item (iii) we consider the stopped process that
does not move after time Ta. We now use ideas implicit in [15] and argue that

P[Ta > t∗ |F0]� P[Xt∗ > a |F0]
� P[g(Xt∗)> g(a) |F0]
= P[eλg(Xt∗ ) > eλg(a) |F0]
<E[eλg(Xt∗ )−λg(a) |F0],

where the second inequality uses that Xt∗ > a implies g(Xt∗)> g(a), the equality that x 
→ ex is a
bijection, and the last inequality is Markov’s inequality. Now

E[eλg(Xt∗ ) |F0]=E[eλg(Xt∗−1) ·E[e−λ(g(Xt∗−1)−g(Xt∗ )) |Ft∗−1] |F0]
�E[eλg(Xt∗−1) |F0] · βu(t∗ − 1)

using the prerequisite from item (iii). Unfolding the remaining expectation inductively (note that
this does not assume independence of g(Xr−1)− g(Xr)), we get

E[eλg(Xt∗ ) |F0]� eλg(X0)
t∗−1∏
r=0

βu(r),

altogether

P[Ta > t∗ |F0]< eλ(g(X0)−g(a))
t∗−1∏
r=0

βu(r),

which proves item (iii).
Item (iv) is proved similarly to (iii). Using a union bound and that Xt∗ � a follows from

g(Xt∗)� g(a),

P[Ta < t∗ |F0]�
t∗−1∑
s=1

P[g(Xs)� g(a) |F0] for t∗ > 0,

assuming X0 > a. Moreover,

P[g(Xs)� g(a) |F0]= P[e−λg(Xs) � e−λg(a) |F0]�E[e−λg(Xs)+λg(a) |F0]
again using Markov’s inequality. By the prerequisites, we get

E[e−λg(Xs) |F0]� e−λg(X0)
s−1∏
r=0

β�(r).

Altogether,

P[Ta < t∗ |F0]�
t∗−1∑
s=1

e−λ(g(X0)−g(a))
s−1∏
r=0

β�(r).

https://doi.org/10.1017/S0963548320000565 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000565


556 P. K. Lehre and C. Witt

If furthermore S∩ {x | x� a} is absorbing, then the event Xt∗ � a is necessary for Ta < t∗.
In this case

P[Ta < t∗ |F0]� P[g(Xt∗)� g(a) |F0]� e−λ(g(X0)−g(a))
t∗−1∏
r=0

β�(r).

Condition (iii) and (iv) of Theorem 3.2 involve an MGF, which may be tedious to compute.
Inspired by [15] and [27], we show that bounds on the MGFs follow from more user-friendly
conditions based on stochastic dominance, here denoted by �.

Theorem 3.3. Let (Xt)t∈N0 be a stochastic process, adapted to a filtration (Ft)t∈N0 , over some
state space S⊆ {0} ∪R�xmin , where xmin � 0 and 0 ∈ S. Let h : R�xmin →R

+ be a function such
that 1/h(x) is integrable on R�xmin . Suppose there exist a random variable Z and some λ > 0 such
that |∫ Xt

Xt+1
1/h(max{xmin, x}) dx| � Z for Xt � xmin and all t ∈N0, and E[eλZ]=D for some D> 0.

Then the following two statements hold for the first hitting time T :=min{t | Xt = 0}.
(i) If

E[Xt − Xt+1 − h(Xt) ; Xt � xmin |Ft]� 0 for all t ∈N0

and h is non-decreasing, then for any δ > 0, η :=min{λ, δλ2/(D− 1− λ)} and t∗ > 0 it
holds that

P[T > t∗ |F0]� exp
(

η

(∫ X0

xmin

1
h(x)

dx− (1− δ)t∗
))

.

(ii) If

E[Xt − Xt+1 − h(Xt) ; Xt � xmin |Ft]� 0 for all t ∈N0

and h is non-increasing, then for any δ > 0, η :=min{λ, δλ2/(D− 1− λ)} and t∗ > 0 it holds
on X0 > 0 that

P[T < t∗ |F0]� exp
(

η

(
(1+ δ)t∗ −

∫ X0

xmin

1
h(x)

dx
))

1
η(1+ δ)

.

If state 0 is absorbing, then

P[T < t∗ |F0]� exp
(

η((1+ δ)t∗ −
∫ X0

xmin

1
h
(x) dx)

)
.

Remark 3.4. Theorem 3.3 assumes∣∣∣∣
∫ Xt

Xt+1

1
h
(max{xmin, x}) dx

∣∣∣∣� Z.

This is implied by |Xt+1 − Xt|(1/infx�xmin h(x))� Z.

Proof. As in Remark 3.1, let

g(x) := xmin
h(xmin)

+
∫ x

xmin

1
h(y)

dy for x� xmin

and

g(x) := x
h(xmin)

for x< xmin.
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Let

�t := g(Xt)− g(Xt+1)=
∫ Xt

Xt+1

1
h(max{xmin, x}) dx

and assume Xt � xmin. We now prove statement (i). Since h is non-increasing, g is concave, and
using Jensen’s inequality, we have (suppressing Ft)

E[�t]� g(Xt)− g(E[Xt+1])�
E[�t]
h(Xt)

� 1

by our assumption E[�t]� h(Xt). To satisfy condition (iii) of Theorem 3.2, we note, still on Xt �
xmin, that

E[e−η�t ]= 1− ηE[�t]+
∞∑
k=2

ηkE[�k
t ]

k!

� 1− ηE[�t]+ η2
∞∑
k=2

ηk−2
E[|�t|k]
k!

� 1− ηE[�t]+ η2
∞∑
k=2

λk−2
E[|�t|k]
k!

= 1− η + η2

λ2
(eλZ − λE[Z]− 1),

where we have used E[�t]� 1 and λ� η. Since |�t| � Z, also E[Z]� 1. Using eλZ =D and η �
δλ2/(D− 1− λ), we obtain

E[e−η�t ]� 1− η + δη = 1− (1− δ)η � e−η(1−δ).

Setting βu := e−η(1−δ) and using η as the λ of Theorem 3.2 proves statement (i).
For statement (ii), analogous calculations prove

E[eη�t ]� 1+ (1+ δ)η � eη(1+δ).

We set β� := eη(1+δ), use η as the λ of Theorem 3.2(iv) and note that

eλ(1+δ)t∗ − eλ(1+δ)

eλ(1+δ) − 1
� eλ(1+δ)t∗

λ(1+ δ)
,

which was to be proved. If additionally an absorbing state 0 is assumed, the stronger upper bound
follows from the corresponding statement in Theorem 3.2(iv).

4. Applications of the tail bounds
We now show that Theorem 3.2 together with the function g defined explicitly in Remark 3.1 con-
stitute a general and precise tool for analysis of stochastic processes. It provides sharp tail bounds
on the running time of randomized search heuristics, which were not previously obtained by drift
analysis, as well as tail bounds on random recursions, such as those in analysis of random per-
mutations (see Section 4.2). Most existing drift theorems, including an existing result proving tail
bounds with multiplicative drift, can be phrased as special cases of the general drift theorem; see
[29] for examples. Relatively recently, in [23], different tail bounds were proved for the scenario of
additive drift using classical concentration inequalities such as Azuma–Hoeffding bounds. These
bounds are not directly comparable to the ones from our general drift theorem; they are more
specific but yield even stronger exponential bounds.
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Algorithm 1 (1+1) Evolutionary Algorithm (EA)
Choose uniformly at random an initial bit string x0 ∈ {0, 1}n.
for t := 0 to ∞ do
Create x′ by flipping each bit in xt i.i.d. with probability 1/n (mutation).
xt+1 := x′ if f (x′)� f (xt), and xt+1 := xt otherwise (selection).

end for

We first give sharp tail bounds on the optimization time of the (1+ 1) EA (see Algorithm 1)
which maximizes pseudo-Boolean functions f : {0, 1}n →R. The optimization time is defined in
the canonical way at the smallest t such that xt is an optimum. We consider classical benchmark
problems from the theory of RSHs. Despite their simplicity, their analysis has turned out to be
surprisingly difficult and research is still ongoing.

4.1 OneMax, linear functions and LeadingOnes
A simple pseudo-Boolean function is given by ONEMAX(x1, . . . , xn)= x1 + · · · + xn. It is
included in the class of so-called linear functions f (x1, . . . , xn)=w1xn + · · · +wnxn, where wi ∈
R for 1� i� n. We start by citing very precise bounds on the expected optimization time of the
(1+ 1) EA on ONEMAX and then prove the new tail bounds. The lower bounds obtained will
imply results for all linear functions.

Theorem ([17]). The expected optimization time of the (1+ 1) EA on ONEMAX is
en ln n− c1n+ (e/2) ln n+ c2 +O(( log n)/n),

where c1 = 1.892541 . . . and c2 = 0.597899 . . . are explicitly computable constants.

We now derive the sharp tail bounds. The following upper concentration inequality in
Theorem 4.1 is not new but is already implicit in the classical work on multiplicative drift analysis
[9, 7]. A similar upper bound is even available for all linear functions [40]. By contrast, the lower
concentration inequality is a novel and non-trivial result.

Theorem 4.1. The optimization time of the (1+ 1) EA on ONEMAX is at least en ln n− cn− ren,
where c is a constant, with probability at least 1− e−r/2 for any r� 0. It is at most en ln n+ ren
with probability at least 1− e−r.

Proof of Theorem 4, upper tail. The upper tail is well known and can be easily derived from the
multiplicative drift theorem [7]. Let Xt denote the number of zeros at time t. Since

E[Xt − Xt+1 | Xt]�
(
Xt
n

)(
1− 1

n

)n−1
� Xt

(en)
,

one can choose δ := 1/(en) as the parameter of the multiplicative drift theorem. Then the upper
bound follows since X0 � n and xmin = 1.

We now consider the lower tail. The aim is to prove it using Theorem 3.2(iv), which includes
a bound on the moment-generating function of the drift of g. We first set up the h (and thereby
the g) used for our purposes. The following lemma bounds the drift and prepares the definition
of h, which is given in the subsequent Lemma 4.2.

Lemma 4.1. Let Xt denote the number of zeros of the current search point of the (1+ 1) EA on
ONEMAX. Then(

1− 1
n

)n−i i
n
�E[Xt − Xt+1 | Xt = i]�

((
1− 1

n

)(
1+ i

(n− 1)2

))n−i i
n
.
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Proof. The lower bound considers the expected number of flipping zero-bits, assuming that no
one-bit flips. The upper bound is obtained in the proof of Lemma 6 in [6] and is denoted by S1 · S2,
but is not made explicit in the statement of the lemma.

Lemma 4.2. Consider the (1+ 1) EA on ONEMAX and let the random variable Xt denote the
current number of zeros at time t� 0. Then

h(i) := exp
(

−1+ 2
i�
n

)
·
(i�

n

)
·
(
1+ c∗

n

)
,

where c∗ > 0 is a sufficiently large constant, satisfies the condition

E[Xt − Xt+1 | Xt = i]� h(i) for i ∈ [n] := {1, . . . , n}.
Moreover, with xmin := 1, define

g(i) := min (i, xmin)
h(xmin)

+
∫ max (i,xmin)

xmin

1
h(y)

dy

and �t := g(Xt)− g(Xt+1). Then, for i ∈ [n],

g(i)=
i∑

j=1

1
h( j)

and �t �
Xt∑

j=Xt+1+1
e1−

2Xt+1
n ·

(
n
j

)
.

Proof. According to Lemma 4.1,

h∗(i) :=
((

1− 1
n

)(
1+ i

(n− 1)2

))n−i i
n

is an upper bound on the drift. For some sufficiently large constant c∗ > 0 we have

h∗(i)� e−1+i/n+(i(n−i))/n2 · i
n

·
(
1+ i/(n− 1)2

1+ i/n2

)n−i
� e−1+2i/n · i

n
·
(
1+ c∗

n

)
= h(i),

where we used 1+ x� ex twice. Therefore E[Xt − Xt+1 | Xt = i]� h(i).
The representation of g(i) as a sum follows immediately from h due to the ceilings. The bound

on �t follows from h by estimating

e−1+2i�/n ·
(
1+ c∗

n

)
� e−1+2i/n.

The next lemma provides a bound on the MGF of the drift of g, which will depend on the
current state. Later the state will be estimated based on the current point of time, leading to a
time-dependent bound on the MGF. Note that we do not need the whole natural filtration based
on X0, . . . , Xt but only Xt , since we have a Markov chain.

Lemma 4.3. Let λ := 1/(en) and i ∈ [n]. Then

E[eλ�t | Xt = i]� 1+ λ + 2λ
i

+ o
(

λ

log n

)
.

Proof. We distinguish between three major cases.

Case 1. i= 1. Then Xt+1 = 0, implying �t � en, with probability

(1/n)(1− 1/n)n−1 = (1/(en))(1+ 1/(n− 1))
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and Xt+1 = i otherwise. We get

E[eλ�t | Xt = i]� 1
en

· e1 +
(
1− 1

en

)
+O

(
1
n2

)

� 1+ e− 1
en

+O
(

1
n2

)

� 1+ λ + (e− 2)λ
i

+ o
(

λ

ln n

)
.

Case 2. 2� i� ln3 n. Let Y := i− Xt+1 and note that P[Y � 2]� (ln6 n)/n2 since a zero-bit flips
with probability at most (ln3 n)/n. We consider two subcases with respect to Y .

Case 2a. 2� i� ln3 n and Y � 2. The largest value of �t is taken when Y = i. Using Lemma 4.2
and estimating the ith harmonic number, we have λ�t � (ln i)+ 1� 3(ln ln n)+ 1. The
contribution to the MGF is bounded by

E[eλ�t · 1[Xt+1 � i− 2] | Xt = i]� e3 ln ln n+1 ·
(
ln6 n
n2

)
= o

(
λ

ln n

)
.

Case 2b. 2� i� ln3 n and Y < 2. Then Xt+1 � Xt − 1, which implies

�t � en(ln (Xt)− ln (Xt+1)).

We obtain

E[eλ�t · 1[Xt+1 � i− 1] | Xt = i]�E[eln (i/Xt+1)]�E[eln (1+(i−Xt+1)/(i−1))]=E

[
1+ Y

i− 1

]
,

where the first inequality estimated
k∑

i=j+1

1
i
� ln (k/j)

and the second one used Xt+1 � i− 1. From Lemma 4.1, we get

E[Y]� i
en

(
1+O

(
ln3 n
n

))
for i� ln3 n.

This implies

E

[
1+ i− Xt+1

i− 1

]
� 1+ i

en(i− 1)

(
1+O

(
ln3 n
n

))

= 1+ 1
en

·
(
1+ 1

i− 1

)(
1+O

(
ln3 n
n

))

= 1+ λ + 2λ
i

+ o
(

λ

ln n

)
,

using i/(i− 1)� 2 in the last step. Adding the bounds from the two subcases proves the lemma
in Case 2.

Case 3. i> ln3 n. Note that

P[Y � ln n]�
(

n
ln n

)(
1
n

)ln n
� 1

(ln n)! .

We further subdivide the case according to whether or not Y � ln n.
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Case 3a. i> ln3 n and Y � ln n. Since �t � en(ln n+ 1), we get

E[eλ�t · 1[Xt+1 � i− ln3 n] | Xt = i]� 1
(ln n)! · eln n+1 = o

(
λ

ln n

)
.

Case 3b. i> ln3 n and Y < ln n. Then, using Lemma 4.2 and proceeding as in Case 2b,

E[eλ�t · 1[Xt+1 > i− ln n] | Xt = i]�E[eλ exp (1−2(i−ln n)/n)·n ln (i/Xt+1) | Xt = i]

=E

[(
1+ i− Xt+1

Xt+1

)exp ((−2i+ln n)/n)]
.

Using i> ln3 n and Jensen’s inequality, the last expectation is at most(
1+E

[
i− Xt+1
Xt+1

])exp ((−2i+ln n)/n)
�
(
1+E

[
Y

i− ln n

])exp ((−2i+ln n)/n)

�
(
1+E

[
Y

i(1− 1/ln2 n)

])exp ((−2i+ln n)/n)
,

where the last inequality used i> ln3 n. Since

E[Y]� e−1+2i/n i
n

(
1+ c∗

n

)
,

we conclude

E[eλ�t · 1[Xt+1 > i− ln n] | Xt = i]�
(
1+ e2i/n

en(1− 1/ln2 n)

)exp ((−2i+ln n)/n)

�
(
1+ 1

en(1− 1/ln2 n)

)(
1+O

(
ln n
n2

))

� 1+ λ + o
(

λ

ln n

)
,

where we used (1+ ax)1/a � 1+ x for x� 0 and a� 1. Adding up the bounds from the two
subcases, we have proved the lemma in Case 3.

Altogether, for all i ∈ [n],

E[eλ�t | Xt = i]� 1+ λ + 2λ
i

+ o
(

λ

ln n

)
.

The bound on the MGF of �t derived in Lemma 4.3 is particularly large for i=O(1), i.e. if
the current state Xt is small. If Xt =O(1) held during the whole optimization process, we could
not prove the lower tail in Theorem 4.1 from the lemma. However, it is easy to see that Xt = i
only holds for an expected number of at most en/i steps. Hence most of the time the term 2λ/i is
negligible, and the time-dependent β�(t)-term from Theorem 3.2(iv) comes into play. We make
this precise in the following proof, where we iteratively bound the probability of the process being
at ‘small’ states.

Proof of Theorem 4.1, lower tail. With overwhelming probability 1− 2−
(n) due to Chernoff
bounds, X0 � (1− ε)n/2 for an arbitrarily small constant ε > 0, which we assume to happen. We
consider phases in the optimization process. Phase 1 starts with initialization and ends before the
first step where Xt < e(ln n−1)/2 = √

n · e−1/2. Phase i, where i> 1, follows phase i− 1 and ends
before the first step where Xt <

√
n · e−i/2. Obviously, the optimum is not found before the end of

phase ln (n); however, this does not yet tell us anything about the optimization time.
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Phase i is called typical if it does not end before time eni− 1. We will prove inductively that the
probability of one of the first i phases not being typical is at most c′ei/2/

√
n= c′e(i−ln n)/2 for some

constant c′ > 0. This implies the theorem since an optimization time of at least en ln n− cn− ren
is implied by the event that phase ln n− r − c/e� is typical, which has probability at least

1− c′e(−r+c/e+1)/2 = 1− e−r/2 for c= e(2 ln c′ + 1).

Fix some k> 1 and assume for the moment that all the first k− 1 phases are typical. Then for
1� i� k− 1, we have Xt �

√
ne−i/2 in phase i, i.e. when en(i− 1)� t� eni− 1. We analyse the

event that additionally phase k is typical, which subsumes the event thatXt �
√
ne−k/2 throughout

phase k. According to Lemma 4.3, we get in phase i ∈ [k]

E[eλ�t | Xt]� 1+ λ + 2λei/2/
√
n+ o

(
λ

ln n

)
� exp

(
λ + 2λei/2√

n
+ o

(
λ

ln n

))
.

The expression now depends on the time only, so for λ := 1/(en)
enk−1∏
t=0

E[eλ�t | X0]� exp
(

λenk+ 2λen√
n

k∑
i=1

ei/2 + enk · o
(

λ

ln n

))

� exp
(
k+ 6ek/2

n
√
n

+ o(1)
)

� ek+o(1),

using that k� ln n. By Theorem 3.2(iv) for a= √
ne−k/2 and t = enk− 1, we obtain

P[Ta < t]� ek+o(1)−λ(g(X0)−g(
√
ne−k/2)).

It is easy to see that g(X0)� en ln n− c′′n for some constant c′′ > 0 (which is assumed large
enough to subsume the −O( log n) term). Moreover, g(x)� en(ln x+ 1) according to Lemma 4.2.
We get

P[Ta < t]� ek+o(1)−ln n+O(1)−k/2+(ln n)/2 = e(k−ln n+O(1))/2 = c′′′ek/2/
√
n

for some sufficiently large constant c′′′ > 0, which proves the bound on the probability of phase k
not being typical (without making statements about the earlier phases). The probability that all
phases up to and including phase k are typical is at least

1−

(
k∑

i=1
c′′′ei/2

)
√
n� 1

− c′ e
k/2
√
n

for a constant c′ > 0.

We now deduce a concentration inequality with respect to linear functions, essentially depend-
ing on all variables, i.e. functions of the kind f (x1, . . . , xn)=w1x1 + · · · +wnxn, where wi �= 0.
This intensively studied function class contains ONEMAX [40].

Theorem4.2. The optimization time of the (1+ 1) EA on any linear function with non-zero weights
is at least en ln n− cn− ren, where c is a constant, with probability at least 1− e−r/2 for any r� 0.
It is at most en ln n+ (1+ r)en+O(1) with probability at least 1− e−r.

Proof. The upper tail is proved in Theorem 5.1 in [40]. The lower bound follows from the lower
tail in Theorem 4.1 and the fact that the optimization time within the class of linear functions is
stochastically smallest for ONEMAX (Theorem 6.2 in [40]).
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Finally we consider the (1+ 1) EA on LEADINGONES(x1, . . . , xn) :=∑n
i=1

∏i
j=1 xj, another

intensively studied standard benchmark problem from the analysis of RSHs. Tail bounds on the
optimization time of the (1+ 1) EA on LEADINGONES were derived in [8]. This result represents
a fundamentally new contribution, but suffers from the fact that it depends on a very specific
structure and closed formula for the optimization time. Using a simplified version of Theorem 3.2
(see Theorem 3.3), it is possible to prove similarly strong tail bounds without needing this exact
formula. As in [8], we are interested in a more general statement. Let T(a) be the number of
steps until the (1+ 1) EA has reached a LEADINGONES-value of at least a, where 0� a� n. Let
Xt :=max{0, a− LEADINGONES(xt)} be the distance from the target a at time t. Lemma 4.4 states
the drift of (Xt)t∈N0 exactly; see also [8].

Lemma 4.4. For all i> 0,

E[Xt − Xt+1 | Xt = i]= (2− 2−n+a−i+1)
(
1− 1
n

)a−i (1
n

)
.

Proof. The leftmost zero-bit is at position a− i+ 1. To increase the LEADINGONES-value (it can-
not decrease), it is necessary to flip this bit and not to flip the first a− i bits, which is reflected by
the last two terms in the lemma. The first term is due to the expected number of free-rider bits
(a sequence of previously random bits after the leftmost zero that happen to be all 1 at the time of
improvement). Note that there can be between 0 and n− a+ i− 1 such bits. By the usual argu-
mentation using a geometric distribution [11], the expected number of free-riders in an improving
step equals

n−a+i−1∑
k=0

k ·
(
1
2

)min{n−a+i−1,k+1}
= 1− 2−n+a−i+1,

hence the expected progress in an improving step is 2− 2−n+a−i+1.

Statements (ii) and (iii) of the following theorem provide the announced tail bounds. For
completeness, statement (i) states the expected hitting time derived in [8].

Theorem 4.3. Let T(a) the time for the (1+ 1) EA to reach a LEADINGONES-value of at least a.
Moreover, let r� 0. Then we have the following.

(i) E[T(a)]= n2 − n
2

((
1+ 1

n− 1

)a
− 1

)
.

(ii) For 0< a� n− log n, with probability at least 1− e−
(rn−3/2),

T(a)� n2

2

((
1+ 1

n− 1

)a
− 1

)
+ r.

(iii) For log2 n− 1� a� n, with probability at least 1− e−
(rn−3/2) − e−
( log2 n),

T(a)� n2 − n
2

((
1+ 1

n− 1

)a
− 1− 2 log2 n

n

)
− r.

Proof. Statement (i) is already contained in [8], so we turn to (ii). From Lemma 4.4, h(x)=
(2− 2/n)(1− 1/n)a−x/n is a non-decreasing lower bound on the drift E[Xt − Xt+1 | Xt = x] if
x� log n. To bound the change of the g-function, we observe that h(x)� 1/(en) for all x� 1.
This means thatXt − Xt+1 = k implies g(Xt)− g(Xt+1)� enk. Moreover, to change the LEADING-
ONES-value by k, it is necessary that the first zero-bit flips (which has probability 1/n), and k− 1
free-riders occur. The change only gets stochastically larger if we assume an infinite supply of
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free-riders. Hence g(Xt)− g(Xt+1) is stochastically dominated by Z = enY , where Y is 0 with
probability 1− 1/n and, follows the geometric distribution with parameter 1/2 otherwise. Thus
the MGF of Y equals

E[eλY ]=
(
1− 1

n

)
e0 + 1

n
· 1/2
e−λ − (1− 1/2)

� 1+ 1
n(1− 2λ)

,

where we have used e−λ � 1− λ. For the MGF of Z it follows that

E[eλZ]=E[eλenY ]� 1+ 1
n(1− 2enλ)

.

For λ := 1/(4en) we get

D :=E[eλZ]= 1+ 2
n

= 1+ 8eλ,

i.e. D− 1− λ = (8e− 1)λ. We get

η := δλ2

D− 1− λ
= δλ

8e− 1
= δ

4en(8e− 1)
(which is less than λ if δ � 8e− 1). Choosing δ := n−1/2, we obtain η = Cn−3/2 for C := 1/
((8e− 1)(4e)).

We set

t :=
(∫ X0

xmin

1
h(x)

dx+ r
)

/(1− δ)

in statement (i) of Theorem 3.3. The integral within t can be bounded according to

U :=
∫ X0

xmin

1
h(x)

dx

�
a∑

i=1

1
(2− 2/n)(1− 1/n)a−i/n

=
(
1
2

+ 1
2n− 2

)
· n · (1+ 1/(n− 1))a − 1

1/(n− 1)

= n2

2

((
1+ 1

n− 1

)a
− 1

)
.

Hence, using the theorem, we get

P[T > t]= P[T > (U + r)/(1− δ)]� e−ηr � e−Crn−3/2
.

Since U � en2 and 1/(1− δ)� 1+ 2δ = 1+ 2n−1/2, we get

P[T �U + 2en3/2 + 2r]� e−Crn−3/2
.

Using the upper bound on U derived above, we obtain as suggested

P

[
T � n2

2

((
1+ 1

n− 1

)a
− 1

)
+ r
]

= e−
(rn−3/2).

Finally, we prove statement (iii) of this theorem in a rather symmetrical way to statement (ii).
We can choose h(x) := 2(1− 1/n)a−x/n as an upper bound on the driftE[Xt − Xt+1 | Xt = x]. The
estimation of the E[eλZ] still applies. We set

t :=
(∫ X0

xmin

1
h(x)

dx− r
)

/(1− δ).
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Moreover, we assume X0 � n− log2 n− 1, which happens with probability at least 1− e−
( log2 n).
Note that

L :=
∫ X0

xmin

1
h(x)

dx

�
a−log2 n∑

i=1

1
2(1− 1/n)a−i/n

= n2 − n
2

((
1+ 1

n− 1

)a
−
(
1+ 1

n− 1

)log2 n)

� n2 − n
2

((
1+ 1

n− 1

)a
− 1− log2 n

n

)
,

where the last inequality used ex � 1+ 2x for x� 1 and ex � 1+ x for x ∈R. Statement (ii) of
Theorem 3.3 yields (since state 0 is absorbing)

P[T < t]= P[T < (L− r)/(1+ δ)]� e−ηr � e−Crn−3/2
.

Now, since
L− r
1+ δ

� (L− r)− δ(L− r)� L− r − en3/2

(using L� en2), we get statement (iii) by calculations analogous to those above.

4.2 An application to probabilistic recurrence relations
Drift analysis is not only useful in the theory of RSHs, but also in classical computer science. Here
we study the probabilistic recurrence relation T(n)= a(n)+ T(h(n)), where n is the problem size,
a(n) is the amount of work at the current level of recursion, and h(n) is a random variable denoting
the size of the problem at the next recursion level. The asymptotic distribution (letting n→ ∞) of
the number of cycles is well studied [1], but there are few results for finite n. Karp [22] studied this
scenario using probabilistic techniques different from ours. Assuming knowledge of E[h(n)], he
proved upper tail bounds for T(n); more precisely, he analysed the probability of T(n) exceeding
the solution of the ‘deterministic’ process T(n)= a(n)+ T(E[h(n)]).

We pick up the example from [22, Section 2.4] on the number of cycles in a permutation π ∈ Sn
drawn uniformly at random, where Sn denotes the set of all permutations of the n elements [n].
A cycle is a subsequence of indices i1, . . . , i� such that π(ij)= i( j mod �)+1 for 1� j� �. Each per-
mutation partitions the elements into disjoint cycles. The expected number of cycles in a random
permutation is Hn = ln n+ (1). Moreover, the length of the cycle containing any fixed element
is uniform on [n]. This leads to the probabilistic recurrence T(n)= 1+ T(h(n)) for the random
number of cycles, where h(n) is uniform on {0, . . . , n− 1}. As a result, [22] shows that the number
of cycles is larger than log2 (n+ 1)+ awith probability at most 2−a+1. Note that log2 (n), which is
the solution of the deterministic recurrence, is by a constant factor away from the expected value.
Lower tail bounds are not obtained in [22]. However, our drift theorem implies that the number
of cycles is sharply concentrated around its expectation.

Theorem 4.4. Let N be the number of cycles in a random permutation of [n]. Then

P[N < (1− ε)(ln n)]� exp
(

−ε2

4
(1− o(1)) ln n

)
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for any constant 0< ε < 1. And for any constant ε > 0,

P[N � (1+ ε)((ln n)+ 1)]� exp
(

−min{ε, ε2}
6

ln n
)
.

Proof. We regard the recurrence as a stochastic process, where Xt , t� 0, denotes the number of
elements not yet included in a cycle, and X0 = n. If Xt = i then Xt+1 is uniform on {0, . . . , i− 1}
[22]. Note that N equals the first hitting time for Xt = 0, which is denoted by T0 in our notation.
Clearly N is stochastically larger than Ta for any a> 0.

We now prove the lower tail using Theorem 3.2(iv). We compute E[Xt+1 | Xt]= (Xt − 1)/2,
which means

E[Xt − Xt+1 | Xt]�
Xt
2

= Xt�
2

since Xt is integral. Therefore we choose h(x)= x�/2. Letting xmin = 1, we obtain the drift
function

g(i)= 2+
∫ i

1

2
j�dj=

i∑
j=1

2/j for i� 1 and g(0)= 0.

For the drift theorem, we have to compute g(i)− g(Xt+1), given Xt = i, and to bound the MGF
with respect to this difference. Using that

∑k
j=1 j−1 − ln k is a decreasing sequence, we get

g(i)− g(Xt+1)�
{
2(ln (i)− ln ( j)) for j= 1, . . . , i− 1, each with probability 1/i,
2(ln (i)+ 1) with probability 1/i.

Let Xt = i. For λ > 0, we bound the MGF

E[eλ(g(i)−g(Xt+1))]� 1
i

· e2λe2λ ln i + 1
i

i−1∑
j=1

e2λ(ln i−ln j) = 1
i
eηiη + 1

i
iη

i−1∑
j=1

j−η,

where η = 2λ. Now assume η constant and η < 1. Then

E[eλ(g(i)−g(Xt+1))]� iη−1eη + iη−1
(
1+

∫ i−1

1
j−η dj

)

� iη−1eη + iη−1
(
1+

(
1

1− η
((i− 1)1−η − 1)

))

� iη−1(eη + 1)+ 1
1− η

− iη−1

= iη−1eη + 1
1− η

= 1+ iη−1eη + η

1− η

� ee
ηiη−1+η/(1−η)

=: β

using 1+ x� ex. The factor eeηiη−1 will be negligible (more precisely, eO((ln n)η−1)) for i� ln n in
the following, which is why we set a := ln n in Theorem 3.2(iv).
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From the theorem, we get P[Ta < t]� βte−λ(g(X0)−g(a)). We work with the lower bound

g(X0)− g(a)=
n∑

j=a

2
j
� 2(ln (n+ 1)− ln (a+ 1)),

which yields

P[Ta < t]< βte−λ(2(ln (n+1)−ln (a+1)))

= βte−η ln n+O(ln ln n)

= exp
(
O(t(ln n)η−1)+ η

1− η
t − η ln n+O(ln ln n)

)

= exp
(
o(t)+O(ln ln n)+ η

1− η
t − η ln n

)
.

Now we concentrate on the difference d(ε)= (η/(1− η))t − η ln n that is crucial for the order
of growth of the last exponent. We assume t := (1− ε) ln n for some constant ε > 0 and set η :=
ε/2 (implying ε < 2); hence λ = ε/4. We get

d(ε)= ε/2
1− ε/2

(1− ε)(ln n)− ε

2
(ln n)= ε

2
(ln n)

(
1− ε

1− ε/2
− 1

)
�−ε2

4
(ln n).

Plugging the bound for d(ε) in the exponent and noting that ε > 0 is constant gives

P[Ta < (1− ε) ln n]� exp
(

−ε2

4
(1− o(1)) ln n

)
,

which also bounds T0 the same way.
To prove the upper tail, we must set a := 0 in Theorem 3.2(iii). Using the lower bound on the

difference of g-values derived above, we estimate for Xt = i and any λ > 0

E[e−λ(g(i)−g(Xt+1))]� 1
i

i−1∑
j=0

e−λ(2(ln (i+1)−ln ( j+1))) = 1
i

i−1∑
j=0

(
j+ 1
i+ 1

)η

,

where again η = 2λ. Hence, similarly to the estimations for the lower tail,

E[e−λ(g(i)−g(Xt+1))]� 1
iη+1

∫ i

1
jη dj� 1

iη+1
1

η + 1
iη+1 = 1

η + 1
� e−η/(η+1) =: β .

From the drift theorem, we get

P[T0 > t]� βteλ(g(X0)−g(0)) � e−ηt/(η+1)eλ(2(ln (n)+1)) = exp
(

− ηt
η + 1

+ η(ln n+ 1)
)
.

Setting t := (1+ ε)(ln n+ 1) and η = ε/2, the exponent is no more than

−η(1+ ε/2+ ε/2)(ln n+ 1)
1+ ε/2

+ η(ln n+ 1)�− ε2

4+ 2ε
(ln n+ 1).

The last fraction is at most −ε2/6 if ε � 1 and at most −ε/6 otherwise (if ε > 1). Altogether,

P[T0 > t | X0 = n]� exp (−min{ε2, ε}(ln n+ 1)/6).

5. Conclusions
We have presented a new and versatile drift theorem with tail bounds. It can be understood as a
general variable drift theorem and can be specialized into all existing variants of variable, additive
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and multiplicative drift theorems we found in the literature as well as the fitness-level technique.
Moreover, it provides lower and upper tail bounds, which were not previously available in the
context of variable drift. These tail bounds were used to prove sharp-concentration inequalities
on the optimization time of the (1+ 1) EA on ONEMAX, linear functions and LEADINGONES.
Despite the highly random fashion in which this RSH operates, its optimization time is highly
concentrated up to lower-order terms. The drift theorem also leads to tail bounds on the number
of cycles in random permutations. We expect further applications of these tail bounds, also to
classical randomized algorithms.
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