JEŚMANOWICZ' CONJECTURE ON PYTHAGOREAN TRIPLES

MI-MI MA and YONG-GAO CHEN ${ }^{\boxtimes}$

(Received 21 November 2016; accepted 10 December 2016; first published online 13 March 2017)

Abstract

In 1956, Jeśmanowicz conjectured that, for any positive integers m and n with $m>n, \operatorname{gcd}(m, n)=1$ and $2 \nmid m+n$, the Diophantine equation $\left(m^{2}-n^{2}\right)^{x}+(2 m n)^{y}=\left(m^{2}+n^{2}\right)^{z}$ has only the positive integer solution $(x, y, z)=(2,2,2)$. In this paper, we prove the conjecture if $4 \nmid m n$ and $y \geq 2$.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: Jeśmanowicz’ conjecture, Diophantine equation, Pythagorean triple.

1. Introduction

In 1956, Sierpiński [10] showed that the equation $3^{x}+4^{y}=5^{z}$ has only the positive integer solution $(x, y, z)=(2,2,2)$. Jeśmanowicz [2] proved that each of the equations $5^{x}+12^{y}=13^{z}, 7^{x}+24^{y}=25^{z}, 9^{x}+40^{y}=41^{z}, 11^{x}+60^{y}=61^{z}$ has only the positive integer solution $(x, y, z)=(2,2,2)$, and conjectured that, for any positive integers a, b, c with $a^{2}+b^{2}=c^{2}$ and $\operatorname{gcd}(a, b)=1$, the equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1.1}
\end{equation*}
$$

has only the positive integer solution $(x, y, z)=(2,2,2)$.
It is well known that, if a, b, c are positive integers with

$$
a^{2}+b^{2}=c^{2}, \quad \operatorname{gcd}(a, b)=1, \quad 2 \mid b
$$

then there exist two integers m, n with

$$
m>n>0, \quad \operatorname{gcd}(m, n)=1, \quad m+n \equiv 1(\bmod 2)
$$

such that

$$
a=m^{2}-n^{2}, \quad b=2 m n, \quad c=m^{2}+n^{2} .
$$

[^0]Now Equation (1.1) becomes

$$
\begin{equation*}
\left(m^{2}-n^{2}\right)^{x}+(2 m n)^{y}=\left(m^{2}+n^{2}\right)^{z} . \tag{1.2}
\end{equation*}
$$

Jeśmanowicz' conjecture has been proved for many special cases. In 1959, Lu [4] proved that Jeśmanowicz' conjecture is true for $n=1$. In 1995, Le [3] showed that if $2 \| m n$ and $m^{2}+n^{2}$ is a power of an odd prime, then Jeśmanowicz' conjecture is true. In 2013, Miyazaki [7] showed that if $a \equiv \pm 1(\bmod b)$ or $c \equiv 1(\bmod b)$, then Jeśmanowicz' conjecture is true. Since $m^{2}+n^{2} \equiv 1(\bmod 2 m n)$ for $m=n+1$, Jeśmanowicz' conjecture is true for $m=n+1$. In the following, we always assume that

$$
\begin{equation*}
m>n+1>1, \quad \operatorname{gcd}(m, n)=1, \quad m+n \equiv 1(\bmod 2) . \tag{1.3}
\end{equation*}
$$

In 2014, Terai [15] proved Jeśmanowicz' conjecture is true for $n=2$. In 2015, Miyazaki and Terai [8] proved that Jeśmanowicz' conjecture is true if $m>72 n$, $n \equiv 2(\bmod 4)$ and n satisfies at least one of the following conditions:
(C1) $n / 2$ is a power of an odd prime;
(C2) $n / 2$ has no prime factors congruent to 1 modulo 8 ;
(C3) $n / 2$ is a square.
For more results on the conjecture, see [1, 5, 9, 11-14].
In this paper, we obtain the following result.
Theorem 1.1. Suppose that $4 \nmid m n$. Then the equation

$$
\left(m^{2}-n^{2}\right)^{x}+(2 m n)^{y}=\left(m^{2}+n^{2}\right)^{z}, \quad y \geq 2
$$

has only the positive integer solution $(x, y, z)=(2,2,2)$.
In view of (1.3), it is clear that $4 \nmid m n$ if and only if either $m \equiv 2(\bmod 4)$ or $n \equiv 2(\bmod 4)$. This is equivalent to $c=m^{2}+n^{2} \equiv 5(\bmod 8)$.

2. Preliminary lemmas

Lemma 2.1 [6, Theorem 1.5]. Let (x, y, z) be a positive integer solution of Equation (1.2). If x and z are even, then both $x / 2$ and $z / 2$ are odd.

Lemma 2.2. Let (x, y, z) be a positive integer solution of Equation (1.2). If $y \leq 2$ and x, z are even integers, then $x=y=z=2$.

Proof. Let $x=2 x_{1}$ and $z=2 z_{1}$. By (1.2),

$$
\begin{aligned}
(2 m n)^{y} & =\left(\left(m^{2}+n^{2}\right)^{z_{1}}+\left(m^{2}-n^{2}\right)^{x_{1}}\right)\left(\left(m^{2}+n^{2}\right)^{z_{1}}-\left(m^{2}-n^{2}\right)^{x_{1}}\right) \\
& \geq\left(m^{2}+n^{2}\right)^{z_{1}}+\left(m^{2}-n^{2}\right)^{x_{1}} \\
& >\left(m^{2}+n^{2}\right)^{z_{1}}>(2 m n)^{z_{1}} .
\end{aligned}
$$

It follows from $y \leq 2$ that $z_{1}=1$ and $y=2$. Thus $z=2$. By (1.2), $x=2$.

Lemma 2.3 [6, Lemma 2.1]. Let (x, y, z) be a positive integer solution of Equation (1.2). Then x is even if one of the following holds:
(1) there exists a divisor d of m such that $d \equiv 1(\bmod 4)$;
(2) $n \equiv 2(\bmod 4)$.

In particular, $m n \equiv 2(\bmod 4)$ implies that x is even.
Lemma 2.4. Let (x, y, z) be a positive integer solution of Equation (1.2) with $y \geq 2$. Suppose that $m n \equiv 2(\bmod 4)$. Then z is even.

Proof. Since $m n \equiv 2(\bmod 4)$, it follows that

$$
c=m^{2}+n^{2} \equiv 5(\bmod 8) .
$$

By Lemma 2.3, x is even. In view of $y \geq 2$, (1.2) and $4 \mid b$,

$$
5^{z} \equiv c^{z}=a^{x}+b^{y} \equiv 1(\bmod 8) .
$$

It follows that z is even.

3. Proof of Theorem 1.1

In this section, we assume that (x, y, z) is a positive integer solution of (1.2) with $y \geq 2$. Noting that $4 \nmid m n$, by Lemmas 2.3 and 2.4, $2 \mid x$ and $2 \mid z$. Let $u=m$ and $v=n$ if $n \equiv 2(\bmod 4)$ and let $u=n$ and $v=m$ if $m \equiv 2(\bmod 4)$. Then

$$
u>0, \quad v>0, \quad \operatorname{gcd}(u, v)=1, \quad u+v \equiv 1(\bmod 2), \quad v \equiv 2(\bmod 4) .
$$

It is clear that $u^{2}+v^{2} \equiv 5(\bmod 8)$. Since $2 \mid x$, it follows from (1.2) that

$$
\begin{equation*}
\left(u^{2}-v^{2}\right)^{x}+(2 u v)^{y}=\left(u^{2}+v^{2}\right)^{z} . \tag{3.1}
\end{equation*}
$$

Let $x=2 x_{1}$ and $z=2 z_{1}$. By Lemma 2.1, $2 \nmid x_{1}$ and $2 \nmid z_{1}$. By Lemma 2.2, we may assume that $y \geq 3$. Now Equation (3.1) can be rewritten as

$$
\begin{equation*}
(2 u v)^{y}=\left(\left(u^{2}+v^{2}\right)^{z_{1}}+\left(u^{2}-v^{2}\right)^{x_{1}}\right)\left(\left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}}\right) . \tag{3.2}
\end{equation*}
$$

If $u>v$, then

$$
\left(u^{2}+v^{2}\right)^{z_{1}}+\left(u^{2}-v^{2}\right)^{x_{1}}>0 .
$$

It follows from (3.2) that

$$
\left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}}>0 .
$$

If $u<v$, then, since $2 \nmid x_{1}$,

$$
\left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}}>0 .
$$

It follows from (3.2) that

$$
\left(u^{2}+v^{2}\right)^{z_{1}}+\left(u^{2}-v^{2}\right)^{x_{1}}>0 .
$$

In both cases,

$$
\left(u^{2}+v^{2}\right)^{z_{1}}+\left(u^{2}-v^{2}\right)^{x_{1}}>0, \quad\left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}}>0 .
$$

Noting that

$$
\left(\left(u^{2}+v^{2}\right)^{z_{1}}+\left(u^{2}-v^{2}\right)^{x_{1}},\left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}}\right)=2
$$

and

$$
\left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}} \equiv 0(\bmod 4),
$$

by (3.2), we see that

$$
\begin{align*}
& \left(u^{2}+v^{2}\right)^{z_{1}}+\left(u^{2}-v^{2}\right)^{x_{1}}=2\left(u_{1} v_{1}\right)^{y}, \tag{3.3}\\
& \left(u^{2}+v^{2}\right)^{z_{1}}-\left(u^{2}-v^{2}\right)^{x_{1}}=2^{2 y-1}\left(u_{2} v_{2}\right)^{y}, \tag{3.4}
\end{align*}
$$

where

$$
u=u_{1} u_{2}, \quad v=2 v_{1} v_{2}, \quad\left(u_{1}, u_{2}\right)=1, \quad\left(v_{1}, v_{2}\right)=1 .
$$

By (3.3) and (3.4),

$$
\begin{equation*}
\left(u^{2}+v^{2}\right)^{z_{1}}=\left(u_{1} v_{1}\right)^{y}+2^{2 y-2}\left(u_{2} v_{2}\right)^{y} . \tag{3.5}
\end{equation*}
$$

In view of (3.5), $y \geq 3$ and $2 \nmid z_{1}$,

$$
\left(u_{1} v_{1}\right)^{y} \equiv\left(u^{2}+v^{2}\right)^{z_{1}} \equiv 5^{z_{1}} \equiv 5(\bmod 8)
$$

So

$$
\begin{equation*}
2 \nmid y, \quad u_{1} v_{1} \equiv 5(\bmod 8) . \tag{3.6}
\end{equation*}
$$

For any prime factor p of v_{1}, by (3.3),

$$
u^{2 z_{1}}+u^{2 x_{1}} \equiv 0(\bmod p) .
$$

Thus

$$
\begin{equation*}
u^{2\left|z_{1}-x_{1}\right|} \equiv-1(\bmod p) . \tag{3.7}
\end{equation*}
$$

Since x_{1} and z_{1} are odd, it follows that $4 \mid 2\left(z_{1}-x_{1}\right)$. By (3.7), the multiplicative order of u modulo p is divisible by 8 and so $8 \mid p-1$. Hence $v_{1} \equiv 1(\bmod 8)$ and by (3.6), $u_{1} \equiv 5(\bmod 8)$.

By (3.3),

$$
\left(u^{2}+v^{2}\right)^{z_{1}} \equiv 2\left(u_{1} v_{1}\right)^{y}(\bmod u+v) .
$$

In the following, we use $(* / *)$ to denote the Jacobi symbol. Noting that y (see (3.6)) and z_{1} are odd,

$$
\begin{aligned}
& \left(\frac{u^{2}+v^{2}}{u+v}\right)^{z_{1}}=\left(\frac{2 v^{2}}{u+v}\right)=\left(\frac{2}{u+v}\right) \\
& \left(\frac{2}{u+v}\right)\left(\frac{u_{1} v_{1}}{u+v}\right)^{y}=\left(\frac{2}{u+v}\right)\left(\frac{u_{1} v_{1}}{u+v}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(\frac{u_{1} v_{1}}{u+v}\right)=1 \tag{3.8}
\end{equation*}
$$

Since

$$
u_{1} \equiv 5(\bmod 8), \quad v_{1} \equiv 1(\bmod 8),
$$

it follows from (3.8) that

$$
\left(\frac{u+v}{u_{1}}\right)\left(\frac{u+v}{v_{1}}\right)=1,
$$

that is,

$$
\left(\frac{v}{u_{1}}\right)\left(\frac{u}{v_{1}}\right)=1 .
$$

Hence

$$
\left(\frac{2 v_{1} v_{2}}{u_{1}}\right)\left(\frac{u_{1} u_{2}}{v_{1}}\right)=1
$$

and so

$$
\begin{equation*}
\left(\frac{2}{u_{1}}\right)\left(\frac{v_{1}}{u_{1}}\right)\left(\frac{v_{2}}{u_{1}}\right)\left(\frac{u_{1}}{v_{1}}\right)\left(\frac{u_{2}}{v_{1}}\right)=1 . \tag{3.9}
\end{equation*}
$$

Since $u_{1} \equiv 5(\bmod 8)$, it follows that

$$
\begin{equation*}
\left(\frac{2}{u_{1}}\right)=-1, \quad\left(\frac{v_{1}}{u_{1}}\right)\left(\frac{u_{1}}{v_{1}}\right)=1 . \tag{3.10}
\end{equation*}
$$

By (3.9) and (3.10),

$$
\begin{equation*}
\left(\frac{v_{2}}{u_{1}}\right)=-\left(\frac{u_{2}}{v_{1}}\right) . \tag{3.11}
\end{equation*}
$$

Since y is odd, it follows from (3.5) that

$$
\left(\frac{u_{2} v_{2}}{u_{1}}\right)=1, \quad\left(\frac{u_{1} v_{1}}{u_{2}}\right)=1
$$

and so

$$
\begin{equation*}
\left(\frac{u_{2}}{u_{1}}\right)=\left(\frac{v_{2}}{u_{1}}\right), \quad\left(\frac{u_{1}}{u_{2}}\right)=\left(\frac{v_{1}}{u_{2}}\right) . \tag{3.12}
\end{equation*}
$$

Noting that

$$
u_{1} \equiv 5(\bmod 8), \quad v_{1} \equiv 1(\bmod 8),
$$

by (3.11) and (3.12),

$$
\left(\frac{v_{2}}{u_{1}}\right)=-\left(\frac{u_{2}}{v_{1}}\right)=-\left(\frac{v_{1}}{u_{2}}\right)=-\left(\frac{u_{1}}{u_{2}}\right)=-\left(\frac{u_{2}}{u_{1}}\right)=-\left(\frac{v_{2}}{u_{1}}\right),
$$

a contradiction. This completes the proof of Theorem 1.1.

References

[1] M. J. Deng and G. L. Cohen, 'On the conjecture of Jeśmanowicz concerning Pythagorean triples', Bull. Aust. Math. Soc. 57 (1998), 515-524.
[2] L. Jeśmanowicz, 'Several remarks on Pythagorean numbers', Wiad. Mat. 1 (1955/56), 196-202 (in Polish).
[3] M. H. Le, 'A note on Jeśmanowicz conjecture', Colloq. Math. 69 (1995), 47-51.
[4] W. T. Lu, 'On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$ ', Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
[5] T. Miyazaki, 'On the conjecture of Jeśmanowicz concerning Pythagorean triples', Bull. Aust. Math. Soc. 80 (2009), 413-422.
[6] T. Miyazaki, 'Jeśmanowicz' conjecture on exponential Diophantine equations', Funct. Approx. Comment. Math. 45 (2011), 207-229.
[7] T. Miyazaki, 'Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples', J. Number Theory 133 (2013), 583-595.
[8] T. Miyazaki and N. Terai, 'On Jeśmanowicz' conjecture concerning Pythagorean triples II', Acta Math. Hungar. 147 (2015), 286-293.
[9] T. Miyazaki, P. Z. Yuan and D. Y. Wu, 'Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples II', J. Number Theory 141 (2014), 184-201.
[10] W. Sierpiński, 'On the Diophantine equation $3^{x}+4^{y}=5^{z}$, Wiad. Mat. 1 (1955/56), 194-195 (in Polish).
[11] K. Takakuwa, 'On a conjecture on Pythagorean numbers, III', Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349.
[12] K. Takakuwa, 'A remark on Jeśmanowicz' conjecture', Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 109-110.
[13] K. Takakuwa and Y. Asaeda, 'On a conjecture on Pythagorean numbers, II', Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 287-290.
[14] M. Tang and J. X. Weng, 'Jeśmanowicz' conjecture with Fermat numbers', Taiwanese J. Math. 18 (2014), 925-930.
[15] N. Terai, 'On Jeśmanowicz' conjecture concerning primitive Pythagorean triples', J. Number Theory 141 (2014), 316-323.

MI-MI MA, School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR China e-mail: mamimi421@126.com

YONG-GAO CHEN,
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China
e-mail: ygchen@njnu.edu.cn

[^0]: This work was supported by the National Natural Science Foundation of China, grant no. 11371195, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

