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A large eddy simulation is performed to study secondary tones generated by a NACA0012
airfoil at angle of attack of α = 3◦ with freestream Mach number of M∞ = 0.3 and
Reynolds number of Re = 5 × 104. Laminar separation bubbles are observed over the
suction side and near the trailing edge, on the pressure side. Vortex shedding occurs
aft of the suction side separation bubble, and vortex interaction results in merging or
bursting such that coherent structures or turbulent packets are advected towards the trailing
edge. This mechanism modulates the amplitude of the incident pressure signal, leading to
different levels of noise emission. Despite the intermittent occurrence of laminar–turbulent
transition, the noise spectrum depicts a main tone with multiple equidistant secondary
tones. To understand the role of flow instabilities on the tones, the linearised Navier–Stokes
equations are examined in their operator form through biglobal stability and resolvent
analyses, and by time evolution of disturbances using a matrix-free method. These linear
global analyses reveal amplification of disturbances over the suction side separation
bubble. Spanwise-averaged pressure fluctuations elucidate aspects of the acoustic feedback
loop mechanism in the nonlinear solutions. This feedback process is self-sustained by
acoustic waves radiated from the trailing edge, which reach the most sensitive flow location
near the leading edge, as identified by the resolvent analysis. Flow disturbances arising
from secondary diffraction and phase interference among the most unstable frequencies
computed in the eigenspectrum are shown to have an important role in the feedback loop.
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1. Introduction

Trailing-edge noise is an overriding concern for design of quiet air vehicles. At low
and moderate Reynolds numbers, tonal noise becomes an important component of the
acoustic spectrum. Several studies on trailing-edge aeroacoustics were conducted starting
in the 1970s to examine the tonal noise generation by airfoils (Paterson et al. 1973; Tam
1974; Fink 1975; Longhouse 1977; Arbey & Bataille 1983). Noise measurements were
performed by Paterson et al. (1973) for symmetric NACA airfoils at various angles of
attack over a Reynolds number range between 105 and 106. Their results showed the
existence of multiple tones in a ladder-like structure in terms of frequency and freestream
velocity. These authors also found strong two-point correlation of surface pressure along
the spanwise direction, which indicated that the flow phenomenon associated with tonal
noise generation could be modelled as two-dimensional (2-D).

Tam (1974) suggested that the ladder-like structure is due to a self-excited feedback loop
between disturbances in the boundary layer and the airfoil wake. Fink (1975) assumed
that the discrete tonal frequencies are related to the laminar boundary layer on the
pressure side. In order to elucidate aspects of airfoil noise, Arbey & Bataille (1983)
performed experiments in an open wind tunnel for different NACA airfoils at α = 0◦
for 1 × 105 ≤ Re ≤ 7 × 105. The aforementioned studies showed that the noise spectrum
has a broadband component with a main tonal peak plus a set of equidistant secondary
tones due to a feedback mechanism closing at the point of maximum flow velocity
along the airfoil. The broadband component was assumed to appear due to scattering
of Tollmien–Schlichting (TS) instabilities. For airfoils at incidence, Lowson, Fiddes &
Nash (1994) found that the presence of secondary tones was related to a separation bubble
developed on the airfoil pressure side. In this case, TS instabilities developing along the
laminar boundary layer would lead to acoustic scattering on the trailing edge and acoustic
waves would then propagate upstream closing the feedback loop, with the separation
bubble acting as an amplifier of acoustic disturbances.

Nash, Lowson & McAlpine (1999) performed experimental studies of airfoil noise for
a NACA0012 profile up to a Reynolds number of 1.45 × 106 and several angles of attack.
A closed-section wind tunnel, with and without acoustic-absorbing lining on its walls,
was used in the experiments and results from the hard-wall tunnel revealed multiple
frequency peaks. However, the authors argued that these tonal peaks were correlated to
resonant frequencies of the wind tunnel. Thus, they carried out measurements with lined
walls simulating anechoic conditions and a single dominant tone was observed instead of
several peaks. Furthermore, no ladder-like structure of tonal frequency was observed, in
disagreement with previous studies of Paterson et al. (1973), Fink (1975) and Arbey &
Bataille (1983). It is important to mention that secondary tones were often observed in
experiments conducted in open-jet facilities.

More recently, Plogmann, Herrig & Würz (2013) also found multiple tones in their
experiments (NACA0012, 3.1 × 105 ≤ Re ≤ 1.5 × 106, 0◦ ≤ α ≤ 9◦) and demonstrated
that tripping the pressure side boundary layer leads to turbulent flow, eliminating the
separation bubble and the secondary tones. These authors emphasise that the feedback
loop is extremely sensitive to small variations in the flow conditions that, in turn, lead
to changes in the tonal components. This occurs particularly at higher Reynolds numbers,
where the flow is more prone to transition. The dependency of angle of attack and Reynolds
number on tonal noise emission is highlighted by Pröbsting, Scarano & Morris (2015).
These authors performed experiments for a NACA0012 airfoil for 0.3 × 105 ≤ Re ≤ 2.3 ×
105 and effective angles of attack 0◦ ≤ α ≤ 6.3◦. Tripping devices were applied separately
on each side of the airfoil to identify their respective role in the noise generation and it
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Transition, intermittency and phase interference effects

was found that suction-side (pressure-side) events dominate at lower (higher) Reynolds
numbers. Moreover, it was observed that, at low angles of attack, interactions between the
two sides of the airfoil become increasingly important.

As discussed previously, early experiments report the presence of a separation bubble on
the airfoil pressure side. Most of these investigations were conducted at higher Reynolds
numbers, where the flow was likely turbulent on the suction side. These observations are
in agreement with the large eddy simulations (LESs) of a NACA0012 at α = 5◦ and
Re = 4 × 105 performed by Wolf, Azevedo & Lele (2012a) and Ricciardi, Ribeiro &
Wolf (2019). Flow visualisation and proper orthogonal decomposition were used in these
references to identify coherent structures shed from the pressure side near the trailing edge.
Such flow structures were found responsible for the intense tonal noise generation despite
the fact that a turbulent boundary layer developed on the airfoil suction side. In this case,
the pressure side boundary layer was laminar due to the favourable pressure gradient. In
agreement with the experiments of Plogmann et al. (2013), Wolf et al. (2012a) showed that
the tonal component vanishes when both boundary layers are tripped.

At lower Reynolds numbers, a laminar separation bubble (LSB) exists on the airfoil
suction side and is responsible for the overall flow dynamics and noise generation. In
the context of airfoil flows, this flow feature has been studied for different purposes.
For instance, direct numerical simulations were performed by Jones, Sandberg &
Sandham (2008) for a NACA0012 airfoil at Reynolds number Re = 5 × 104, M∞ =
0.4 and α = 5◦. It was shown that, despite being absolutely stable by means of
linear stability analysis, turbulence is self-sustained even with the absence of forcing.
Later, experimental investigations by Pröbsting & Yarusevych (2015) with a NACA0012
airfoil at moderate Reynolds numbers 0.65 × 105 ≤ Re ≤ 4.5 × 105 and α = 2◦ present
intermittent laminar–turbulent transition that affects the advection of coherent structures
from the LSB towards the trailing edge. Further analyses were also presented by
Kurelek, Lambert & Yarusevych (2016), Kurelek, Kotsonis & Yarusevych (2018), Kurelek,
Yarusevych & Kotsonis (2019), Michelis, Yarusevych & Kotsonis (2018) and Pröbsting &
Yarusevych (2021) to study the impact of acoustic excitation, three-dimensional (3-D)
effects and shedding/merging of vortices from the suction side LSB.

The first numerical simulations on airfoil secondary tones were conducted by
Desquesnes, Terracol & Sagaut (2007) considering 2-D flows over a NACA0012 airfoil
for a Reynolds number Re = 1 × 105 at an angle of attack α = 5◦, and for Re = 2 × 105

at α = 2◦. In agreement with most experimental observations, multiple tonal peaks were
observed. The previous authors also performed a local stability analysis assuming parallel
flow and showed that the main tone frequency radiated to the far-field was close to
that most amplified along the pressure side boundary layer. An assessment of the linear
dynamics of wavepackets driving the feedback loop mechanism and the flow receptivity
to acoustic forcing was investigated by time-marching the linearised Navier–Stokes (LNS)
equations by Jones, Sandberg & Sandham (2010) for a NACA0012 airfoil at Re = 5 × 104,
M∞ = 0.4 and α = 5◦. Fosas de Pando, Schmid & Sipp (2014b) applied bi-global stability
analysis to investigate the dynamics coupling the boundary layers on both airfoil sides and
the wake. The authors studied the 2-D flow over a NACA0012 airfoil for Re = 2 × 105,
M∞ = 0.4 and α = 2◦ and found multiple frequencies in the eigenspectrum related not
only to the main tonal peak but also to the secondary tones. Prior to this work, the
stability analyses were limited a parallel flow assumption, and only a discussion of the
dominant tonal frequency was presented. By means of adjoint and resolvent analyses,
Fosas de Pando, Schmid & Lele (2014a) and Fosas de Pando, Schmid & Sipp (2017)
also identified sensitive regions of the flow which are prone to close the feedback
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loop mechanism. Hence, linear stability theory has proven to be an important methodology
to investigate the generation of airfoil secondary tones and the feedback loop mechanism.

Another important observation from Desquesnes et al. (2007) regards the amplitude
modulation of velocity fluctuations computed near the trailing edge. These authors
discussed that such modulation is caused by interference of vortical structures from both
sides of the airfoil which, combined with the feedback loop mechanism, would lead to
the presence of multiple tones. Following the discussion on modulation of flow structures,
Pröbsting, Serpieri & Scarano (2014) employed particle image velocimetry to study airfoils
at Reynolds numbers 1 × 105 ≤ Re ≤ 2.7 × 105 and 2◦ ≤ α ≤ 4◦. They investigated the
mechanisms associated with tonal noise generation and the interference effects between
suction and pressure sides of the airfoil. For Re ≈ 1.5 × 105, at the lowest angle of
attack, the authors showed that the amplitude modulation discussed by Desquesnes et al.
(2007) was related to destructive interference of boundary layer instabilities occurring on
both sides of the trailing edge. More recently, Ricciardi, Arias-Ramirez & Wolf (2020)
performed 2-D simulations of a NACA0012 at Re = 1.0 × 105 at α = 3◦ and showed that
the multiple tones are related to modulation of the vortical structures developing on the
suction side. In this case, the instantaneous main frequency alternates in time due to phase
modulation of the flow structures shed by the LSB. As a consequence, multiple equidistant
frequencies must appear in the Fourier transform to reconstruct the modulated signals.
However, as pointed by Pröbsting et al. (2014), flow transition on the suction side occurs in
experiments and their conclusions may be different from those observed in 2-D numerical
simulations. In this regard, the simulation of Sanjose et al. (2019) for a thin-cambered
airfoil at Re = 1.5 × 105 exhibits flow transition where intermittency played a key
role in the flow dynamics and noise emission for the configuration investigated. Thus,
experimental (Pröbsting et al. 2014) and numerical (Sanjose et al. 2019; Nguyen et al.
2021) findings contradict previous assumptions that 2-D simulations are sufficient to
explain all the mechanisms of secondary tones.

In this study, a LES is performed to investigate a NACA0012 airfoil at α = 3◦ immersed
in a freestream flow with Mach number M∞ = 0.3 and Reynolds number Re = 5 × 104.
This condition is chosen based on experimental results from Pröbsting et al. (2015) and
Pröbsting & Yarusevych (2015). These authors showed that, for this flow configuration,
suction-side events are responsible for the noise generation without a contribution from
the pressure side. Moreover, the previous references show that the flow behaviour at
this particular angle of attack is somehow independent of the Reynolds number up to a
point where the relevant vortex dynamics switches to the pressure side. For the current
flow setup, some key aspects are investigated including the dynamics of the suction side
separation bubble and its vortex shedding, in addition to flow intermittency and its effect
on amplitude modulation. Linear stability theory is applied to investigate the presence of
sensitive regions and amplification mechanisms within the flow.

The present work is organised as follows: § 3.1 presents the LSBs which are observed
over the suction side and near the trailing edge, on the pressure side. Then, flow
visualisation is employed in § 3.2 to investigate vortex shedding aft of the suction side
separation bubble. It is shown that vortex interaction results in merging or bursting
such that coherent structures or turbulent packets are advected towards the trailing edge,
leading to different levels of noise emission. Despite the intermittent occurrence of
laminar–turbulent transition, the noise spectrum presents multiple equidistant secondary
tones as discussed in § 3.3. To understand the role of flow instabilities on tonal noise
generation, in § 3.4, the LNS equations are examined in its modal form using bi-global
stability and resolvent analyses, and by the time evolution of disturbances which results in
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periodic wavepackets. Aspects of the acoustic feedback loop mechanism in both the linear
and nonlinear solutions are examined in § 3.5 and we highlight the role of leading-edge
disturbances from secondary diffraction in the closure of the acoustic feedback loop
mechanism. The intermittent transition which leads to amplitude modulation of noise
generation is analysed in § 3.6 in terms of phase interference of the dominant frequencies
from hydrodynamic instabilities. Then, the main findings and conclusions are presented in
§ 4.

2. Theoretical and numerical approaches

2.1. Large eddy simulation
Large eddy simulation is performed to solve the compressible Navier–Stokes equations
in general curvilinear coordinates. The spatial discretisation of the governing equations
employs a sixth-order accurate compact scheme for derivatives and interpolations on a
staggered grid (Nagarajan, Lele & Ferziger 2003). The time integration is carried out by a
hybrid implicit–explicit method. The implicit second-order scheme of Beam & Warming
(1978) is applied in the near-wall region to overcome the stiffness problem due to a
fine boundary layer grid, whereas a third-order Runge–Kutta scheme is used for time
advancement of the equations in flow regions away from the solid boundary. For the
communication across the different methods, information is exchanged at overlapping
points. An explicit sub-grid-scale model is not applied. However, outside the boundary
layer, a sixth-order compact filter (Lele 1992) is applied to control high-wavenumber
numerical instabilities arising from grid stretching and interpolation between staggered
grids. The transfer function associated with such filters has been shown to provide an
approximation to sub-grid-scale models (Mathew et al. 2003).

No-slip adiabatic wall boundary conditions are enforced along the airfoil surface and
characteristic plus sponge boundary conditions are applied in the far-field locations to
minimise wave reflections (Wolf 2011). Periodic boundary conditions are used in the
spanwise direction. Length scales, velocity components, density, pressure and temperature
are non-dimensionalised as x = x∗/L∗, u = u∗/a∗∞, ρ = ρ∗/ρ∗∞, p = p∗/ρ∗∞a∗∞

2 and
T = T∗/[(γ − 1)T∗∞], respectively. Here, L∗ is the airfoil chord, a∗∞ is the freestream
speed of sound, ρ∗∞ is the freestream density, T∗∞ is the freestream temperature and
γ is the ratio of specific heats. Variables with superscript ∗ are given in dimensional
units. Herein, time and frequency (Strouhal number) are presented non-dimensionalised
by freestream velocity as t = t∗U∗∞/L∗ and St = f ∗L∗/U∗∞, respectively. The present
numerical methodology has been extensively validated for various 2-D and 3-D
simulations of compressible airfoil flows at different configurations (Wolf et al. 2012a,b;
Wolf, Azevedo & Lele 2013; Ramos et al. 2019).

The O-grid employed for the current LES is shown in grey lines for every three points in
figure 1(a). For a smooth O-grid generation, the original airfoil trailing edge is truncated at
98 % of the chord and it has a curvature radius r/L∗ = 0.4 %. The reference length scale L∗
is the unit chord from the original NACA0012 airfoil. The leading edge is placed at (x, y) =
(0, 0) and the airfoil is pivoted about this point. The total wingspan has 0.4L∗, being
larger compared with previously reported studies of airfoil flows for this range of Reynolds
number (Jones et al. 2008; Ducoin, Loiseau & Robinet 2016). The domain extends 37
chord-lengths outwards and a circular sponge, given by A[(r − r0)/�r]n, occupies the last
�r = 10 chords. In this function, r is the radial distance, r0 is the sponge starting position
and its coefficients are A = 20 and n = 4.
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(a)

(b)

Figure 1. Computational grids near the airfoil for (a) the O-mesh employed in the LES and (b) the H-mesh
used in the linear stability analysis. The grids are shown for every three points in both directions.

The mesh has a distribution of points in the streamwise, wall-normal and spanwise
directions given by nx = 660, ny = 600 and nz = 192, respectively, which results in
approximately 76 × 106 grid points. The ratio of grid points along the suction side
relative to the pressure side is approximately 5:3. The wall-normal distance of the first
grid point is �n = 0.0001 and the stretching ratio is 1.5 %. As discussed by Desquesnes
et al. (2007), Jones & Sandberg (2011) and Fosas de Pando et al. (2014b), the important
mechanisms for tonal noise generation arise from 2-D flow instabilities in the laminar
region of the flow. Motivated by this observation, a grid refinement study in terms of
mean and fluctuation properties was conducted for 2-D simulations and shown by the
present authors in Ricciardi, Wolf & Taira (2021). However, in the present study, the flow
is 3-D and transitions to turbulence on the airfoil suction side, near the trailing edge.
Considering only the turbulent flow region, the estimated mesh resolution in terms of wall
units is given by �x+ < 10, �y+ ≈ 0.3 and �z+ < 5, which follow the best practices
for wall-resolved LES. The time step is �t = 1.5 × 10−4 and 75 convective time units are
employed for post-processing and analysis of results. The 3-D simulation starts from a 2-D
flow superposed with random noise and more than 30 convective time units are discarded
before collecting flow statistics.

2.2. Linear stability and resolvent analyses
The mechanisms of generation and amplification of flow instabilities can be explained
by linear stability theory. Hence, bi-global linear stability and resolvent analyses are
employed in this work to investigate the most unstable frequencies and their sensitivity
to disturbances, in addition to their role in the tonal noise generation. Through a Reynolds
decomposition, it is possible to split the unsteady flow q(x, t) in a mean base flow q̄(x) plus
a time-dependent fluctuation component q′(x, t). If the fluctuations are sufficiently small,
the Navier–Stokes equations can be linearised about the (mean) base flow. Although it
is possible to consider the turbulent mean flow q̄ as the base flow, the linear stability
analysis would not hold because such state is not an equilibrium point of the Navier–Stokes
equations. Nonetheless, the use of a time-averaged base flow may provide some insights
as a model (Taira et al. 2017, 2020). With addition of a time-dependent external forcing
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f ′(x, t), the LNS equations can be written as

∂q′

∂t
= Lq′ + Bf ′, (2.1)

where B = B(x) is an operator which serves as a spatial window where forcing is applied.
The matrix L = L(q̄) is the bi-global LNS operator with the spanwise time-averaged flow
properties q̄(x) as base flow.

The evolution of linear disturbances by (2.1) can be performed by a direct analysis of the
operator L or time-integrating the disturbances in a linearised version of the computational
fluid dynamics (CFD) code. In the former case, with a transformation

•′ (x, y, z, t) =
∫ ∞

−∞

∫ ∞

−∞
•̂(x, y, β, ω) ei(βz−ωt) dβ dω, (2.2)

where the wavenumber β ∈ R and the frequency ω ∈ C, it is possible to write the forced
LNS equations in discrete form as

−iωq̂ = Lq̂ + Bf̂ . (2.3)

In this case, the linear operator becomes a function of the spanwise wavenumber L =
L(q̄, β) and B is the discrete version of B. If forcing f̂ is absent, the LNS equations can
be analysed separately for each wavenumber β as an eigenvalue problem (linear stability
analysis) as

QΛ = LQ. (2.4)

Here, Q holds the eigenvectors of L and the eigenvalues appear in the diagonal matrix
Λ = −iωI , where the frequency and growth rate are the real and imaginary parts of ω,
respectively. Due to the velocity gradients appearing off-diagonal, the linear operator
becomes a non-normal matrix such that LHL /= LLH. As a consequence, the eigenvectors
are also non-normal. In this equation, the superscript H denotes the complex conjugate
transpose (Hermitian). The matrix LH is the adjoint operator, being related to regions of
sensitivity within the flow. Its eigenvalue decomposition yields

Q†ΛH = LHQ†. (2.5)

The eigenvalues of the adjoint operator are the complex conjugate of those from direct
analysis. The eigenvectors Q† represent the region of flow sensitivity and they are equal
to Q−1 for normal systems. On the other hand, this is not true for non-normal systems. A
thorough review on the significance of adjoint operators is presented by Luchini & Bottaro
(2014) and references therein.

In case forcing is applied at a frequency ω̃, (2.1) yields

q̂ = (−iω̃I − L)−1Bf̂ = H Bf̂ , (2.6)

where the matrix H = H(q̄, β, ω̃) is the resolvent operator (Reddy & Henningson 1993;
Schmid 2007; McKeon & Sharma 2010; Taira et al. 2017, 2020). For non-normal
operators, eigenvalue sensitivity and energy amplification are related to the induced L2
norm of operator H , i.e. the leading singular value σ obtained from singular value
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decomposition (SVD)
H = UΣV∗. (2.7)

In this equation, V and U are unitary matrices holding right and left singular vectors and
Σ is a diagonal matrix containing the singular values σ , such that

‖H‖ = max(σ ) = σ1. (2.8)

The first column of V contains the forcing term that produces the largest response in the
flow (first column in matrix U) with the amplification ratio given by Σ .

A transformation using matrix W is applied to convert variables q̂ and f̂ with an
appropriate energy norm prior to performing the SVD. In the case of compressible flows,
the Chu norm which relates density, velocity and temperature (Chu 1965) is typically used.
A spatial window C = C(x) is applied to limit the domain of analysis and the system
response in Fourier domain ŷ is given by

ŷ = W Cq̂. (2.9)

Combining (2.6) and (2.9) leads to the modified resolvent operator

Hw = W C(−iω̃I − L)−1BW −1. (2.10)

The amplification mechanisms of flow disturbances can be identified by using the
eigenvalue decomposition of the LNS operator, (2.4), in the resolvent, yielding

Hw = W C(−iω̃I − QΛQ−1)−1BW−1 = W CQ(−iω̃I − Λ)−1Q−1BW −1, (2.11)

where Λ and Q are the eigenvalues and eigenvectors from the solution of (2.4). The bounds
of the induced L2 norm are

‖(−iω̃I − Λ)−1‖ ≤ ‖Hw‖ ≤ ‖(−iω̃I − Λ)−1‖‖Q‖‖Q−1‖, (2.12)

where the lower bound is the case of an operator with orthonormal eigenvectors. In this
case, the norm depends only of the resonances, following a 1/R decay based on the
distance R in complex plane with respect to the eigenvalues. For non-normal systems,
the norm also depends on the pseudoresonances, measured by the product of eigenvectors
Q and their inverse Q−1. The weighting W and the two windowing matrices B and C
are included in the norm calculation (see Schmid & Henningson (2001) and Symon et al.
(2018) for more details).

To perform the global stability (spectral) and resolvent (pseudospectral) analyses, the
discrete linear operator is computed using the second-order accurate methodology from
Sun et al. (2017) and Yeh & Taira (2019). The base flow is the time–spanwise-averaged
solution from the LES, q̄ = [ρ̄, ū, v̄, w̄, T̄]. For the far-field and airfoil surface, Dirichlet
boundary conditions are set for [ρ′, u′, v′, w′] = [0, 0, 0, 0] and a Neumann boundary
condition is set for T ′ such that the wall-normal derivative ∂T ′/∂n = 0. At the outlet
boundary, the same Neumann boundary condition is set for all flow variables. With these
boundary conditions and the mean base flow q̄, the linear operator is computed in its
discrete form L(q̄, β) for a prescribed spanwise wavenumber β.

The mean flow q̄ obtained is interpolated from the O-grid in figure 1(a) to the
H-mesh shown in figure 1(b) for the modal analysis. This is necessary to improve spatial
accuracy of the linear operator downstream and upstream of the airfoil, where direct and
adjoint eigenvectors are supported, respectively (Yeh & Taira 2019). The present 2-D
H-mesh has an extent of x ∈ [−5, +7], y ∈ [−5, +5] and it is composed of approximately
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520 × 103 grid points. The mesh refinement targets a Strouhal number cut-off St = 8.0.
The sponge region comprises a circle with parabolic growth f = a(r − r0)

2 for r > r0. The
sponge is centred at (x, y) = (0.5, 0) with a = 1.0 and r0 = 1.5. The mesh refinement and
sponge placement are assessed by convergence of physically meaningful eigenvalues while
suppressing spurious eigenvalues. If the mesh is coarse or the sponge is placed too far from
the airfoil, it was observed that the meaningful eigenvectors also exhibit spatial support in
the same region of the spurious eigenvectors.

For the pseudospectrum calculation, the dashed red rectangle in figure 1(b) depicts the
region considered for the present resolvent analysis in terms of operators B and C in (2.10).
This windowing is important not only from a physical point of view, where the noise
sources close to the airfoil surface are most important, but it also eliminates spurious
eigenvectors, which are mostly observed far away from the body. Finally, the SVD in (2.10)
is performed with the randomised algorithm presented by Ribeiro, Yeh & Taira (2020).

2.3. Mean flow perturbation
The properties of the resolvent operator can be studied as an initial value problem where
large transient energy amplification is observed, even in stable problems, due to the
non-normality (Trefethen et al. 1993; McKeon & Sharma 2010). The time evolution of
perturbations with respect to the mean flow can be performed with a linearised version
of the CFD code according to (2.1). However, here we employ an approach that uses the
present LES code with the addition of a force term to the right-hand side of the equations
(Touber & Sandham 2009; Bhaumik, Gaitonde & Waindim 2015; Ranjan, Unnikrishnan
& Gaitonde 2018). In this approach, known as mean flow perturbation, the Reynolds
decomposition q = q̄ + q′ is applied to the nonlinear Navier–Stokes equations which are
expressed as

∂(q̄ + q′)
∂t

= N (q̄ + q′). (2.13)

The turbulent mean flow q̄ is not an equilibrium state of the Navier–Stokes equations and
its time derivative ∂tq̄ is non-null. Hence, in order to use it as a base flow, an additional
term R must be added in the numerical procedure to keep the base flow stationary. A
Taylor series expansion about the base state q̄ yields

∂(q̄ + q′)
∂t

= N (q̄ + q′) = N (q̄) + ∂N (q̄)

∂q
q′ + 1

2
∂2N (q̄)

∂2q
q′2 + · · · + R. (2.14)

Grouping together the base flow terms results in

∂q′

∂t
+

(
∂ q̄
∂t

− N (q̄) − R
)

= ∂N (q̄)

∂q
q′ + 1

2
∂2N (q̄)

∂2q
q′2 + · · · , (2.15)

where the base flow is stationary when(
∂ q̄
∂t

− N (q̄) − R
)

= 0. (2.16)

Considering that the imposed perturbation amplitude q′ is sufficiently small leads to a
linearised solution of the Navier–Stokes equations as

∂q′

∂t
≈ ∂N (q̄)

∂q
q′ = Lq′, (2.17)

where the Jacobian ∂N (q̄)/∂q is the linearised operator L. In contrast to the previous
approach in § 2.2, this methodology is matrix-free and the linear operator is never
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0ū: 0.06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.12 0.18 0.240.30 0.36 0.92 0.94 0.96 0.98 1.00

Figure 2. Contours of mean streamwise velocity ū normalised by freestream speed of sound. The magenta
dashed lines depict the reversed flow boundaries which include a wide separation bubble on the suction side
besides a small bubble on the pressure side, near the trailing edge.

explicitly computed. Despite this, the method still accounts for the modal interaction that
leads to transient energy amplification within a non-normal analysis of the linear operator.
The system response is obtained by the time evolution of the disturbances and the initial
condition is set as an impulsive excitation that triggers the dominant response. In the
current analysis, the grid and numerical methodology employed are the same used in the
LES.

3. Results

The physical mechanisms responsible for the generation of secondary tones in airfoil flows
are investigated by post-processing the nonlinear results from LES and also employing
linear stability theory. The linear analysis provides insights on the onset and growth of
disturbances in the flow in addition to its receptivity. On the other hand, LES results allow
the investigation of transition, intermittency and phase interference effects in the context
of the multiple secondary tones and the acoustic feedback loop.

3.1. Mean flow
The mean flow is presented with contours of u-velocity normalised by the freestream
speed of sound in figure 2. Important flow features can be observed including a long
recirculation bubble that extends over the suction side, from the detachment at x = 0.34
until its reattachment at x = 0.82. In the magnified view, a small bubble can be observed on
the pressure side, followed by a recirculation region at the trailing edge. The blue contours
enclosed by magenta lines indicate regions of reversed flow.

Distributions of root-mean-square (RMS) for kinetic energy k and pressure p are
presented in figures 3(a) and 3(b), respectively. As it can be seen from the plots,
fluctuations start amplifying along the bubble and the highest values appear at the
reattachment region, on the suction side. The green and blue dashed lines in figures 3(a)
and 3(b), respectively, depict the locations of maximum k and p along the shear layer
forming on the suction side. In the following analyses, these lines will be used as reference
locations for data extraction to track flow disturbances. Again, the solid magenta line shows
the recirculation bubble.

The negative mean pressure coefficient −Cp is shown in figure 4(a) with blue and red
solid lines for suction and pressure sides, respectively. To highlight the regions with intense
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0k:

p:

0.018 0.036 0.054 0.072 0.090

0 0.0024

0 0.1
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(b)
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0.0048 0.0072 0.0096 0.0120

Figure 3. RMS values of (a) kinetic energy and (b) pressure. The green and blue dashed lines depict locations
of maximum fluctuations along the shear layer on the suction side, whereas the magenta solid line delimits the
reversed flow region.
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Figure 4. Mean and RMS distributions of (a,d) pressure and (b,e) friction coefficients along the airfoil
surface, and (c, f ) tangential velocity profiles computed in the wall-normal direction �n.

fluctuations, the pressure coefficient is presented as −Cp ∓ CpRMS , where the blue dashed
and red dotted lines correspond to the suction and pressure sides, respectively. The peak
value of pressure coefficient on the suction side is observed near the leading edge at x =
0.02. From this point onward, a pressure increase leads to a drop in −Cp until reaching
a plateau along the LSB. The plateau extends up to x = 0.7, where the pressure further
increases towards the trailing edge, causing another drop in −Cp. Pressure fluctuations are
shown in figure 4(d) for both suction and pressure sides. The RMS values of Cp are low
along the entire pressure side, and upstream of the bubble (x � 0.5) on the suction side.
However, they increase towards the peak at x ≈ 0.78 on the suction side.
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The mean skin friction Cf distribution over the airfoil is presented in figure 4(b). The
RMS values of skin friction CfRMS , shown in figure 4(e), are also added to the mean
values. A magnified view highlights the presence of the LSB which starts at x = 0.34
and reattaches at x = 0.67. The reattachment is followed by a second detachment which
reaches a minimum at x = 0.75 and reattaches at x = 0.82. The nature of the double
detachment profile is discussed in details by Duck et al. (2000). The RMS peaks at
x ≈ 0.76 due to the high value of k shown in figure 3(a).

Mean tangential velocity profiles extracted along the wall-normal direction �n are
presented in figure 4(c) at different locations along the chord. At the detachment point,
x = 0.34, the red curve indicates the zero wall-normal derivative in the velocity profile.
At x = 0.73, the velocity profile shown as a grey line exhibits the maximum reversed flow
of −0.13U∞. The orange line shows a velocity profile at x = 0.95, where 3-D effects are
important due to turbulent transition. In figure 4( f ), RMS values of the tangential velocity
are presented and a single peak is observed for the profile computed at x = 0.34. Velocity
fluctuations increase inside the bubble at x = 0.64 and become dominant at x = 0.73. In
both these locations, the velocity fluctuations present triple peak profiles as also observed
by Nash et al. (1999), Desquesnes et al. (2007) and Duck et al. (2000). Near the trailing
edge at x = 0.95, where a turbulent regime may occur, mixing results in a smoother
velocity fluctuation profile.

3.2. Vortex dynamics
Instantaneous 3-D flow fields over the airfoil are presented in figure 5 with iso-surfaces
of Q-criterion coloured by u-velocity. A magenta shade along the airfoil surface depicts
the region of reversed flow along the separation bubble. This figure shows 2-D rolls
that are visible along the separation bubble and amplify on the suction side, leading to
vortex shedding. Moreover, different flow regimes are observed at the trailing edge, where
coherent structures alternate with periods of turbulent packets. For example, figure 5(a)
shows a single laminar-like roll reaching the trailing edge at t = 20.82 whereas figure 5(b)
shows that, at t = 21.78, vortex breakdown leads to a turbulent regime near the trailing
edge. Readers are referred to the movie of the flow field provided as supplementary
movie 1 are available at https://doi.org/10.1017/jfm.2022.129 for detailed inspection of
the present flow dynamics.

The analysis of flow snapshots is important to understand the vortex dynamics over
the airfoil suction side. Based on the acoustic analogy of Ffowcs-Williams & Hall (1970),
efficient sound generation is achieved when pressure fluctuations are aligned with an edge,
such that it will be maximum for 2-D-like perturbations. In this sense, figure 6 shows
the spanwise-averaged ωz vorticity, where blue and red contours represent negative and
positive values, respectively. A dark blue colour indicates strong spanwise coherence of a
2-D vortex, whereas light blue contours are representative of uncorrelated turbulence. A
thin black line is used to identify individual vorticity packets, based on the iso-contour of
an entropy measure given by p/ργ − (p∞/ρ

γ
∞) = 0.1 %. This separates the region where

vorticity is important from where the flow is irrotational, outside the boundary layer. A
magenta dashed line represents the border of averaged negative ū velocity, as discussed in
figure 2. The simulation time is shown in convective time units on the lower left corner
of all plots. A movie of figure 6 is provided as supplementary movie 2 to aid the dynamic
visualisation of the flow features.

As shown in figure 6, the flow dynamics is dominated by events on the suction side,
where vortices are shed from the LSB. During the shedding process, there is a possibility
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0u: 0.06 0.12 0.18 0.24 0.360.30

Figure 5. Instantaneous iso-surfaces of Q-criterion coloured by u-velocity show regimes with (a) coherent
structures at the trailing edge (high spanwise coherence, t = 20.82) and (b) smaller-scale turbulent eddies (low
spanwise coherence, t = 21.78).

that the 2-D laminar vortices undergo a process of vortex pairing. In case this process is not
successful, vortex bursting leads to turbulent transition and low coherence along the span,
represented by dotted lines. These turbulent packets may interact with other vortices and
further reduce their coherence, as indicated by the dashed-dotted line. On the other hand, if
the vortices merge or only a solitary vortex is shed from the bubble, the trend is for either
structure to keep its high coherence up to the trailing edge. Both of these processes are
represented by the dashed (merging) and solid (single vortex) lines in figure 6. A detailed
discussion on the consequence and cause of this behaviour is presented in §§ 3.3 and 3.6,
respectively. Similar dynamics of vortex shedding from LSBs are observed experimentally
by Kurelek et al. (2016).

As shown in the experimental investigations of Pröbsting & Yarusevych (2015) and
Pröbsting et al. (2015), for this Reynolds number and angle of attack, it is expected
that the pressure side does not play an important role in terms of the flow dynamics.
In order to confirm this observation, a temporal signal of pressure fluctuation is extracted
at x = 0.98, marked by the blue dashed line in figure 3(b). A second signal is obtained
for the velocity derivative in the wall-normal direction on the pressure side at x = 0.95.
Both signals are presented in figure 7(a) as well as the time-averaged dū/dn, indicating
that the flow is, on average, recirculating (dū/dn < 0). In the velocity derivatives, the
wall-normal direction is positive pointing outwards from the airfoil surface. Snapshots
of the flow dynamics are presented in 7(b), where the red–blue contours are the ωz
vorticity, similarly to the previous figures, the green hatched colours show instantaneous
regions of negative u-velocity whereas the dashed magenta line indicates the boundaries
of the time-averaged pressure side bubble. In this figure, it is possible to see that when
a vortex arrive at the trailing edge from the suction side at t = 20.59 (negative p′
peak), the flow reattaches on the bottom side (positive du/dn at the wall). As the vortex
leaves the airfoil surface on the suction side at t = 20.73, the pressure increases on
the suction side (positive p′) and, as a consequence, the flow detaches on the pressure
side (negative du/dn). Thus, the magenta dashed line in figure 7(a) shows that the
recirculation bubble exists on an time-averaged sense. Moreover, these figures show that
the pressure side dynamics seems to be a reaction to the suction side events in the present
flow.
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Figure 6. Spanwise-averaged vorticity ωz shows vortex pairing over the airfoil. The magenta dashed line
represents the boundary of reversed flow (negative ū). The black lines connecting the sub-figures mark the
evolution of vortices with high (− and −−) or low (· · · and − · −) spanwise coherence.
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dū/dn

D
et

ac
he

d
A

tta
ch

ed

0

–12
20 21

t
22

Figure 7. Intermittency of the pressure side bubble exhibits dependence on the suction side vortices as
presented for (a) temporal signals and (b) flow snapshots. In (a), the pressure signal is extracted on the suction
side at x = 0.98 and the velocity derivative is computed on the pressure side at x = 0.95. In (b), the hatched
green region indicates instantaneous values of negative u-velocity. In both plots, the magenta dashed line
indicates negative values in the time-averaged u-velocity.

3.3. Intermittency and sound generation
The acoustic analogy of Ffowcs-Williams & Hall (1970) states that efficient acoustic
scattering occurs due to flow fluctuations near a trailing edge. In this sense, the
hydrodynamic near field with pressure fluctuations is presented in figures 8(a) and 8(c)
with black–white contours, while the acoustic field is presented in figures 8(b) and 8(d).
In the latter, the levels are presented 10 times lower compared with the former. The figures
also display ωz vorticity in red–blue colours. To highlight the spanwise coherence, regions
of |ωz| > 24 are plotted as filled contours. The vortex cores are related to lower pressures
(white background contours) whereas the gaps between the cores display higher pressures
(black contours). A coherent vortex at the trailing edge is presented in figure 8(a) at a time
instant t = 20.82. The highly coherent hydrodynamic structure leads to efficient acoustic
scattering at the trailing edge which, in turn, induces the emission of an intense acoustic
wave. The wave is scattered with a π phase opposition relative to the incident fluctuations
and it reaches the leading edge at a retarded time t = 21.31, as shown in figure 8(b). When
the flow is turbulent, at t = 21.78, a less-coherent vorticity packet reaches the trailing edge
as shown in figure 8(c). In this case, a weaker acoustic wave is emitted from the trailing
edge, reaching the leading edge at a retarded time of t = 22.27, as exhibited in figure 8(d).
A movie of figure 8 is submitted as supplementary movie 3 to show the relation between
the acoustic field and vortex dynamics.

Temporal signals are acquired at different positions along the blue dashed line in
figure 3(b) in terms of spanwise-averaged non-dimensional pressure. The signal at the
trailing edge is presented in figure 9(a) and displays intermittent deep valleys related
to the passage of coherent structures as shown in figure 8(a). The signal also shows
low-amplitude oscillations related to the turbulent packets that carry a negative pressure
envelope, as described in figure 8(b). Such behaviour can be characterised as an amplitude
modulation of the signal. The same trends are also observed in the acoustic pressure signal,
which is extracted one chord above the trailing edge, at (x, y) = (1c, 1c), and presented in
figure 9(c). It is possible to see that the low-pressure valleys from figure 9(a) result in
high-pressure peaks that reach the observer position at a retarded time.
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Figure 8. Acoustic radiation from the airfoil. (a) A coherent structure near the trailing edge at t = 20.82
and (b) its subsequent intense acoustic wave reaching the leading edge, at a retarded time t = 21.31. (c) An
uncorrelated turbulent packet near the trailing edge at t = 21.78 and (d) its subsequent weaker acoustic wave
reaching the leading edge, at a retarded time t = 22.27. Note that the levels from (b) and (d) are 10 times lower
than those from figures (a) and (c).
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Figure 9. Time-signal and Fourier transform of spanwise-averaged pressure at different locations (a) and (b)
inside the boundary layer along the chord and (c) and (d) in the acoustic field.

The magnitude of the Fourier coefficients is presented in figure 9(b) and 9(d) for the
hydrodynamic and acoustic fields, respectively, displaying equidistant multiple tones. The
Fourier transforms employ a frequency domain averaging with an overlap of 67 % amongst
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Figure 10. Time-frequency analysis of pressure fluctuations using a CWT at (a) the detachment point
x = 0.34, (b) shear-layer roll-up x = 0.64 and (c) trailing edge x = 0.98.

4 bins covering the entire period. The frequency resolution is �f = 0.03 and a Hanning
window function with energy correction is applied. All tonal peaks are integer multiples
of the lowest-frequency tone, St ≈ 0.5. As it can be seen in figure 9(b), the dominant peak
at the trailing edge is at St ≈ 3.5 for probes located close to the leading edge (x = 0.05),
at the detachment point (x = 0.34) and the trailing edge (x = 0.98). This frequency is
related to the passage of low-pressure packets, either turbulent or coherent. At x = 0.64,
in the shear-layer roll-up region, the dominant peak moves to higher frequencies which
may be related to the smaller-scale instabilities yet to be merged into larger vortices. In the
acoustic field, figure 9(d) presents results extracted at one and five chords above the trailing
edge. The same frequencies are observed where St = 3.5 is still the most prominent peak.

As can be seen from figure 9(a), coherent structures often reach the trailing edge with
a slow timescale of �t ≈ 2.0 convective time units, which corresponds to a frequency
St = 0.5. However, due to the chaotic motion, this process is not perfectly periodic and
multiple vortices may reach the trailing edge within this period, as indicated by the time
differences �t = 0.22, 0.25, 0.29, 0.33 and 0.40 in the figure. In this faster time scales, the
different intervals are related to frequencies St = 4.5, 4.0, 3.5, 3.0 and 2.5, respectively,
which are integer multiples of the low-frequency tone at St = 0.5.

To better highlight this behaviour, a time-frequency analysis is also performed with
the continuous wavelet transform (CWT) using the complex Morlet wavelet (Farge 1992),
as shown in figure 10. The present wavelet function is the product of a monochromatic
complex exponential with a Gaussian envelope. Its spectral response is an exponentially
decaying band-pass filter centred around the frequency of the complex exponential. The
filter width depends on the Gaussian standard deviation. The scalogram presents how the
correlation of the wavelet with a reference signal changes in time based on the wavelet
frequency. Hence, higher values indicate strong fluctuations of the signal at a particular
frequency and time. Results are obtained for the same probe locations considered in
figure 9(b). The scalograms from figures 10(a) and 10(c) exhibit longer periods of intense
pressure fluctuations at St = 3.5, whereas in figure 10(b), a broader range of frequencies
is excited more intensely. As it can be seen from the probe at x = 0.64, frequencies
higher than St = 3.5 are excited, particularly St = 4.5, 5.0 and 5.5. One should note that
the colour levels are different for each location, with lower and higher amplitudes for
probes at x = 0.34 and 0.98, respectively. These figures show that the secondary tones
present intermittent behaviour, with each frequency experiencing periods of silence (blue
contours) and loud noise emission (green, yellow and red contours). Another important
aspect captured by the scalograms is the amplitude modulation of the signals. Such
behaviour has an important role in the generation of secondary tones, as discussed by
Desquesnes et al. (2007), Pröbsting et al. (2014) and Ricciardi et al. (2020).
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Figure 11. Magnitude of Fourier transform coefficients for (a) normal velocity ûn(St, x), (b) tangential velocity
ût(St, x) and (c) pressure p̂(St, x) computed along the green (velocities) and blue (pressure) lines from
figures 3(a) and 3(b), respectively. Each colour represents a tonal frequency, identified in the colourbar, whereas
the RMS is presented as the black line.

3.4. Linear analysis and amplification mechanisms
In order to investigate the growth of velocity and pressure fluctuations at the tonal
frequencies, figure 11 presents Fourier transforms of the temporal signals extracted along
the airfoil suction side, following the green (velocities) and blue (pressure) dashed
lines from figures 3(a) and 3(b), respectively. In this analysis, the temporal signals are
computed for the spanwise-averaged normal and tangential velocity components un and
ut, respectively, in addition to pressure p. Results are plotted together with the RMS
values (solid black line) extracted from figure 3. Both ût and p̂ show strong amplification
downstream of x = 0.5, which coincides with the location of the recirculation bubble.
Furthermore, a plateau is observed upstream of x = 0.5 for pressure fluctuations, which
indicates that acoustic waves dominate over hydrodynamic disturbances along this region.
Pressure fluctuations at St ≈ 3.5 exhibit higher amplitudes along the entire chord and
similar observations can be made for the velocity components. As discussed by Kurelek
et al. (2019), it is possible that these fluctuations act as a sub-harmonic forcing that
stimulates the vortex merging process.

The mechanisms of generation and amplification of flow instabilities is explained by
linear stability theory. In this regard, bi-global linear stability and resolvent analyses are
employed to understand the most sensitive frequencies in terms of optimal forcing and
response characteristics for 2-D perturbations, i.e. only for spanwise wavenumber β = 0.
This is justified because 2-D structures are expected to radiate noise more efficiently (Sano
et al. 2019). In the LNS operator, the off-diagonal terms, related to velocity gradients and
shear, lead to a non-normal operator. Hence, orthogonality of the stability modes is not
expected and interaction among modes within the system may lead to transient response
that affect its short-term dynamics (Schmid 2007). This behaviour is properly captured
by the resolvent analysis, which provides the information on eigenvalue sensitivity and
transient energy amplification rate.

Following the theoretical and numerical methodology described in § 2.2, the eigenvalue
spectrum from a bi-global stability analysis is presented in figure 12. The black circles
represent the physically meaningful eigenvalues whereas the empty grey symbols are
spurious eigenvalues. The latter could be identified due to their large displacement in
the complex plane during the grid/sponge convergence study (not shown) as well as
by visualisation of the associated eigenvectors (modes). Sensitivity of the operator to
external disturbances is computed by the resolvent analysis along both real (frequency)
and imaginary (growth rate) axes and it is measured by the pseudospectrum, presented as
the contour plot in figure 12. The region of analysis in the resolvent operator is limited

937 A23-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.129


Transition, intermittency and phase interference effects

0

3.5
log10(σ1)

4.0 4.5 5.0 5.5 6.0 6.5

–0.25

–0.50

G
ro

w
th

 r
at

e

–0.75
2.0

0.1

0

–0.1
3.0804–0.0160j 3.5768+0.0005j 4.0796+0.0130j 4.5858+0.0214j 5.0844+0.0325j 5.5512+0.0201j 6.0403–0.0517j

3.0 3.1 3.2 3.5 3.6 3.7 4.0 4.1 4.2 4.5 4.6 4.7 5.0 5.1 5.2 5.5 5.6 5.7 6.0 6.1 6.2

2.5 3.0 3.5 4.0 4.5

St

5.0 5.5 6.0 6.5 7.0

Figure 12. Spectrum (symbols) and pseudospectrum (contours in logarithmic scale) of the linearised
compressible Navier–Stokes equations for 2-D spanwise perturbations (β = 0). Higher frequencies present
larger sensitivity as shown in light blue and green colours.

by means of matrices B and C in (2.10). Only the near-field grid points are considered,
i.e. those inside the dashed red rectangle in figure 1. This is physically justified because
the most intense quadrupole noise sources which are responsible for the incident field
in the acoustic scattering process are close to the trailing edge (Wolf et al. 2012a). As an
additional positive side effect, this improved results by reducing spatial support of spurious
eigenvectors.

Results from the bi-global stability analysis in terms of the eigenspectrum are presented
in figure 12. It is possible to see multiple eigenvalues at frequencies close to those from the
LES, previously discussed in figure 9(b,d). For instance, the maximum relative deviation is
less than 5 %, at St ≈ 2.0, and around 2 % for the most unstable frequency St ≈ 5.0. Thus,
the vortex dynamics and the multiple tones seem to be triggered by linear mechanisms.
The pseudospectrum, obtained from the resolvent analysis, is shown as a contour plot
in logarithmic scale of the leading singular value from the SVD according to (2.7). The
input–output amplification ratio depends on both resonance and pseudoresonance (see
(2.12)) such that peaks appear when approaching an eigenvalue. The pseudoresonance
levels depend on the mutual excitation of eigenvectors with more sensitive eigenvalues
presenting higher peaks. In this sense, it is possible to see in figure 12 that higher
frequencies are more sensitive compared with the lower frequencies. Moreover, the stable
eigenvalues may affect the flow dynamics in terms of transient energy amplification given
their sensitivities to disturbances.

The most unstable frequencies of St ≈ 4.5, 5.0 and 5.5 are observed in the LES on
the shear-layer roll-up region at x = 0.64, as illustrated by figure 10(b). The interaction
among multiple frequencies of the flow instabilities and the vortex merging reduce the
shedding frequency in the LES, where the dominant tonal peak becomes St ≈ 3.5. This
nonlinear phenomenon is captured by the LES but not by the linear analysis. A more
detailed discussion regarding the necessary conditions for vortex merging is presented in
§ 3.6.

The modal shape of each frequency is crucial to understand the system dynamics and to
identify amplification regions within the flow. In this sense, figure 13(a)–13(c) present the
real part of the global stability modes for the most unstable frequency St = 5.08 in terms
of u′, v′ and p′, respectively. The modes are normalised with respect to the maximum value
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Figure 13. Global stability modes of the most unstable frequency St = 5.08 for primitive variables (a) u′, (b)
v′ and (c) p′.

for each variable and the magnitude doubles every level to better represent lower values.
The modal shapes computed for other relevant frequencies in the spectrum (resonances)
show similar patterns compared with that described here and differences are only related
to their characteristic wavelengths. Along the separation bubble, the modal structures of
u′ and v′ are tilted against the mean shear, suggesting an Orr mechanism for transient
growth of energy and amplification of disturbances (Schmid & Henningson 2001). After
flow reattachment, the structures become more aligned with the wall-normal direction.
The pressure disturbances p′ display upstream travelling acoustic waves radiated from the
trailing edge due to scattering mechanism. The modes displayed in the figure originate
as shear layer instabilities on the airfoil suction side and extends along the wake. Hence,
wake–boundary layer coupling mechanisms cannot be discarded.

The dominant resolvent modes are computed along the neutral stability axis (ωi = 0.0)

for St = 5.08 in terms of kinetic energy k and presented in figure 14 normalised with
respect to their maximum value. The response mode, shown in white–purple contours,
depicts the location where disturbances are more energetically relevant. Here, its modal
shape magnitude is presented such that it doubles every two levels. It is possible to see
negligible levels from the leading edge until the recirculation bubble. Then, for x > 0.4,
its magnitude increases quickly, indicating that the suction side bubble is an amplifier
of disturbances. The forcing mode, upper-left plot with white–blue contours, highlights
the most receptive location, where minimal disturbances result in larger transient growth
by the system. This mode is related to the adjoint operator of the LNS equations and it
is introduced in the context of airfoil secondary tones by Fosas de Pando et al. (2017).
In the present results, the leading-edge region on the suction side shows the higher
values of forcing modes. Furthermore, these modes are absent on the bottom side which
corroborates to the absence of pressure side-driven events for this flow configuration.

3.5. Acoustic feedback loop mechanism
As discussed by several authors (Tam 1974; Lowson et al. 1994; Desquesnes et al.
2007; Jones & Sandberg 2011; Fosas de Pando et al. 2014b), airfoil flows at transitional
Reynolds numbers are subject to an acoustic feedback loop mechanism that is related
to the multiple tones. In this feedback process, hydrodynamic perturbations are excited
in the vicinity of the leading edge and convected downstream. The disturbances amplify
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Figure 14. Response (white–purple contours) and forcing (upper-left plot with white–blue contours) modes
of kinetic energy k from the resolvent analysis along the neutral stability axis for St = 5.08.

St = 3.08
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Figure 15. Real component of pressure response (black–white contours) and forcing (blue–red contours)
modes from resolvent analysis along the neutral stability axis. The yellow spots represent the most sensitive
regions where the forcing modes achieve at least 98 % of the respective maximum values for each frequency.

along the recirculation bubble on the airfoil surface and, upon reaching the trailing edge,
scatter acoustic waves that travel upstream and trigger new disturbances. In this context,
figure 15(a)–15(h) present results from the resolvent analysis for different frequencies.
The real part of the pressure forcing modes is shown in red–blue contours whereas
black–white contours display the real component of the leading pressure response modes.
The modes have been normalised with respect to their maximum values. To highlight the
most receptive locations for each individual frequency, the yellow spots in the forcing
modes are shown only for regions where the magnitude reaches higher values than 98 %
of the maximum. As presented in figure 15, the locations of maximum receptivity change
with frequency and vary along the interval 0.10 < x < 0.18.

Aspects such as the amplitude and phase between the acoustic waves and flow
receptivity at different frequencies impact the onset of hydrodynamic disturbances. To
understand such complex interrelation, the acoustic feedback is analysed using the mean
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Figure 16. Snapshots of the LNS equations presented in terms of pressure fluctuations show periodic
wavepackets composed by the multiple frequencies from the eigenspectrum of figure 12.

flow perturbation technique to solve the LNS equations around the 3-D mean flow in time
domain (Jones & Sandberg 2011; Fosas de Pando et al. 2014b). The method assumes
that the base flow is steady and that it is not modified by the linear perturbations.
The dynamics of the pressure fluctuations is presented in figure 16. For the initial
condition, a pressure disturbance is applied at the leading edge, from x = 0.0 to 0.005
over a short duration of �t = 1 × 10−4 to excite all frequencies (impulse response).
This triggers a wavepacket that is advected by the mean flow along the suction side.
Figures 16(a) and 16(b) present the growth of disturbances for x > 0.4, where spatial
amplification described by the response modes becomes important, as shown in figure 14.
When the wavepacket reaches the trailing edge, acoustic waves are generated and travel
upstream as shown in figure 16(c). After the wavepacket reaches the wake, hydrodynamic
disturbances are no longer observed on the suction side, as displayed by figure 16(d).
Afterwards, disturbances in the wake slowly decay whereas a new wavepacket amplifies
on the suction side (figure 16e) and ( f ). Similarly to the low frequency observed in
the LES calculation, the wavepackets have a period of �t = 2.0 and the next cycle is
presented in figure 16(g)–16( j). The combined response from the suction side wavepacket,
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Figure 17. Snapshots of the LNS equations presented in terms of entropy (contour) and pressure (lines)
fluctuations. A downstream propagating entropy wave (highlighted by dotted line box) is generated due to
leading-edge secondary diffraction. This wave impinges an upstream propagating entropy fluctuation carried
by an acoustic wave at the region of maximum receptivity.

wake instability and upstream travelling acoustic waves keeps the fluctuation field active,
amplifying the globally unstable frequencies in the eigenspectrum of figure 12, which
ultimately become dominant. Readers are referred to the movie provided as supplementary
movie 4 presenting the evolution of the linearised flow dynamics.

The feedback loop mechanism is investigated here by analysing the generation of
flow instabilities by upstream propagating acoustic waves, as presented in figure 17. In
this figure, the entropy measure p/ργ is given by red–blue contours whereas pressure
fluctuations are given by blue–green–red lines, where solid and dashed lines are positive
and negative values, respectively. The entropy measure is used to partially filter out
fluctuations associated to acoustic waves whereas pressure is used to highlight acoustic
waves. In figure 17(a), it is possible to see an incoming acoustic wave at t = 5.888 that,
upon reaching the leading edge at t = 5.920, triggers an entropy fluctuation due to the
secondary diffraction. This latter phenomenon is typical of airfoil noise as discussed
by Miotto, Wolf & de Santana (2017). The entropy fluctuation at the leading edge,
presented in red colour and highlighted by a dotted line box, is propagated downstream in
figure 17(b–d) at t = 5.920, 5.952 and 5.984, respectively. This disturbance overlaps with
an incoming entropy wave moving upstream, carried by an acoustic wave depicted with
blue dashed lines. Then, in figure 17(e) and 17( f ) at t = 6.016 and 6.048, respectively,
the downstream propagating entropy fluctuation encounters a second positive acoustic
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Figure 18. Space–time map of linear solution obtained by the mean flow perturbation for (a) pressure and (b)
entropy. The map is normalised with respect to the maximum value and presented in a logarithmic scale. The
positive and negative fluctuations are indicated by red and blue colours, respectively.

wave in the region where the forcing modes are maximum, i.e. for 0.10 < x < 0.18. This
upstream propagating acoustic wave carries a positive entropy fluctuation which impinges
on that generated at the leading edge. Thus, although the onset of instabilities occurs
very close to the leading edge, the interaction between upstream travelling acoustic waves
and downstream propagating boundary layer instabilities cannot be discarded because it
occurs along the entire sensitive region of the flow. Albeit the analysis is conducted for
pressure and entropy, local velocity fluctuations also occur and contribute to the incoming
perturbations seen by the bubble. This overall process of the feedback loop mechanism is
better visualised in supplementary movie 5.

Flow disturbances are tracked along the black dashed line in figure 17 (also shown
as a blue dashed line in figure 3b) and presented as a function of time and space in
figures 18(a) and 18(b). The former shows pressure fluctuations p′ whereas the latter
displays disturbances of an entropy measure (p/ργ )′. In these plots, the values are
normalised with respect to the maximum and presented in a logarithmic scale. The
positive and negative values are presented as red and blue colours, respectively. The first
wavepacket shown in figure 16(a,b) is observed travelling downstream with a local mean
velocity ū as bottom-up contours starting at t = 0.0. Upon reaching the trailing edge, at
t > 1.2, the wavepacket generates acoustic waves propagating upstream with ū − a speed.
These waves are observed as top-down contours with lower magnitudes. The acoustic
pressure has a phase opposition of π compared with the hydrodynamic fluctuations on the
trailing edge and, hence, an incident negative hydrodynamic pressure fluctuation (blue)
creates a scattered positive acoustic wave (red).

Upstream of x ≈ 0.4, the acoustic waves dominate and it is not possible to see the onset
of instabilities. Hence, a measure of entropy (p/ργ )′ is shown in figure 18(b) to partially
filter the upstream acoustic disturbances and highlight the hydrodynamic content. In this
figure, the contours of hydrodynamic fluctuations from bottom-up are better visualised.
In both plots, a green region covering the entire period is placed at 0.1 ≤ x ≤ 0.18,
illustrating the maximum forcing region from figure 15. Along this region, disturbances
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Figure 19. RMS values along the spanwise direction computed as a function of chordwise position x and
time t for (a) pressure p′ and (b) entropy ( p/pγ )′.

generated in the vicinity of the leading edge (x ≈ 0.0) travel downstream and appear
to interact with the incoming acoustic waves, as depicted in figure 17(e) and 17( f ).
Such interaction results in a chessboard-like interference pattern where the entropy levels
carried by upstream-propagating acoustic waves (inside the boundary layer) are of the
same order of the entropy disturbances generated at the leading edge. We conjecture that
the simultaneous combination of acoustic and hydrodynamic interactions at this location
results in the maximum forcing. Finally, black lines are drawn on the plots using the
convective velocity information for both pressure and entropy disturbances. These lines
are used to track the feedback dynamics and show that, if the feedback indeed closes along
the most receptive region, the period of �t ≈ 2.0 is satisfied.

The analysis of the feedback mechanism for the LES results is presented based on
the RMS values of either the pressure p or the entropy measure p/ργ averaged along
the z-direction (spanwise direction). Similarly to the linear analysis, time signals are
extracted along the blue line in figure 3(b) and the RMS values are presented in a
logarithmic scale in figure 19(a) for pressure and figure 19(b) for the entropy measure. In
both cases, it is possible to see high fluctuation values for x > 0.4 travelling downstream
towards the trailing edge. For x < 0.4, smaller values of p′ propagate upstream towards the
leading edge. Similarly to the linear analysis, the former and latter disturbances represent
hydrodynamic and acoustic waves, respectively. The entropy measure partially filters the
acoustic waves moving upstream. Based on linear analysis results, the onset of disturbances
occurs very close to the leading edge in a position that coincides with the small hump
observed in figure 4 for pressure and friction coefficients in terms of RMS values CpRMS

and CfRMS , respectively. Thus, the wave secondary diffraction at the leading edge excites
boundary layer disturbances which are also observed in the LES. The entropy fluctuations
generated at the leading edge appear to interact with the upstream-propagating acoustic
waves in the region of maximum receptivity, similarly to the phenomenon observed in
the linear analysis. In figure 19, black lines are used to track disturbances assuming that
the feedback mechanism takes place at 0.1 < x < 0.18, indicated by the green shaded
rectangle which represents the region of maximum receptivity from figure 15.
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Figure 20. Wavepacket dynamics from linear solution including (a) temporal signal and (b) its phase
scalogram at point of maximum amplitude (x = 0.72).

As a final remark, the repeating patterns observed in the simulations demonstrate that
acoustic feedback occurs in the present flow. Results indicate that the loop depends on
the leading-edge secondary diffraction and the region of maximum sensitivity, located
downstream of the leading edge and upstream of the separation bubble. However, the
intermittent interaction of vortex merging and bursting on the suction side may eventually
disrupt the cycle by altering the phase and magnitude of the tonal frequencies with a
temporary impact on the feedback loop.

3.6. On vortex merging and phase interference
From the previous sections, it is observed that the acoustic feedback loop is self-sustained
by strong acoustic waves scattered from coherent flow structures advected past the trailing
edge. These upstream-propagating acoustic waves create new flow instabilities which are
amplified by the separation bubble and undergo a process of vortex pairing. Thus, it is
important to understand which circumstances lead to generation of coherent structures or
small-scale eddies, as discussed in § 3.3. For this task, the dynamics of wavepackets in the
linear simulation is first investigated, followed by a similar analysis in terms of the LES
data.

The amplification of the wavepacket along the recirculation bubble results in a
maximum value of the perturbations evaluated by the mean flow perturbation at x = 0.72.
The temporal signal of p′ at this location is presented in figure 20(a) depicting three
envelopes. These are evaluated using the Hilbert transform to obtain the imaginary part
and, thus, the magnitude of a real signal. Then, using the CWT, it is possible to extract
the phase information of the previous signal. To highlight the relevant periods of the
dynamics, the phase is weighted by the magnitude of the CWT coefficients as presented
in figure 20(b). Comparing the temporal signal with the weighted phase, it is possible to
see that the wavepacket envelopes peak when there is phase alignment across the multiple
frequencies of the eigenspectrum shown in figure 12. Hence, constructive interference of
multiple modes is crucial for maximum energy amplification. When the waves are out of
phase, the wavepacket magnitude drops.

The phase information from the LES data is presented together with the
spanwise-averaged pressure fluctuations in figures 21(a) and 21(b) at x = 0.64. This
location is representative of the vortex pairing region. These figures show that
high-pressure disturbances depend on phase alignment of frequencies 4 � St � 6.
This frequency range corresponds to that where the most amplified modes from the linear
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Figure 21. Effects of constructive/destructive interference across multiple frequencies presented as the (a)
phase-weighted scalogram and its effect in the (b) spanwise-averaged pressure fluctuations.

analysis are observed. If more (fewer) frequencies are aligned, a stronger (weaker) pressure
signal is observed. If the disturbances are in phase, the result is vortex merging and strong
spanwise coherence. On the other hand, if they are out of phase, the vortex pairing fails and
coherence is reduced, leading to lower values of spanwise-averaged pressure fluctuations.
The repeating patterns in the pressure signal show that the feedback mechanism has a
period of �t ≈ 2.0, related to the lower tone in the spectrum at St = 0.5.

Destructive and constructive interference of vortical structures during the pairing
process leads to an amplitude modulation of the signal (Desquesnes et al. 2007; Pröbsting
et al. 2014; Ricciardi et al. 2020). The modulation mechanism from the 2-D simulations
performed in these references differs from the current 3-D case, where turbulent transition
occurs. Here, the destructive interference leads to vortex breakdown and smaller pressure
fluctuations. On the other hand, constructive interference of multiple frequencies creates
spikes in the pressure signal as shown for certain time instants in figure 21 and also in
figures 9(a) and 9(c).

4. Conclusions

A study of trailing-edge tonal noise has been conducted through a combination of LES
and linear stability theory. The focus of this investigation has been on the secondary tones
and acoustic feedback loop which arise in airfoil flows at moderate Reynolds numbers. A
compressible LES is performed for the flow over a NACA 0012 airfoil at α = 3◦ immersed
in a freestream flow with Mach number M∞ = 0.3 and Reynolds number Re = 5 × 104.
Despite intermittent flow transition to turbulent regime, the noise spectrum depicts a main
tone with multiple equidistant secondary tones, and all tonal peaks observed are integer
multiples of the lowest-frequency peak.

The mean flow displays two recirculation regions, one on each side of the airfoil, where
the separation bubble on the suction side is longer than that on the pressure side. The flow
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dynamics on the airfoil is dominated by events on the suction side, aft of the separation
bubble, as indicated by the RMS values of kinetic energy and pressure. The mean friction
coefficient shows a double detachment pattern, typical of large fluctuations downstream
the recirculation bubble. Mean velocity profiles show that the maximum reversed velocity
inside the separation bubble is 13 % of the freestream value.

Linear stability analysis of the mean flow using a bi-global operator shows marginally
stable and unstable eigenvalues at frequencies close to those of the tonal peaks observed
in the nonlinear simulation, indicating that the overall flow dynamics originates from
linear mechanisms. Results from resolvent analysis of the linear operator are displayed
as the pseudospectrum, showing that the higher frequencies are more susceptible to be
excited by pseudoresonances. The response modes show that the suction side recirculation
bubble acts as an amplifier of disturbances. On the other hand, the forcing modes show
a high-sensitivity region within the flow, starting downstream of the leading edge and
extending until upstream of the bubble.

In the LES, the amplification of fluctuations along the LSB results ultimately in vortex
shedding on the suction side. The vortices undergo a pairing process that may lead to either
merging or bursting. This process moves the dominant tonal peak in the LES to a lower
frequency than that observed in the unstable eigenvalues of the linear spectrum. Another
result of the vortex pairing is that either coherent vortices or turbulent spots are advected
towards the trailing edge. The success of vortex merging aft of the bubble depends on the
phase alignment between the unstable frequencies observed in the linear eigenspectrum.
When such frequencies are in phase, it is likely that the vortices will successfully merge.
On the other hand, destructive interference results in vortex bursting. The different regimes
where coherent structures alternate with uncorrelated eddies at the trailing edge act as
an amplitude modulation of the signal. The magnitude of the radiated acoustic waves
depends on the coherence level of the vortical structures reaching the trailing edge. A
time-frequency analysis using CWTs shows that the flow has two different time scales.
One is related to the lowest tonal frequency, which drives the acoustic feedback loop and
depends not only on the coherent structures but also on the uncorrelated turbulent packets.
The other is a faster time scale related to the passage of multiple coherent structures at
the trailing edge. It has been found that the intermittent dynamics of this faster time scale
affects the magnitude of tonal peaks with the possibility of changing the instantaneous
dominant tonal frequency.

The feedback loop mechanism has been investigated by the time integration of the
LNS equations using the mean flow perturbation technique. The system response to
an impulsive actuation at the leading edge displays a wavepacket advected towards
the trailing edge with subsequent radiation of acoustic waves due to a scattering
mechanism. The wavepacket is composed of multiple frequencies in the eigenspectrum
and its magnitude is maximum when the phases of the unstable frequencies from the
eigenspectrum are aligned. Visualisation of the linearised solution shows that entropy
disturbances are triggered by the secondary diffraction and propagate downstream along
the boundary layer. These disturbances play an important role since they interact with
upstream-propagating waves at the region of maximum forcing. Thus, it is likely that the
feedback loop closes at the most sensitive region, described by the forcing modes, in order
to satisfy the low-frequency period of the wavepacket cycle.

The pressure RMS values are analysed along the airfoil chord and show an influence
of the feedback mechanism, where specific patterns repeat in time. Intermittency due to
transition to turbulence may shift the phase and magnitude of all frequencies, disrupting
the feedback loop. Despite this, the flow reaches a new equilibrium and reestablishes
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the merging/bursting process, indicating that the multiple stability modes may be the
self-sustaining mechanism for multiple tones and flow transition.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.129.
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