Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T02:13:12.963Z Has data issue: false hasContentIssue false

Insights into a selective synthesis of anatase, rutile, and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes

Published online by Cambridge University Press:  02 September 2013

Mitsuru Yoshizawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Makoto Kobayashi
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Valery Petrykin
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Hideki Kato
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Masato Kakihana*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: kakihana@tagen.tohoku.ac.jp
Get access

Abstract

Novel water-soluble titanium complexes coordinated by hydroxycarboxylic acids or amines were developed, and the hydrothermal treatment of the new complexes was carried out to elucidate the formation mechanism of the titania polymorphs including rutile, anatase, and brookite. An empirical relationship among the crystal structure of TiO2, the ligand, and the complex structure was found. Anatase, rutile, or a mixture of both was obtained by the hydrothermal treatment of the complexes coordinated by hydroxycarboxylic acids. The structure of complexes prepared using hydroxycarboxylic acids, which have one hydroxyl and one carboxylic groups, seems to be preferable for the formation of rutile. It was also found that the hydrothermal treatment of titanium complexes coordinated by amine with NAc2 structure resulted in the formation of brookite. Thus, the effect of ligand and complex structure on the crystal structure of TiO2 synthesized by the hydrothermal treatment of the complexes was proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
Cheng, H., Ma, J., Zhao, Z., and Qi, L.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
Chemseddine, A. and Moritz, T.: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
Gopal, M., Moberly Chan, W.J., and De Jonghe, L.C.: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001 (1997).CrossRefGoogle Scholar
Zheng, Y., Shi, E., Chen, Z., Li, W., and Hu, X., Influence of solution concentration on the hydrothermal preparation of titania crystallites. J. Mater. Chem. 11, 1547 (2001).CrossRefGoogle Scholar
Zhang, Y., Wu, L., Zeng, Q., and Zhi, J.: An approach for controllable synthesis of different-phase titanium dioxide nanocomposites with peroxotitanium complex as precursor. J. Phys. Chem. 112, 16457 (2008).Google Scholar
Li, G. and Gray, K.A.: Preparation of mixed- phase titanium dioxide nanocomposites via solvothermal processing. Chem. Mater. 19, 1143 (2007).CrossRefGoogle Scholar
Zhang, Q. and Gao, L., Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method. Langmuir 19, 967 (2003).CrossRefGoogle Scholar
Wang, Y., Zhang, L., Deng, K., Chen, X., and Zou, Z.: Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructure. J. Phys. Chem. C 111, 2709 (2007).CrossRefGoogle Scholar
Testino, A., Renato Bellobono, I., Buscaglia, V., Canevali, C., D’Arienzo, M., Polizzi, S., Scotti, R., and Morazzoni, F.: Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564 (2007).CrossRefGoogle ScholarPubMed
Reyes-Coronado, D., Rodrígues-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., and Oskam, G.: Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 19, 145605 (2008).CrossRefGoogle ScholarPubMed
Yin, S., Hasegawa, H., Maeda, D., Ishitsuka, M., and Sato, T.: Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process. J. Photochem. Photobiol., A 163, 1 (2004).CrossRefGoogle Scholar
Henry, M., Jolivet, J.P., and Livage, J.: Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation. Struct. Bond. 77, 153 (1992).CrossRefGoogle Scholar
Gao, Y., Luo, H., Mizusugi, S., and Nagai, M.: Surfactant-free synthesis of anatase TiO2 nanorods in an aqueous peroxotitanate solution. Cryst. Growth Des. 8, 1804 (2008).CrossRefGoogle Scholar
Cassaignon, S., Koelsch, M., and Jolivet, J-P.: From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile); thermohydrolysis and oxidation in aqueous medium. J. Phys. Chem. Solids 68, 695 (2007).CrossRefGoogle Scholar
Li, J-G., Ishigaki, T., and Sun, X.: Anatase, brookite, and rutile nanocrystals via redox reaction under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 111, 4969 (2007).CrossRefGoogle Scholar
Kominami, H., Kohno, M., and Kera, Y.: Synthesis of brookite-type titanium oxide nano-crystals in organic media. J. Mater. Chem. 10, 1151 (2000).CrossRefGoogle Scholar
Potter, A., Chnèac, C., Trone, E., Mazerolles, L., and Jolivet, J-P.: Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 on strongly acidic aqueous media. J. Mater. Chem. 11, 1116 (2001).CrossRefGoogle Scholar
Gateshki, M., Yin, S., Ren, Y., and Petkovi, V.: Titania polymorphs by soft chemistry: Is there a common structural pattern? Chem. Mater. 19, 2512 (2007).CrossRefGoogle Scholar
Morishima, Y., Kobayashi, M., Petrykin, V., Yin, S., Sato, T., Kakihana, M., and Tomita, K.: Hydrothermal synthesis of brookite type TiO2 photocatalysts using a water-soluble Ti-complex coordinated by ethylenediaminetetraacetic acid. J. Ceram. Soc. Jpn. 117, 320 (2009).CrossRefGoogle Scholar
Tomita, K., Petrykin, V., Kobayashi, M., Shiro, M., Yoshimura, M., and Kakihana, M.: A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378 (2006).CrossRefGoogle ScholarPubMed
Kobayashi, M., Tomita, K., Petrykin, V., Yoshimura, M., and Kakihana, M.: Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J. Mater. Sci. 43, 2158 (2008).CrossRefGoogle Scholar
Dambournet, D., Belharouak, I., Ma, J., and Amine, K.: Toward high surface area TiO2 brookite with morphology control. J. Mater. Chem. 21, 3085 (2011).CrossRefGoogle Scholar
Kakihana, M., Kobayashi, M., Tomita, K., and Petrykin, V.: Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull. Chem. Soc. Jpn. 83, 1285 (2010).CrossRefGoogle Scholar
Ichinose, H., Taira, M., Furuta, S., and Katsuki, H.: Anatase sol prepared from peroxotitanium complex aqueous solution containing niobium or vanadium. J. Am. Ceram. Soc. 86, 1605 (2003).CrossRefGoogle Scholar
Gao, Y., Masuda, Y., Peng, Z., Tonezawa, T., and Koumoto, K.: Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 13, 608 (2003).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2 . J. Phys. Chem. B 104, 3481 (2000).CrossRefGoogle Scholar
Lazzeri, M., Vittadini, A., and Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. 63, 155409 (2001).CrossRefGoogle Scholar
Oliver, P.M., Watson, G.W., Kelsey, E.T., and Parker, S.C.: Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J. Mater. Chem. 7, 563 (1997).CrossRefGoogle Scholar
Barnard, A.S. and Curtis, L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).CrossRefGoogle ScholarPubMed
Huang, X. and Pan, C.: Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J. Cryst. Growth 306, 117 (2007).CrossRefGoogle Scholar
Kinsinger, N.M., Wong, A., Li, D., Villalobos, F., and Kisailus, D.: Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water-soluble precursor. Cryst. Growth Des. 10, 5354 (2010).CrossRefGoogle Scholar
Livage, J., Henry, M., and Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
Supplementary material: File

Yoshizawa Supplementary Material

Table

Download Yoshizawa Supplementary Material(File)
File 25.6 KB
Supplementary material: Image

Yoshizawa Supplementary Material

Drawing

Download Yoshizawa Supplementary Material(Image)
Image 2.4 MB