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A B S T R A C T : W e study the exact phase space dynamics of relativistic test particles propagating 

in static one-dimensional Alfvén waves, modelling cosmic ray propagation in the interplanetary 

medium and in the interstellar medium. T h e result shows that the conventional approach should 

not be considered adequate to explain important features of particle propagation in Alfvén waves. 

Our present understanding of cosmic ray propagation and acceleration is mainly based 

on a kinetic approach, the well known quasilinear theory of particle transport in magnetic 

turbulence1. We wanted to be in a position to verify the domain of validity of quasilinear 

theory and to solve problems which lie outside this domain. We set up a Hamiltonian 

formulation of the basic problem of test particles propagating in Alfvén waves and used 

the methods of dynamical system theory4 in order to find the solution. Our basic physical 

assumptions are the following: we neglect collisions, radiation losses and any transfer of 

energy and momentum to the waves. We consider only Alfvén waves. The mean magnetic 

field is constant in space and time and the wave field depends only on the coordinate ζ along 

the direction of the mean magnetic field. These assumptions single out the simplest non-

trivial physical system investigated so far by means of the methods of quasilinear theory3. 

This system can be considered as a model of particle propagation in the static interstellar 

medium5. 

The physical picture of particle transport in Alfvén waves underlying quasilinear theory 

is the process of resonant wave-particle interaction. This process has been investigated 

by many authors in the context of dynamical system theory4. A resonant wave-particle 

interaction is a genuine nonlinear process leading to a very strong interaction of a given 

particle with only one harmonic of the field. In the context of quasilinear theory the 

resonance condition is given by cyclotron resonance. The pitch angle cosine, which is 

exactly preserved in the absence of waves, is considered as a zero order adiabatic invariant. 

The first order correction is affected by a secular divergence due to the cyclotron resonance. 

This fact is interpreted as the destruction of the adiabatic invariant, leading to a random 

walk of the particle in phase space and therefore to a Fokker-Planck equation1. 

The first point is that only the primary resonance is considered. That is, a particle 

is denned to be in resonance with a wave when the Larmor frequency is equal to the 
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frequency of the wave in the particle proper frame. Now, resonances occur when at least 
two eigenfrequencies of the unperturbed system are commensurable and not just equal. 
Thus, secondary and higher order resonances are completely neglected in quasilinear theory. 
Indeed, the resonant wave-particle interaction is the result of the collective effect of all the 
resonances between the motion of a particle and the given wave 4. 

The second point is that a resonance is realized by a periodic orbit of the particle. A 
periodic orbit may be either stable or unstable. If the resonant orbit is stable the adiabatic 
invariant is not destroyed in the vicinity of the resonance but instead achieves a different 
topology 4. This implies that the orbits near the stable equilibrium realizing the resonance 
are closed whilst the orbits that are far from the resonance are open curves like the zero order 
orbits. This is the only reason why one obtains a small divisor for the first order correction. 
The appropriate treatment of this problem2 delivers the correct adiabatic invariant that is 
not destroyed in the vicinity of the primary resonance (Fig. 1). This arises because when 
the wave and the particle are in resonant interaction the primary cyclotron resonance is 
realized by a stable periodic orbit. In other words, the only resonance accounted for in the 
quasilinear calculations traps the particles instead of scattering them. 

Figure 1. W e calculated the approximate invariant for a proton of 9 G e V / c moving in a linearly 

polarized monochromatic wave of relative amplitude 6B/BZ = 0.3 and wavelength λ = lOc^f, where 

Π is the Larmor frequency. 

Figure 2. T h e exact Hamiltonian flow was obtained numerically in the same case. T h e pitch angle 

cosine is defined as μ = px/p. The coordinate ζ is normalized to λ / 2 . 
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