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Abstract

Brizolis asked for which primes p greater than 3 there exists a pair (g, h) such that h is a fixed point of the
discrete exponential map with base g, or equivalently h is a fixed point of the discrete logarithm with base
g. Various authors have contributed to the understanding of this problem. In this paper, we use p-adic
methods, primarily Hensel’s lemma and p-adic interpolation, to count fixed points, two-cycles, collisions,
and solutions to related equations modulo powers of a prime p.
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1. Introduction

The idea of counting fixed points of discrete exponential functions is usually traced
back to Brizolis [12, paragraph F9], who asked whether, given a prime p > 3, there
is always a pair (g, x) ∈ {1, . . . , p − 1}2 such that g is a primitive root modulo p
and

gx ≡ x mod p. (1.1)

We can regard solutions to this equation as fixed points of a discrete exponential
function. Zhang [21] proved that the answer to Brizolis’ question is always yes for
sufficiently large p; this was rediscovered independently by Cobeli and Zaharescu [6].
Levin (formerly Campbell) proved the result for all primes in [5]. See also [18].
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Zhang, and independently Cobeli and Zaharescu, also found a way of estimating the
number of pairs (g, x) that satisfy the conditions above and for which x is a primitive
root. Specifically, if N(p) is the number of such pairs for a given prime p, we have the
following result.

T 1.1 (See [6, 21]). Let d(p − 1) be the number of divisors of p − 1. Then∣∣∣∣∣N(p) −
φ(p − 1)2

p − 1

∣∣∣∣∣ ≤ d(p − 1)2√p(1 + ln p).

The first-named author [13, 14] investigated the problem of counting the number
of solutions to Brizolis’ equations when g and x are not necessarily primitive roots. If
F(p) is the number of such pairs (g, x), it was conjectured that

F(p) ∼ p − 1

as p goes to infinity. The first-named author and Moree [15, Theorem 4.9] proved
that this holds for a set of primes of positive relative density. Bourgain et al. [3]
proved that the conjecture holds for a set of primes of relative density 1. The same
authors [4] proved the weaker result that F(p) = O(p) holds for all p, and also that
F(p) ≥ (p − 1) − o(p) for all p.

Our motivation here was to similarly count solutions (g, x) to the equation

gx ≡ x mod pe (1.2)

with g, x ∈ {1, . . . , pe}, p - g and p - x. Based on numerical evidence, we conjecture
that the number of these solutions is asymptotically equivalent to pe−1(p − 1) as p
goes to infinity, and further that the number of solutions with g ≡ i modulo p is
asymptotically equivalent to pe−1 for any i as p goes to infinity. We expect that the
techniques used to prove the theorems above could also be applied to this case.

We also attempted to investigate the situation as p is held fixed and e goes to infinity.
This led naturally to an examination of the function x 7→ gx where g is fixed and x
ranges through the p-adic integers Zp, which is carried out in Sections 2 and 3. The
(perhaps) surprising discovery is what happens when we look for solutions x to (1.2)
not in the set {1, . . . , pe} but rather in the ‘correct’ set {1, . . . , pem}, where m is the
multiplicative order of g modulo p. We show in Section 4 that the number of solutions
in this more natural setting is exactly what one would expect from our conjectures, with
no error term. (In the case where e = 1, [18] observes that it is easy to find fixed points
outside the set {1, . . . , p} but does not explicitly count them.) Glebsky [9] proves a
similar result to ours in the case where m = p − 1 using a very different method. (We
thank Igor Shparlinski for this reference.)

The papers [13–15] also investigated three related questions: the number of two-
cycles of the discrete exponential function, or solutions to

gh ≡ a mod p and ga ≡ h mod p, (1.3)
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the number of solutions to a discrete self-power equation

xx ≡ c mod p (1.4)

for fixed c, and the number of collisions of the discrete self-power function, that is,
solutions to

hh ≡ aa mod p. (1.5)

It was conjectured in these papers that the number T (p) of solutions to (1.3) with
1 ≤ g, h, a ≤ p − 1 and h . a modulo p is

T (p) ∼ p − 1,

the number S (p; c) of solutions to (1.4) with 1 ≤ x ≤ p − 1 is

S (p; c) ∼
∑

d|(p−1)/m

φ(dm)
dm

where m is the order of c modulo p, and the number C(p) of solutions to (1.5) with
1 ≤ h, a ≤ p − 1 and h . a modulo p is

C(p) ∼
∑

m|(p−1)

φ(m)
( ∑

d|(p−1)/m

φ(dm)
dm

)2

=
∑

d|(p−1)

J2(d)
d

,

where J2(n) = n2 ∏
p|n(1 − p−2) is Jordan’s totient function, which counts the number

of pairs of integers in {1, . . . , n} that, together with n, form a mutually coprime
triple. Balog et al. [1] established the weaker results that S (p; c) ≤ p1/3+o(1)m2/3 and
S (p; c) ≤ p1+o(1)m−1/12, and that C(p) ≤ p48/25+o(1). No nontrivial theorems on T (p)
seem to be known up to this point, although Glebsky and Shparlinski [10] prove some
relevant results when g is held fixed.

In Section 5 we investigate the number of solutions to the equations

gh ≡ a mod pe and ga ≡ h mod pe, (1.6)

where g is fixed and h and a are in {1, . . . , pem} with much the same results as before.
We also indicate how to generalize this to more equations. (Some of these results are
also proved in [9].) In Section 6 we similarly investigate the equation

xx ≡ c mod pe (1.7)

for fixed c, and x in {1, . . . , pe(p − 1)}, and in Section 7 we investigate the equation

hh ≡ aa mod pe (1.8)

for h and a in {1, . . . , pe(p − 1)}.
The use of the discrete exponential function x 7→ gx mod p for g a primitive

root is well known in cryptography; its inverse is commonly referred to as the
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discrete logarithm and computing it is one of the basic ‘hard problems’ of public-key
cryptography (see [19, Section 3.6]). There are also uses of the function when g is not a
primitive root, for example, in the Digital Signature Algorithm (see [19, Section 11.5]).
Finally, a few cryptographic algorithms involve the self-power function x 7→ xx mod p,
notably variants of the ElGamal signature scheme (see [19, Note 11.71]). The security
of these cryptographic algorithms relies on the unpredictability of the inputs to these
maps given the outputs. The results cited and those here go some way toward
reassuring us that these maps do behave as if the inputs are randomly distributed given
only basic facts known about the outputs.

We denote by |S | the cardinality of a set S .

2. Interpolation

Fix g ∈ Z and let p be an odd prime. To count solutions to gx ≡ x mod pe, the
obvious first step would be to interpolate the function f (x) = gx, defined on x ∈ Z, to
a function on x ∈ Zp. Unfortunately, this is not possible unless g ∈ 1 + pZp (see, for
example, [11, Section 4.6] or [17, Section II.2]). However, if we ‘twist’ the function
slightly, then interpolation is possible.

To do this, let µp−1 ⊆ Z
×
p be the set of all (p − 1)th roots of unity. Then, for an odd

prime p, the Teichmüller character

ω : Z×p → µp−1

is a surjective homomorphism. It is known [11, Corollary 4.5.10] that Z×p has a
canonical decomposition as Z×p � µp−1 × (1 + pZp), and thus for x in Z×p we may
uniquely write x = ω(x)〈x〉 for some 〈x〉 ∈ 1 + pZp.

P 2.1 (See [11, Proposition 4.6.3] and [17, Section II.2]). For an odd prime
p, let g ∈ Z×p and x0 ∈ Z/(p − 1)Z, and let

Ix0 = {x ∈ Z : x ≡ x0 mod p − 1} ⊆ Z.

Then

fx0 (x) = ω(g)x0〈g〉x

defines a function on Zp such that fx0 (x) = gx whenever x ∈ Ix0 .

In fact we can push this a little further.

P 2.2. For an odd prime p, let m be any multiple of the multiplicative order
of g modulo p, such that m | (p − 1). Let g ∈ Z×p and x0 ∈ Z/mZ, and let

Ix0 = {x ∈ Z : x ≡ x0 mod m} ⊆ Z.
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Then
fx0 (x) = ω(g)x0〈g〉x

defines a function on Zp such that fx0 (x) = gx whenever x ∈ Ix0 .

P. First, gm ≡ 1 mod p, and so ω(g)m = ω(gm) = 1. If x0, x′0 ∈ Z/(p − 1)Z and
x0 ≡ x′0 mod m, then the two functions fx0 and fx′0

given by Proposition 2.1 are equal
and agree with gx on Ix0 ∪ Ix′0

. �

Also, for odd primes p, as noted in [11], these functions fit together into a function
on Zp × Z/mZ defined by F(x1, x0) = fx0 (x1), such that if x ∈ Z and x ≡ x0 mod m, then
F(x, x) = fx0 (x) = gx. Then we have a diagram:

Zp × Z/mZ
F //

��

Z×p

��

Z/peZ × Z/mZ F // (Z/peZ)×

where the vertical arrows are the natural surjections. This commutes as a consequence
of the following lemma.

L 2.3 (See [11, Corollary 4.6.2 and just below] or [16, Lemma 2.2.5]). For any
positive integer k, (1 + pZp)k ⊆ 1 + pkZp.

The lemma implies that 〈g〉p
e
≡ 1 mod pe, and therefore 〈g〉x ≡ 〈g〉x

′

mod pe when
x ≡ x′ mod pe. (Recall that Zp/peZp is isomorphic to Z/peZ for any e.)

For an odd prime p, if we let ∆ be the diagonal inclusion map

∆ : Z→ Zp × Z/mZ

given by the canonical injection Z ↪→ Zp and the canonical surjection Z� Z/mZ, then
the previous diagram extends nicely to:

Z � t

∆

''OOOOOOOOOOOOO

��

Zp × Z/mZ
F //

��

Z×p

��

Z/peZ × Z/mZ F // (Z/peZ)×

Z/pemZ
ww

∼

CRT

77ooooooooooo

where the isomorphism is given by the Chinese remainder theorem. Furthermore, the
composition of the maps on the top line is just the map x 7→ gx and the composition

https://doi.org/10.1017/S1446788712000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000262


168 J. Holden and M. M. Robinson [6]

across the bottom line is the map x 7→ gx mod pe:

Z � t

∆

''OOOOOOOOOOOOO

��

x 7→gx

))

Zp × Z/mZ
F //

��

Z×p

��

Z/peZ × Z/mZ F // (Z/peZ)×

Z/pemZ
ww

∼

CRT

77ooooooooooo
x 7→gx mod pe

55

Therefore finding all solutions (x1, x0) to F(x1, x0) ≡ x1 mod pe, which is the same as
finding all solutions to fx0 (x1) ≡ x1 mod pe for all possible x0 ∈ Z/mZ, will give us all
solutions to gx ≡ x mod pe as x ranges over Z/pemZ.

3. Hensel’s lemma

D 3.1 (See [2, Definition III.4.2.2]). A power series f (x1, x2, . . . , xn) in the
ring Zp[[x1, . . . , xn]] of formal power series with coefficients in Zp is called restricted
if

f (x1, . . . , xn) =
∑
(αi)

Cα1,α2,...,αn xα1
1 . . . xαn

n

and, for every neighborhood V of 0 in Zp, the number of coefficients Cα1,α2,...,αn not
belonging to V is finite (in other words, the family (Cα1,α2,...,αn ) tends to 0 in Zp).

In particular, the series in this paper will be p-adic convergent series such that
lim|α|→∞ |Cα1,α2,...,αn |p = 0 where |α| = α1 + α2 + · · · + αn.

In this section, we include two versions of Hensel’s lemma. The first version is for
n restricted power series in n unknowns.

P 3.2 (See [2, Corollary III.4.5.2]). Let f j(x1, x2, . . . , xn) be a restricted
power series in Zp[[x1, x2, . . . , xn]] for 1 ≤ j ≤ n. Let (a1, a2, . . . , an) be a vector in
Zn

p such that the determinant of the Jacobian matrix at (a1, a2, . . . , an), that is,∣∣∣∣∣ ∂( f1, f2, . . . , fn)
∂(x1, x2, . . . , xn)

(a1, a2, . . . , an)
∣∣∣∣∣,

is in Z×p and f j(a1, a2, . . . , an) ≡ 0 mod p when 1 ≤ j ≤ n. Then there exists a unique
(x1, x2, . . . , xn) ∈ Zn

p for which xi ≡ ai mod p for 1 ≤ i ≤ n and f j(x1, x2, . . . , xn) = 0
in Zp for 1 ≤ j ≤ n.

As a corollary we get a generalization of one of the standard formulations of
Hensel’s lemma to the case of restricted power series.
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C 3.3. Let f (x) be a restricted power series in Zp[[x]] and a be in Zp such
that f ′(a) is in Z×p and f (a) ≡ 0 mod p. Then there exists a unique x ∈ Zp for which
x ≡ a mod p and f (x) = 0 in Zp.

To discuss collisions below, we will also need a ‘lifting lemma’ for restricted power
series of several variables. This will allow us to count solutions modulo higher powers
of p if we know the number of solutions modulo p. The next proposition, which the
second-named author learned from Igusa’s 1986 ‘Automorphic Forms’ class at Johns
Hopkins University, generalizes the version of Hensel’s lemma in [16, Lemma III.2.5]
to restricted power series, and counts the fibers explicitly.

P 3.4. Let f (x1, x2, . . . , xn) be a restricted power series in Zp[[x1, . . . , xn]].
Let

Ne =

{
a ∈ (Zp/peZp)n :

∂ f
∂xi

(a) ∈ Z×p for some 1 ≤ i ≤ n and f (a) ≡ 0 mod pe
}

for e > 0, where a indicates reduction of a to the appropriate residue class. Then
ψ : Ne+1→ Ne is a well-defined canonical surjection with the cardinality of the fiber
equal to pn−1.

In particular, a point a = (a1, a2, . . . , an) ∈ Ne can be lifted in pn−1 different ways
to a point b = (b1, b2, . . . , bn) ∈ Ne+1 such that bi ≡ ai mod pe for 1 ≤ i ≤ n, so that the
relationship between the cardinalities of the sets is |Ne+1| = pn−1|Ne| for e > 0.

4. Fixed points

T 4.1. For an odd prime p, fix g ∈ Z×p and let m be the multiplicative order of g
modulo p. Then for every x0 ∈ Z/mZ, there is exactly one solution to the equation

ω(g)x0〈g〉x = x

for x ∈ Zp.

P. We start by finding solutions modulo p. We know that 〈g〉 ≡ 1 mod p, so the
equation reduces to

ω(g)x0 ≡ x mod p.

For fixed g and x0, this obviously has exactly one solution.
Since we know that 〈g〉 is in 1 + pZp, we have that

〈g〉x = exp(x log(〈g〉)) = 1 + x log(〈g〉) + x2 log(〈g〉)2/2!

+ higher-order terms in powers of log(〈g〉)

where from the definition of the p-adic logarithm we know that log(〈g〉) ∈ pZp.
Therefore we have a restricted power series since |log(〈g〉)i/i!|p→ 0 as i→∞ and
we can apply Corollary 3.3, which gives us a unique solution in Zp. �

https://doi.org/10.1017/S1446788712000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000262


170 J. Holden and M. M. Robinson [8]

C 4.2. For an odd prime p, fix g ∈ Z such that p - g and let m be the
multiplicative order of g modulo p. Then there are exactly m solutions to the
congruence (1.2), that is,

gx ≡ x mod pe,

for x ∈ {1, 2, . . . , pem}. Furthermore, these solutions are all distinct modulo pe and
all distinct modulo m.

P. For each x0 ∈ Z/mZ, there is exactly one x1 ∈ Z/peZ such that

ω(g)x0〈g〉x1 ≡ x1 mod pe,

by Theorem 4.1. By the Chinese remainder theorem, there will be exactly one
x ∈ Z/pemZ such that x ≡ x0 mod m and x ≡ x1 mod pe. By the interpolation set up,
since x ≡ x0 mod m, for this x,

gx = ω(g)x0〈g〉x ≡ x mod pe.

Finally, since exactly one such x exists for each x0, we have our m solutions to the
congruence. �

5. Two-cycles

D 5.1. For a fixed prime p and for some g ∈ Z such that p - g, the pair (h, a)
in {1, . . . , pe(p − 1)}2, where p - h and p - a, will be called a two-cycle modulo pe

associated with g if h . a mod pe, and (1.6) holds, that is,

gh ≡ a mod pe and ga ≡ h mod pe.

D 5.2. We define the number |Te| of two-cycles modulo pe as

|Te| =
1
2 |{h ∈ {1, . . . , pe(p − 1)}, p - h :

h . a mod pe, gh ≡ a mod pe, and ga ≡ h mod pe

for some g ∈ (Z/peZ)× and a ∈ {1, . . . , pe(p − 1)}, p - a}|.

Thus, when we count the number of two-cycles modulo pe, we will not distinguish
between the two-cycle (h, a) and the two-cycle (a, h).

P 5.3. For an odd prime p and a fixed g ∈ Z×p , let m be the multiplicative
order of g modulo p. Then for every pair (x0, y0) ∈ (Z/mZ)2, there is exactly one
solution (h, a) ∈ Z2

p to the system of equations

ω(g)x0〈g〉h = a,

ω(g)y0〈g〉a = h.

https://doi.org/10.1017/S1446788712000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000262


[9] Discrete exponentials using p-adic methods 171

P. We start by finding solutions modulo p. If we let

f1(h, a) = ω(g)x0〈g〉h − a,

f2(h, a) = ω(g)y0〈g〉a − h,

then modulo p this system reduces to

f1(h, a) ≡ ω(g)x0 − a mod p,

f2(h, a) ≡ ω(g)y0 − h mod p,

which has exactly one solution (h, a) = (ω(g)x0 , ω(g)y0 ) for fixed g, x0 and y0. The
power series representations for f1(h, a) and f2(h, a) are restricted power series and

∂ f1
∂h

= ω(g)x0 (log(〈g〉) + h log(〈g〉)2 + · · · ) ≡ 0 mod p,

∂ f1
∂a

= −1 ≡ −1 mod p,

∂ f2
∂h

= −1 ≡ −1 mod p,

∂ f2
∂a

= ω(g)y0 (log(〈g〉) + a log(〈g〉)2 + · · · ) ≡ 0 mod p.

Thus the determinant of the Jacobian matrix is congruent to −1 modulo p, and by
Proposition 3.2 the unique solution modulo p to this system lifts to a unique solution
(h, a) ∈ Z2

p. �

P 5.4. For an odd prime p and a fixed g ∈ Z such that p - g, let m be the
multiplicative order of g modulo p. Then if

|Te,g| =
1
2 |{h ∈ {1, . . . , pem}, p - h : h . a mod pe,

gh ≡ a mod pe, and ga ≡ h mod pe

for some a ∈ {1, . . . , pem}, p - a}|

is the number of two-cycles modulo pe associated with that particular g,

|Te,g| = (m2 − m)/2.

P. Parallel to the proof of Corollary 4.2, for each choice of (x0, y0) in (Z/mZ)2,
Proposition 5.3 gives us exactly one pair (h, a) in (Z/pemZ)2 satisfying gh ≡ a mod pe

and ga ≡ h mod pe. Thus there are m2 such pairs total, but m of them correspond to the
case where h ≡ a mod pe. Dividing by 2 to account for swapping the roles of h and a
gives us the proposition. �

T 5.5. For a given odd prime p, the number |Te| of two-cycles is

|Te| =
∑

m|(p−1)

φ(m)pe−1(p − 1)(m − 1)/2.
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P. First note that if an h in {1, . . . , pem} forms part of a two-cycle associated
with g and a, then the values in {1, . . . , pe(p − 1)} which do the same will be exactly
those which are congruent to h modulo pe and modulo m, and thus modulo pem. So
each element of Te,g gives rise to exactly (p − 1)/m elements of Te in this fashion. On
the other hand, if some a in {1, . . . , pe(p − 1)} forms part of a two-cycle associated
with h and g, then so will an a in {1, . . . , pem} which is congruent to it modulo
pem. So each element of Te,g gives rise to only one element of Te in this fashion.
Therefore

|Te| =
∑

g∈(Z/peZ)×

( p − 1
m

)
|Te,g| =

∑
m|(p−1)

φ(m)pe−1(p − 1)(m − 1)/2.

This concludes the proof. �

Alternatively, we can count rooted closed walks rather than cycles, a viewpoint
which in some ways lends itself better to generalizations.

D 5.6. For a fixed prime p and for some g ∈ Z such that p - g, the ordered
tuple (h1, . . . , hk) is a rooted closed walk of length k modulo pe associated with g if
the following k equations are satisfied:

gh1 ≡ h2 mod pe,

gh2 ≡ h3 mod pe,

...

ghk−1 ≡ hk mod pe,

ghk ≡ h1 mod pe.

Then Corollary 4.2 is equivalent to saying that there are exactly m rooted closed
walks of length 1 associated with g in {1, 2, . . . , pem}, and Proposition 5.4 is
equivalent to saying that there are m2 rooted closed walks of length 2 associated with
g (including the fixed points) in {1, 2, . . . , pem}2. In an exactly parallel manner, we
can prove the following generalization.

T 5.7. For an odd prime p and a fixed g ∈ Z such that p - g, let m be the
multiplicative order of g modulo p. Then there are exactly mk rooted closed walks
of length k modulo pe associated with g in {1, 2, . . . , pem}k. Furthermore, any two of
these rooted closed walks are distinct modulo pe and distinct modulo m.

R 5.8. In the case where m = p − 1, this is equivalent to [9, Theorem 1], where
it is proved by combinatorial methods. For general m, our statement implies that of [9].
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6. Self-power solutions

We now turn to the function x 7→ xx mod p, sometimes called the self-power map.
The proof of the following elementary lemma was essentially worked out in [8,

Theorem 2], and the corollary was also proved by a slightly different method as [20,
Theorem 1]. (We thank Lawrence Somer for bringing the latter paper to our attention.)

L 6.1. For an odd prime p, fix c ∈ (Z/pZ)× and let m be the multiplicative
order of c modulo p. Also fix x0 ∈ {0, 1, . . . , p − 2}. Then the number of solutions
x ∈ (Z/pZ)× to the equivalence

xx0 ≡ c mod p

is gcd(x0, p − 1) if gcd(x0, p − 1) | (p − 1)/m,

0 otherwise.

P. For a fixed integer t, the set of tth powers, Pt = {xt : x ∈ (Z/pZ)×}, is a
subgroup of index gcd(t, p − 1) in (Z/pZ)×. Then |Pt | = (p − 1)/ gcd(t, p − 1). If
gcd(x0, p − 1) - (p − 1)/m, then c is not in Px0 , so xx0 ≡ c mod p has no solutions.
Otherwise, any element of Px0 is an x0th power in exactly gcd(x0, p − 1) ways, so the
equivalence has exactly gcd(x0, p − 1) solutions. �

C 6.2. For an odd prime p, fix c ∈ (Z/pZ)× and let m be the multiplicative
order of c modulo p. Then the number of solutions x ∈ {1, 2, . . . , p(p − 1)} to the
equivalence xx ≡ c mod p such that p - x is given by the formula∑

0≤x0≤p−2
gcd(x0,p−1)|(p−1)/m

gcd(x0, p − 1) =
∑

d|(p−1)/m

dφ
( p − 1

d

)
.

P 6.3. For an odd prime p, fix c ∈ Z×p and let m be the multiplicative order
of c modulo p. Then for fixed x0 ∈ Z/(p − 1)Z, the number of solutions to the equation

ω(x)x0〈x〉x = c

for x ∈ Z×p is gcd(x0, p − 1) if gcd(x0, p − 1) | (p − 1)/m,

0 otherwise.

P. For a fixed x0, we consider the function

f (x) = ω(x)x0〈x〉x − c

and look for solutions x ∈ Z×p to f (x) ≡ 0 mod p. Since we know that 〈x〉 is in 1 + pZp,

〈x〉x = exp(x log(〈x〉)) = 1 + x log(〈x〉) + x2 log(〈x〉)2/2!

+ higher-order terms in powers of x log(〈x〉)
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where from the definition of the p-adic logarithm we know that log(〈x〉) ∈ pZp. Now
if we consider the power series representation of f (x), we see that

f (x) = ω(x)x0 − c + ω(x)x0 x log(〈x〉)

+ higher-order terms in p2Zp.

Since ω is constant on each of the p − 1 disjoint cosets of pZp that cover Z×p , or by
[17, Proposition 2, Section IV.2],

d f
dx

= ω(x)x0 [log(〈x〉) + 1] ≡ ω(x)x0 mod p

since log(〈x〉) ∈ pZp. As ω(x)x0 . 0 mod p, by Corollary 3.3 the number of solutions
in Zp is the same as the number of solutions in Lemma 6.1. �

C 6.4. For an odd prime p, fix c ∈ Z×p and let m be the multiplicative order of
c modulo p. Then the number of solutions to the congruence (1.7), that is,

xx ≡ c mod pe,

for x such that x ∈ {1, 2, . . . , pe(p − 1)} and p - x is given by the formula∑
0≤x0≤p−2

gcd(x0,p−1)|(p−1)/m

gcd(x0, p − 1) =
∑

d|(p−1)/m

dφ
( p − 1

d

)
.

P. The proof is parallel to that of Corollary 4.2. �

7. Collisions

D 7.1. The set of solutions (h, a) ∈ {1, 2, . . . , p(p − 1)}2, where p - h and
p - a, to the equivalence

hh ≡ aa mod p

will be denoted C1 (for collisions) and we will use the notation |C1| for the number of
such collisions. More generally, we will denote by |Ce| the number of collisions (h, a) ∈
{1, 2, . . . , pe(p − 1)}2, where p - h and p - a, which are solutions to the equivalence

hh ≡ aa mod pe.

Recall that x indicates reduction of x to the appropriate residue class.

L 7.2. For fixed x0 and y0 ∈ {0, 1, . . . , p − 2}, if

N×1 = {(x, y) ∈ ((Z/pZ)×)2 : xx0 − yy0 = 0 in Z/pZ},

then
|N×1 | = (p − 1) gcd(x0, y0, p − 1).
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P. For a fixed integer t the set of tth powers, Pt = {xt : x ∈ (Z/pZ)×}, is a subgroup
of index gcd(t, p − 1) in (Z/pZ)×, and |Pt | = (p − 1)/ gcd(t, p − 1). Let I = Px0 ∩ Py0 ;
then I is a subgroup of order

|I| = gcd(|Px0 |, |Py0 |) =
(p − 1) gcd(x0, y0, p − 1)

gcd(x0, p − 1) gcd(y0, p − 1)
.

Now, we need to count all the points (x, y) ∈ ((Z/pZ)×)2 such that xx0 ≡ yy0 mod p.
If xx0 ≡ yy0 mod p then xx0 and yy0 are in the set I above. Thus,

|N×1 | =
∑
i∈I

|{x ∈ (Z/pZ)× : xx0 ≡ i mod p}| · |{y ∈ (Z/pZ)× : yy0 ≡ i mod p}|.

If i ∈ I, then |{x ∈ (Z/pZ)× : xx0 ≡ i mod p}| = gcd(x0, p − 1), so

|N×1 | = |I| · gcd(x0, p − 1) · gcd(y0, p − 1) = (p − 1) gcd(x0, y0, p − 1),

as required. �

P 7.3. For an odd prime p and for fixed x0 and y0 in Z/(p − 1)Z, if we
consider the function f (h, a) = ω(h)x0〈h〉h − ω(a)y0〈a〉a for h, a ∈ Z×p and let

|N×1 | = |{(h, a) ∈ ((Zp/pZp)×)2 : f (h, a) ≡ 0 mod p}|,

then
|N×1 | = (p − 1) gcd(x0, y0, p − 1).

P. For a fixed x0 and y0, we look for solutions h, a ∈ Z×p to f (h, a) ≡ 0 mod p.
Since we know that 〈h〉 and 〈a〉 are elements in 1 + pZp,

〈h〉h = exp(h log(〈h〉)) = 1 + h log(〈h〉) + h2 log(〈h〉)2/2!

+ higher-order terms in powers of h log(〈h〉)

where log(〈h〉) ∈ pZp, from the definition of the p-adic logarithm. By considering the
number |N×1 | of solutions using the power series representation of f (h, a), we see that

f (h, a) = ω(h)x0 − ω(a)y0 + higher-order terms in pZp. (7.1)

In this way, we see that

|N×1 | = |{(h, a) ∈ ((Z/pZ)×)2 : ω(h)x0 − ω(a)y0 ≡ 0 mod p}|.

From this expression and Lemma 7.2,

|N×1 | = (p − 1) gcd(x0, y0, p − 1).

This concludes the proof. �
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C 7.4. The number of collisions (h, a) ∈ {1, 2, . . . , p(p − 1)}2 such that p - h,
p - a, and hh ≡ aa mod p, where p is an odd prime, is given by the formula

|C1| =
∑

0≤x0,y0≤p−2

(p − 1) gcd(x0, y0, p − 1) = (p − 1)
∑

d|(p−1)

dJ2((p − 1)/d)

where J2(n) = n2 ∏
p|n(1 − p−2) is Jordan’s totient function.

P 7.5. For an odd prime p and for fixed x0 and y0 ∈ Z/(p − 1)Z, if we
consider the function f (h, a) = ω(h)x0〈h〉h − ω(a)y0〈a〉a for h, a ∈ Z×p and let

N×e = {(h, a) ∈ ((Zp/peZp)×)2 : f (h, a) ≡ 0 mod pe},

then

|N×e | = pe−1|N×1 |.

P. Considering our series representation for f (h, a) in equation (7.1) shows that

f (h, a) = ω(h)x0 − ω(a)y0 + ω(h)x0 h log(〈h〉) − ω(a)y0 a log(〈a〉)

+ higher-order terms in p2Zp.

Since ω is constant on each of the p − 1 disjoint cosets of pZp that cover Z×p , or by
[17, Proposition 2, Section IV.2],

∂ f
∂h

= ω(h)x0 [log(〈h〉) + 1] ≡ ω(h)x0 mod p

since log(〈h〉) ∈ pZp. As ω(h)x0 . 0 mod p, by Proposition 3.4 with n = 2,

|N×e | = p|N×e−1|

for e > 1, and our proposition follows. �

C 7.6. For an odd prime p, there are exactly |Ce| = pe−1|C1| collisions that
are solutions to the congruence (1.8), that is,

hh ≡ aa mod pe,

for (h, a) in {1, 2, . . . , pe(p − 1)}2 such that p - h and p - a.

P. The proof is parallel to that of Corollary 4.2. �

R 7.7. Corollaries 7.4 and 7.6 could also have been proved by squaring the
results of Corollaries 6.2 and 6.4 respectively, and summing over all c.
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8. Conclusions and future work

Previous work on solutions to (1.1) and related equations has focused on finding
how primitive roots modulo p, or specified powers of primitive roots, are distributed
in arithmetic progressions contained in {1, . . . , p} with differences dividing p − 1.
We hope that this paper shows that another course might also be fruitful: start with
the solutions to an exponential equation in {1, . . . , p(p − 1)} or {1 . . . , pe(p − 1)}
and determine how they are distributed among the subintervals of length p or pe.
Furthermore, we think the use of p-adic numbers also suggests new lines of attack that
may be useful in the future. For example, the ability to extend the p-adic exponential
function to rings of integers in extension fields of Qp might provide a useful way of
looking at, or even posing, new problems in finite field extensions of Z/pZ.

In the future, we hope to consider solutions of other exponential equations, such as

hh/d ≡ aa/d mod pe, d = gcd(h, a, p − 1),

considered (with e = 1) in [15] as closely related to (1.3). Another problem that should
be tractable using our methods is finding solutions of

gx−1+c ≡ x mod pe

for c fixed. This was raised in [7] (with e = 1) as related to ‘Golomb rulers’, which
have applications in error correction and in controlling the effects of electromagnetic
signals interference. One could also consider the ‘discrete Lambert’ map x 7→ xgx for
g fixed, which is related to the standard ElGamal signature scheme and the Digital
Signature Algorithm much as the self-power function is related to its variants. Then
one could ask for solutions of

xgx ≡ c mod pe

for fixed c, or collisions of the discrete Lambert map, namely solutions of

hgh ≡ aga mod pe.

Finally, for completeness one should investigate the case when p = 2. In this case,
counting solutions modulo p is trivial, but the p-adic situation is more complicated.
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