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Gauge-invariance 
and order parameters 

For the pure gauge theory without fermions, the formulation of Wilson 
emphasizes the analogy of lattice gauge theory with models of magnetism 
in statistical mechanics. The Uii are much like' spins' located on the bonds 
of the crystal. These variables then interact through the four-spin coupling 
in the Wilson action. Further pursuing this analogy, one might ask whether 
a lattice gauge theory can ever develop a spontaneous magnetization. In 
a ferromagnet, the spins develop a non-vanishing expectation value in the 
direction of the magnetization. Thus we might look for phases of lattice 
gauge theory where (Uij ) =+= O. (9.1) 

We will now show that this is impossible in the Wilson theory. 
In an ordinary magnet, such an expectation value represents a sponta­

neous breaking of a global symmetry. The magnetization has to choose 
some direction in which to point. This may be determined either with 
appropriate boundary conditions or with a limit on a vanishingly small 
applied magnetic field. Once a direction is selected, it remains stable 
because of the infinite number of degrees of freedom in the thermodynamic 
limit. Thermal fluctuations cannot coherently shift the magnetization of 
a large crystal. 

In lattice gauge theory, however, an expectation value as indicated in 
eq. (9.1) breaks the local symmetry of gauge invariance. Because the Wilson 
action is unchanged under the substitution 

UW+gi Uij(gj)-l, (9.2) 

one can arbitrarily rotate the direction of Uij . As this can be done without 
changing an infinite number of degrees of freedom, unlike the ferromagnet, 
thermal fluctuations will induce such rotations and ultimately average over 
all gauges (Elitzur, 1975). More formally, if we change variables on all 
other links emanating from site i 

Uik -+ Uij Uik, k =+= j, (9.3) 

then all dependence on Utj cancels from the action and we have 

(Uij ) = J dUtj Uij , (9.4) 
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which vanishes if Uij contains only non-trivial irreducible representations 
of the group. The magnetization vanishes in pure lattice gauge theory. 

This is unfortunate because in a spin model the magnetization provides 
a useful order parameter for distinguishing phases. At high temperatures 
the system is disordered and the magnetization vanishes identically. If at 
lower temperatures the spins have an expectation value, then we are by 
definition in a ferromagnetic state. If we can show that at sufficiently low 
temperatures such a state exists, then we have proven that the system has 
a phase transition. In lattice gauge theory the expectation of Uij always 

vanishes and therefore cannot be used to monitor phase changes. 
As the problem is intimately entwined with gauge invariance, we should 

look for a gauge-invariant order parameter. Indeed, as the path integral 
runs over all gauges, the gauge non-invariant parts of any operator are 
removed from its expectation value. Thus we will concentrate our attention 
on quantities which are invariant under eq. (9.2). In the pure gauge theory, 
the simplest example of such an object is the trace of the product of four 
links around a plaquette, or essentially the action for the given plaquette. 
It expectation value represents the internal energy of the corresponding 
thermodynamic system and is given by a derivative of the partition 
function 

p= O-(I/n)TrUo> =i(%,8)logZ. (9.5) 

The factor 1 /6 is the ratio of the number of sites to number of plaquettes 
on a four-dimensional lattice. 

The' average plaquette' P is an order parameter in the sense that it must 
exhibit singularities of the bulk thermodynamics. However it lacks the 
useful property of a magnetization in that it never vanishes identically 
except exactly at zero temperature. We cannot distinguish phases with the 
average plaquette vanishing in one and not another. Indeed, gauge­
invariance precludes any local order parameter from having this property 
of a magnetization in a spin system. By local we mean involving the 
expectation of a function of gauge variables in a fixed finite domain of the 
crystal. Several years before Wilson's work, Wegner (1971) used lattice 
gauge theory based on the group Z2 = {± I} as an example of a class of 
models lacking local order parameters and yet having a non-trivial phase 
structure. 

Despite its shortcomings as an order parameter, the average plaquette 
plays a major role in numerical work where it is the simplest variable to 
evaluate. Indeed, many transitions are easily seen as jumps or singularities 
in P as a function of the coupling. For example, in figure 9.1 we show P 
versus the inverse temperature fJ for the gauge group Z2 on a four-
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dimensional lattice. The points are from Monte Carlo analysis and the 
curves are based on strong coupling series and duality, all subjects oflater 
discussion. The large jump in P is indicative of the strong first-order phase 
transition in this model. 

A hypothetical unconfined phase of a gauge theory based on a continuous 
group should contain massless gauge bosons. Using a transfer matrix 
formalism to determine energies, we define the mass gap as the energy 
difference between the ground state and the first excited state. This 
quantity will vanish exactly in an unconfined phase with its free gluons. 

1.0 r"<::"""-,--,------.---,---,------r---,--r--,-----, 

P 0.5 

o 

Z2 gauge theory 
54 lattice 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

13 

Fig. 9.1. The average plaquette for Zzlattice gauge theory. The points are from 
Monte Carlo simulation and the curves from strong and weak coupling analysis. 
Note the discontinuity in P at the phase transition at fJ = }log (1 + y'2) (Creutz, 
1980a). 

In contrast, in a phase displaying confinement of massive quarks, we 
should have a spectrum of massive glueballs and bound states of quarks. 
Thus the mass gap is an order parameter which is expected to vanish in 
one phase but not another. In statistical mechanics language, the mass gap 
is the inverse of the correlation length. The expectation of two separated 
operators in a statistical system will generally display a correlation between 
the operators which falls with the distance between them. Iffor asymptotic 
separations this falloff is exponential, then the coefficient of the decrease 
is the mass gap m 

C(r) '" exp( -mr). (9.6) 

This may be justified using a transfer matrix along the separation r. More 
physically, this equation represents a Yukawa exchange of the lightest 
particles on the theory. When the mass gap vanishes, we obtain power law 
forces as familiar in electrodynamics. Note that as an order parameter the 
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mass gap is not local in that its definition involves correlations between 
asymptotically separated operators. 

The use of the mass gap as an order parameter becomes somewhat more 
complicated if in the confinement phase the hadronic spectrum happens 
to display a massless particle. This is not simply an academic point because 
such a behavior is expected when bare quark masses vanish. In this chiral 
limit, alluded to in chapter 3, Y5 symmetry is probably manifested in a 
Nambu-Jona-Lasinio (1961) Goldstone (1961) mode with a vanishing 
pion mass. In this case a discussion of confinement in terms of the mass 
gap requires a spin analysis of the massless quanta. 

For the pure gluon theory without quarks. Wilson has proposed another 
non-local order parameter. The trace of a product oflinks around a closed 
loop is a gauge-invariant construction. Its expectation value is called the 
Wilson loop 

W(C) = <Tr n Uii ). 
ijeC 

(9.7) 

Here C denotes the loop in question and the group elements are ordered 
as encountered in circumnavigation ofthe contour. The simplest non-trivial 
Wilson loop is the average plaquette, defined in eq. (9.5) with an extra 
additive constant. 

If a quark were to pass around the contour C, its wave function would 
pick up an internal symmetry rotation given by the product of the link 
variables encountered. The Wilson loop essentially measures the response 
of the gauge fields to an external quarklike source passing around its 
perimeter. For a timelike loop, this represents the production of a quark 
pair at the earliest time, moving them along the world lines dictated by 
the sides of the loop, and then annihilating at the latest time. If the loop 
is a rectangle of dimensions T by R, a transfer matrix argument suggests 

that for large T W(R, T) ,.., exp( -E(R) T), (9.8) 
T .... oo 

where E(R) is the gauge field energy associated with static quark-antiquark 
sources separated by distance R. If the interquark energy for large 

separations grows linearly E(R) -+ KR, (9.9) 
R .... oo 

then we expect for large loops of long rectangular shape 

W(R, T),.., exp( -KRT). (9.10) 

The loop expectation falls with the exponential of the area ofthe loop and 
the coefficient of this area law is the coefficient of the linear potential. 
Physically, this area law represents the action of the world sheet of a flux 
tube connecting the sources. This picture suggests that this area law 
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behavior should hold for arbitrarily shaped loops as long as they are 
larger than the cross sectional dimensions of a flux tube. In general we 
expect that with linear confinement 

W(C),.", exp( -KA(C», (9.11) 

where A(C) is the minimal surface area enclosed with the loop C. 
In a theory without confinement, the energy of a quark pair should not 

grow indefinitely with separation, but rather approach twice the self energy 
of an isolated quark. In such a situation the expectation value of the Wilson 
loop will decrease more slowly with loop size, in particular exponentially 
with the perimeter of the contour 

W(C),.", exp( -kp(C». (9.12) 

Here p(C) is the perimeter and k is the self energy contained in the gauge 
fields around an isolated quarklike source. Some perimeter law behavior 
should always be present, even in a confining phase where an area law 
behavior dominates for large enough loops. 

The coefficient of the area law provides another order parameter for 
lattice gauge theory. It vanishes identically in unconfined phases while 
remaining non-zero whenever quark sources experience a linear long-range 
potential. It has been extensively studied partly because of its simple flux 
tube interpretation and partly because of the ease of its evaluation in the 
strong coupling limit, to be discussed later. As it is directly related to the 
inter-quark potential, this coefficient is a physically meaningful parameter. 
In particular, it should be finite in the continuum limit of the pure gluonic 
theory. This is in contrast with the perimeter law behavior which should 
contain self energy divergences as the cutoff is removed. The area law is 
similar to the mass gap in that it represents a non-local order parameter. 
This is because of its definition in terms of the asymptotic behavior of a 
correlation function. It has the advantage over the mass gap in that it may 
be of value even for non-continuous groups such as Z2 which may lose 
confinement without the appearance of a massless particle. 

The area law criterion for confinement loses its value when quarks are 
introduced as dynamical variables. In this situation widely separated 
sources will reduce their energy by creating a pair of quarks from the 
vacuum fluctuations and screening their long range gauge fields. Effectively, 
a large Wilson loop measures the potential between two mesons rather than 
simple bare quarks. If we knew how to calculate with the full theory, 
however, we would not need a criterion for confinement. All we need to 
do is calculate the mass spectrum and see if it agrees with laboratory 
experiments. Hopefully we will soon reach this stage. 
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Similar interesting questions regarding order parameters arise in gauge 
theories of the weak interaction, where a Higgs (1964) mechanism 
generates masses for the gauge bosons. In these theories lattice techniques 
have played almost no role, primarily because perturbative methods are 
more than adequate for relevant phenomenology. In the standard 
presentation, an expectation value for the Higgs field first results in a 
massless Goldstone (1961) boson which is subsequently 'eaten' by the 
gauge field and becomes the longitudinal component of a massive vector 
boson. 

On more detailed inspection, this concept of the Higgs field acquiring 
a vacuum expectation value is overly simplistic. In particular, this field, 
and thereby its expectation, is not gauge-invariant. In some gauges such 
as the temporal one the Higgs expectation value is necessarily zero (Creutz 
and Tudron, 1978; Frohlich, Morchio and Strocchi, 1981) and the vector 
meson mass is related to the behavior of the vacuum under time­
independent gauge transformations which are non-trivial at spatial 
infinity. 

In lattice gauge theory one usually integrates over all gauges. When a 
Higgs field is present, its direction is thus averaged over. We conclude that 
the Higgs phase of the theory does not possess a local order parameter 
in the sense discussed at the beginning of this chapter. As with the 
confinement question, we could use the mass gap as a non-local order 
parameter distinguishing the Higgs phase from the massless vector meson 
phase. But this raises a rather peculiar question. What is the difference 
between the Higgs and confinement phases? Indeed, both are expected to 
have mass gaps. Fradkin and Shenker (1979) have shown that in certain 
cases these phases are not distinct and one can analytically continue from 
one to the other. This occurs when the Higgs field is in the fundamental 
representation of the gauge group. In this case the concept of confinement 
becomes obscured by the fact that an external source can always be 
screened by Higgs particles. This phenomenon gives rise to an alternative 
set of words to describe the states in a weak interaction theory when the 
Higgs fields are in the fundamental representation. For example, the 
electron would be a confined bound state of a bare electron and a Higgs 
particle (Abbott and Farhi, 1981a, b). 

We now leave the discussion of order parameters and turn to the 
question of gauge fixing in the lattice theory. In Wilson's formulation, 
quantization does not require a choice of gauge. The integrals over the link 
variables are each over a compact domain and thus there cannot be any 
divergences arising from an integral over all gauges. This contrasts with 

https://doi.org/10.1017/9781009290395.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290395.010


Gauge invariance and order parameters 57 

usual continuum formulations where the volume of the gauge orbits is 
infinite and some sort of gauge fixing becomes a necessity. In addition to 
regulating the conventional ultraviolet divergences of field theory, the 
Wilson prescription also cuts off the total gauge volume. On the other 
hand, the gauge invariance of the action still permits working within a fixed 
gauge without affecting the expectations of gauge-invariant operators, 
such as the Wilson loop. We will now discuss a special class of gauges which 
are particularly simple in the lattice theory (Creutz, 1977). 

Let P( U) be some polynomial in the link variables which is invariant 
under the general gauge transformation of eq. (9.2). The following 
discussion goes through unchanged with other fields, such as those of 
quarks, present; however, for simplicity we consider only the pure gauge 
theory. Associated with this polynomial is a Green's function 

G(P) = Z-l J(dU)e-S(U)p(U). (9.13) 

We begin the discussion with the consideration of a single link from site 
ito sitej. Suppose that in evaluating the expectation in eq. (9.13) we forgot 
to integrate over that one link variable. Remarkably, we will now see that 
the result for G(P) would not be affected by our sloppiness. To see this 
formally we introduce a delta function on the gauge group. This has the 
properties J dg8(g',g)j(g) = f dg8(g,g')j(g) = j(g') 

8(g,g') = 8(gOggl,gOg'gl) (9.14) 

for arbitrary go and gl" Leaving link Uij fixed at the element g rather than 
integrating over it as instructed in eq. (9.13) gives for the expectation of P 

I(P,g) = Z-l f(dU) 8(Uu, g) e-s(U)p(U). 

Clearly if we integrate over g we get back to eq. (9.13) 

G(P) = f dgI(P, g), 

(9.15) 

(9.16) 

If we now consider the gauge transformation of eq. (9.2) and note the 
invariance of S( U), P( U), and the measure, we obtain 

I(P,g) = I(P,gj1ggj). (9.17) 

Since g, and gj are arbitrary, we conclude that I(P, g) is actually independent 
of g. Eq. (9.16) then tells us 

I(P,g) = G(P), (9.18) 

which is what we set out to prove. To calculate a gauge-invariant Green's 
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function we can set any particular link variable to an arbitrary group 
element and only integrate over the remaining variables. 

The above process can be repeated to fix more link variables. The final 
result is that we can arbitrarily neglect to integrate over any set of Vi} as 
long as this set contains no closed loops. The fixed links should form a 
tree, which may be disconnected. The gauge is completely determined if 
we have a maximal tree, a tree to which the addition of any more links 
would create a closed loop. An example of such a maximal tree is shown 

Fig. 9.2. An example of a maximal tree. All links on the tree can be set 
arbitrarily by the gauge fixing process. 

in figure 9.2. The Vii can be set to arbitrary group elements gii. The general 
formula for the Green's function of our gauge-invariant operator is 

G(P) = Z-lf(dV) n 8(Vii,gij)e-s(U)p(V). (9.19) 
{ij}eT 

Here T denotes the tree in question and {ij} refers to the link connecting 
sites i and i with arbitrary orientation. 

A particularly simple gauge corresponds to setting all links in a 
particular direction to unity. This corresponds to an axial gauge where one 
component of the vector potential vanishes. Choosing the time direction, 
we obtain the Ao = 0 or temporal gauge. This gauge will be useful for the 
construction of a transfer matrix and a Hamiltonian formulation of the 
lattice gauge theory. This gauge is illustrated in figure 9.3 and still leaves 
the freedom of time-independent gauge transformations. 

Note that in an axial gauge plaquettes parallel to that axis represent a 
simple two-spin coupling of the unfixed variables. The theory reduces to 
a set of one-dimensional spin chains interacting with each other via the 
four-spin coupling of the remaining plaquettes. In two space-time 
dimensions there is no interchain coupling and the pure gauge theory is 
equivalent to an exactly solvable one-dimensional spin system. 
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Fig. 9.3. A tree corresponding to the temporal gauge. Here the vertical 
direction represents time. 

Problems 

59 

1. Solve two-dimensional lattice gauge theory for pure gauge fields. 
Find an expression for the average plaquette in terms of simple integrals 
over the gauge group. Show that the model has no phase transitions. Show 
that the Wilson loops always exhibit an area law. 

2. Consider lattice gauge theory defined by replacing Uo by the product 
oflinks around one-by-two rectangles and with the action being a sum over 
all such rectangles. Show that the two-dimensional model is no longer 
trivial. Show that the two-dimensional Z2 model has a phase transition. 

3. Find a gauge fixing tree such that most of the unfixed links have a 
non-vanishing expectation value, even on an infinite lattice. 

4. Given an arbitrary gauge fixing function f(U), show that our 
gauge-invariant Green's function is given by 

G(P) = Z-1 f(dU)(f(U)/¢(u»e-Sp(u), 

where the Fadeev-Popov (1967) correction factor ¢(U) is an integral of 
fover all gauges (Kerler, 1981b) 

¢(U) = fO/dgt)f(gi Uij gj1). 

Show that ¢ = 1 for the gauge fixing function in eq. (9.19). 
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