Szegö's Theorem and Uniform Algebras

Takahiko Nakazi

Abstract. We study Szegö's theorem for a uniform algebra. In particular, we do it for the disc algebra or the bidisc algebra.

1 Introduction

Let A be a uniform algebra on a compact Hausdorff space X. Let τ be a complex homomorphism of A and m the representing measure of τ on X. We have that $L^{p}(m)=L^{p}(X, m)$ denotes the usual Lebesgue space for $1 \leq p \leq \infty$. For a nonnegative function W in $L^{1}(m)=L^{1}(X, m)$, put

$$
S(W)=\inf _{g \in A_{\tau}} \int_{X}|1-g|^{2} W d m
$$

where A_{τ} is the kernel of $\tau . S(W)$ is called a Szegö infimum.
Let D be the open unit disc in \mathbb{C}. Suppose A is the disc algebra on X and $X=\partial D$. When $d m=d \theta / 2 \pi$, it is well known that

$$
S(W)=\exp \int_{\partial D} \log W d \theta / 2 \pi
$$

This is the celebrated theorem of G. Szegö [5]. In [3], the author studied a Szegö infimum $S(W)$ when A is the bidisc algebra on $\partial D \times \partial D$, and $d m=d \theta_{1} d \theta_{2} / 4 \pi^{2}$.

In this paper, we study a Szegö infimum when A is the disc algebra on $X, X=\bar{D}$ and $d m=r d r d \theta / \pi$. Unfortunately we cannot choose the method used in the bidisc algebra on $\partial D \times \partial D$ [3]. We need a new technique.

For $p=1,2, H^{p}(m)=H^{p}(X, m)$ denotes the abstract Hardy space for A, that is, the closure $[A]_{m}$ of A in $L^{p}(X, m)$. For a nonnegative function W in $L^{1}(X, m)$, $H^{p}(W)=H^{p}(X, W d m)$ denotes the closure $[A]_{W d m}$ of A in $L^{p}(X, W d m)$. In this paper, we will assume that m is a Jensen measure of τ, but also that Jensen's inequality is valid for any function in $H^{p}(X, m)$ (see [2]). If h is a function in $H^{2}(X, m)$ and $[h A]_{m}=H^{2}(X, m)$ then h is called a generator in $H^{2}(X, m)$.

In Sections 2 and 3, we study the Szegö infimum for an arbitrary uniform algebra. In Section 2, we study when the Szegö infimum $S(W)$ is the arithmetric mean of the weight W or the geometric mean of W. In Section 3, we study when $S(W)$ is the mixed mean of the arithmetric mean and the geometric mean of W. In Section 4,

[^0]we apply the result in Section 3 when A is the bidisc algebra on $X=\partial D \times \partial D$. In Section 5, we apply the results in Section 2 and 3 when A is the disc algebra on $X=\bar{D}$, and we prove our main results in this paper, that is, Theorems 5.1 and 5.2

2 Arithmetric and Geometric Means

For a nonnegative function W in $L^{1}(X, m)$,

$$
\int_{X} W d m \quad \text { and } \quad \exp \int_{X} \log W d m
$$

are called an arithmetric mean and a geometric mean, respectively. Since m is a Jensen measure of τ, it is easy to see that

$$
\int_{X} W d m \geq S(W) \geq \exp \int_{X} \log W d m
$$

Theorem 2.1 Let W be a nonnegative function in $L^{1}(X, m)$, then $S(W)=\int_{X} W d m$ if and only if $\int_{X} f W d m=\tau(f) \int_{X} W d m(f \in A)$.

Proof If $S(W)=\int_{X} W d m$, then for any $g \in A_{\tau}$,

$$
\int_{X} W d m \leq \int_{X} W d m-2 \operatorname{Re} \int_{X} g W d m+\int_{X}|g|^{2} W d m
$$

and so

$$
2 \operatorname{Re} \int_{X} g W d m \leq \int_{X}|g|^{2} W d m
$$

Suppose $\int_{X} g W d m \neq 0$. For $\alpha=\left|\int_{X} g W d m\right| / \int_{X} g W d m$, consider αg as g. Then

$$
2\left|\int_{X} g W d m\right| \leq \int_{X}|g|^{2} W d m
$$

Consider $\operatorname{tg} \in A_{\tau}$ for $0<t<1$. Then

$$
2 t\left|\int_{X} g W d m\right| \leq t^{2} \int_{X}|g|^{2} W d m
$$

and so $\int_{X} g W d m=0$ as $t \rightarrow 0$. This contradiction implies the "only if" part. The "if" part is clear.

Theorem 2.2 Let W be a nonnegative function in $L^{1}(X, m)$. If $W=|h|^{2}$ for some generator h in $H^{2}(X, m)$, then $S(W)=\exp \int_{X} \log W d m>0$.

If $S(W)=\exp \int_{X} \log W d m>0$, then there exists a function h in $H^{2}(X, m)$ such that $|h|^{2} W=c$ a.e. m for some positive constant c.

Proof If $W=|h|^{2}$ for some generator h, then $S\left(|h|^{2}\right)=\left|\int_{X} h d m\right|^{2}$ and

$$
S\left(|h|^{2}\right) \geq \exp \int_{X} \log |h|^{2} d m \geq\left|\int_{X} h d m\right|^{2}
$$

Hence $S\left(|h|^{2}\right)=\exp \int_{X} \log |h|^{2} d m$.
Suppose $S(W)=\exp \int_{X} \log W d m>0$. Then τ is continuous on $H^{2}(W)$, and so there exists a function f in $H^{2}(W)$ such that

$$
\int_{X} f d m=1 \text { and } \inf _{g \in A_{\tau}} \int_{X}|1-g|^{2} W d m=\int_{X}|f|^{2} W d m
$$

By Jensen's inequality,

$$
\int_{X}|f|^{2} W d m \geq \exp \int_{X} \log W d m \exp \int_{X} \log |f|^{2} d m \geq\left|\int_{X} f d m\right|^{2} \exp \int_{X} \log W d m
$$

Thus

$$
\int_{X}|f|^{2} W d m=\exp \int_{X} \log |f|^{2} W d m
$$

and so $|f|^{2} W=c$ a.e. m for some positive constant c.

3 Intermediate Mean

Let $W=W_{1} W_{2}$ be in $L^{1}(X, m)$, where W_{j} is a nonnegative function in $L^{1}(X, m)$ for $j=1,2$. Then

$$
\int_{X} W_{1} d m \int_{X} W_{2} d m \geq \int_{X} W_{1} d m \exp \int_{X} \log W_{2} d m \geq \exp \int_{X} \log W_{1} W_{2} d m
$$

It may happen that

$$
\int_{X} W_{1} W_{2} d m=\int_{X} W_{1} d m \int_{X} W_{2} d m
$$

Theorem 3.1 Let $W_{1} d m / \int_{X} W_{1} d m$ be a representing measure for τ and $W_{2}=|h|^{2}$ for some generator h in $H^{2}(X, m)$. If $W=W_{1} W_{2}$ is in $L^{1}(X, m)$, then

$$
S(W) \geq \int_{X} W_{1} d m \exp \int_{X} \log W_{2} d m
$$

If W_{1} is in $L^{\infty}(X, m)$, then the equality is valid.
Proof Since $W_{2}=|h|^{2}$ and $h \in H^{2}(m)$, by Schwarz's inequality

$$
\begin{aligned}
S(W) & =\inf _{g \in A_{T}} \int_{X}|h-h g|^{2} W_{1} d m \\
& \geq \inf _{g \in A_{T}}\left|\int_{X} h W_{1} d m-\int_{X} h g W_{1} d m\right|^{2}\left(\int_{X} W_{1} d m\right)^{-1} \\
& =\left|\int_{X} h W_{1} d m\right|^{2}\left(\int_{X} W_{1} d m\right)^{-1}=\left|\int_{X} h d m\right|^{2} \int_{X} W_{1} d m
\end{aligned}
$$

because $W_{1} d m / \int_{X} W_{1} d m$ is a representing measure of τ. If $W_{1} \in L^{\infty}(m)$, the closure of A_{τ} in $L^{2}(m)$ belongs to the closure of $h A_{\tau}$ in $L^{2}\left(W_{1} d m\right)$ and hence

$$
S(W)=\inf _{g \in A_{\tau}} \int_{X}|h-h g|^{2} W_{1} d m=\left|\int_{X} h d m\right|^{2} \int_{X} W_{1} d m
$$

On the other hand, by Theorem 2.2

$$
\left|\int_{X} h d m\right|^{2}=S\left(W_{2}\right)=\exp \int_{X} \log W_{2} d m
$$

This implies the theorem.
If W is a nonnegative function in $L^{1}(X, m)$, then $H^{2}(W)$ denotes the closure of A in $L^{2}(X, W d m)$. If $W \equiv 1$, then $H^{2}(W)=H^{2}(m)=H^{2}(X, m)$ and

$$
[\sqrt{W} A]_{m}=\sqrt{W} H^{2}(W)
$$

Lemma 3.2 Let W be a nonnegative function in $L^{1}(X, m)$. If $[\sqrt{W} A]_{m} \ominus\left[\sqrt{W} A_{\tau}\right]_{m}$ contains a cyclic vector u, then $[\sqrt{W} A]_{m}=q \sqrt{W_{1}} H^{2}\left(W_{1}\right)$, where q is a unimodular function and $W_{1} d m / \int_{X} W_{1} d m$ is a representing measure for τ.
Proof If $u \in[\sqrt{W} A]_{m} \ominus\left[\sqrt{W} A_{\tau}\right]_{m}$, then u is orthogonal to $u A_{\tau}$, and so $|u|^{2}$ is orthogonal to A_{τ}. Put

$$
q(x)= \begin{cases}u(x) /|u(x)| & \text { if } u(x) \neq 0 \\ 1 & \text { if } u(x)=0\end{cases}
$$

and $W_{1}=|u|^{2}$, then $u=q \sqrt{W_{1}}$ and $W_{1} d m / \int_{X} W_{1} d m$ is a representing measure of τ. If u is a cyclic vector, then $[\sqrt{W} A]_{m}=[u A]_{m}=q \sqrt{W_{1}} H^{2}\left(W_{1}\right)$.
Theorem 3.3 Let W be a nonnegative function in $L^{1}(X, m)$ and suppose $[\sqrt{W} A]_{m} \ominus$ $\left[\sqrt{W} A_{\tau}\right]_{m}$ has a cyclic vector u. Then $W=W_{1} W_{2}$, where $W_{1}=|u|^{2}$ and $W_{2}=|h|^{2}$ for some h in $H^{2}\left(W_{1}\right)$ such that $h A$ is dense in $H^{2}\left(W_{1}\right)$.
(i) $S(W)=\left|\int_{X} h W_{1} d m\right|^{2}\left(\int_{X} W_{1} d m\right)^{-1}$.
(ii) If W_{1}^{-1} belongs to $L^{\infty}(X, m)$, then

$$
S(W)=\left|\int_{X} h d m\right|^{2} \int_{X} W_{1} d m=\int_{X} W_{1} d m \exp \int_{X} \log W_{2} d m
$$

Proof By Lemma3.2, $\sqrt{W}=q \sqrt{W_{1}} h,[h A]_{W_{1} d m}=H^{2}\left(W_{1}\right)$, and $W_{1} d m / \int W_{1} d m$ is a representing measure for τ. Hence $W=W_{1}|h|^{2}$ and $h-\left(\int_{X} h W_{1} d m\right)\left(\int_{X} W_{1} d m\right)^{-1}$ belongs to $\left[A_{\tau}\right]_{W_{1} d m}$. Since $h A$ is dense in $H^{2}\left(W_{1}\right)=[A]_{W_{1} d m}, h A_{\tau}$ is dense in $\left[A_{\tau}\right]_{W_{1} d m}$. Hence

$$
S(W)=\int_{X}\left|\left(\int_{X} h W_{1} d m\right)\left(\int_{X} W_{1} d m\right)^{-1}\right|^{2} W_{1} d m
$$

This implies (i). If W_{1}^{-1} belongs to $L^{\infty}(m)$, then $H^{2}\left(W_{1}\right) \subseteq H^{2}(m)$, and so h belongs to $H^{2}(m)$. Hence h is a generator in $H^{2}(m)$. Thus $\int_{X} h W_{1} d m=\int_{X} h d m \int_{X} W_{1} d m$ and $\exp \int_{X} \log |h| d m=\left|\int_{X} h d m\right|$ by the proof of Theorem 3.1 This implies (ii).

4 Bidisc Algebra on $\partial D \times \partial D$

In this section, A denotes the bidisc algebra on $X=\partial D \times \partial D, \tau(f)=f(0,0)(f \in A)$ and $d m=d \theta_{1} d \theta_{2} / 4 \pi^{2}$. Then m is a Jensen measure of τ. In [3], we gave a necessary and sufficient condition for that $S(W)=\int_{X} W d m$. The condition is equivalent to that in Theorem 2.1 In [3], we also proved that $S(W)=\exp \int_{X} \log W d m$ if and only if $W=|h|^{2}$ for some generator h in $H^{2}(X, m)$. For the proof, the "if" part is the same as the one in Theorem 2.2 We cannot use Theorem 2.2 for the "only if" part. In [3], we proved it in a different way.

Let r be a rational number and E_{r} denote a subset of Z. For $-\infty<r<0$, suppose $W_{1 r}$ is a nonnegative function in $L^{1}(X, m)$ such that

$$
W_{1 r} \sim \sum_{t \in E_{r}} a_{t} \zeta^{t \alpha}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ with $\alpha_{1}=r \alpha_{2}$ and $\zeta^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}$. For $0<r<\infty$, suppose $W_{2 r}$ is a nonnegative function in $L^{1}(X, d m)$ such that

$$
\log W_{2 r} \sim \sum_{t \in E_{r}} b_{t} \zeta^{t \alpha}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ with $\alpha_{1}=r \alpha_{2}$. Suppose $W_{1}=\sum_{r} W_{1 r}$ is a finite sum for $-\infty<r<0$, and $W_{2}=\prod_{r} W_{2 r}$ is a finite product for $0<r<\infty$, respectively. Then W_{j} belongs to $L^{1}(X, m)$ for $j=1,2, W_{1} / \int_{X} W_{1} d m$ is a representing measure of the origin, and it is easy to see that there exists a generator h in $H^{2}(X, m)$ with $W_{2}=|h|^{2}$ when $E-r=Z$, for $0<r<\infty$.

In fact, if F and G are in $L^{1}(X, m)$, and

$$
F \sim \sum_{t \in E_{r}} a_{t} \zeta^{\alpha t} \text { and } G \sim \sum_{t \in E_{\ell}} b_{t} \zeta^{\beta t}
$$

where $\alpha_{1}=r \alpha_{2}, \beta_{1}=\ell \beta_{2}$ and $r \neq \ell$, then

$$
\int_{X} F G d m=\int_{X} F d m \int_{X} G d m
$$

This implies that W_{2} belongs to $L^{1}(X, m)$. By one variable theory, for each $0<r<\infty$ there exists a generator h_{r} in $H^{2}(X, m)$ such that

$$
h_{r}=\sum_{t \in E_{r} \cap Z_{+}} c_{t} \zeta^{\beta t} \text { and } W_{2 r}=\left|h_{r}\right|^{2}
$$

Then it is easy to see that $W_{2}=\left|\prod_{r} h_{r}\right|^{2}$ and $\prod_{r} h_{r}$ is a generator in $H^{2}(X, m)$. For if h_{r} and h_{s} are generators and $r \neq s$ then there exist sequences $h_{r n}$ and $h_{s n}$ such that

$$
\int_{X}\left|h_{r} h_{r n}-1\right|^{2} d m \rightarrow 0 \text { and } \int_{X}\left|h_{s} h_{s n}-1\right|^{2} d m \rightarrow 0
$$

where $h_{r n}$ and $h_{s n}$ are polynomials. Then

$$
\begin{aligned}
& \left(\int_{X}\left|h_{r} h_{s} h_{r n} h_{s n}-1\right|^{2} d m\right)^{1 / 2} \\
& \quad \leqq\left(\int_{X}\left|\left(h_{r} h_{r n}-1\right) h_{s} h_{s n}\right|^{2} d m\right)^{1 / 2}+\left(\int_{X}\left|h_{s} h_{s n}-1\right|^{2} d m\right)^{1 / 2} \\
& \quad=\left(\int_{X}\left|h_{r} h_{r n}-1\right|^{2} d m\right)^{1 / 2}\left(\int_{X}\left|h_{s} h_{s n}\right|^{2} d m\right)^{1 / 2}+\left(\int_{X}\left|h_{s} h_{s n}-1\right|^{2} d m\right)^{1 / 2}
\end{aligned}
$$

Hence the product $h_{r} h_{s}$ is also a generator. Hence if W_{1} is in $L^{\infty}(X, m)$ applying Theorem 3.1 to $W=W_{1} W_{2}, S(W)=\int_{X} W_{1} d m \exp \int_{X} \log W_{2} d m$. On the other hand, if $W_{2}=W_{2 r}$ for some $0<r<\infty$ without assuming W_{1} in $L^{\infty}(X, m)$, then we can show that $S(W)=\int_{X} W_{1} d m \exp \int_{X} \log W_{2} d m$. In fact, if $g_{r}=\sum_{t \in E_{r} \cap Z_{+}} c_{t} \zeta^{\beta_{t}}$ with $c_{0}=0$, then

$$
\int_{X}\left|1-g_{r}\right|^{2} W_{1} W_{2} d m=\int_{X} W_{1} d m \int_{X}\left|1-g_{r}\right|^{2} W_{2} d m \geq S\left(W_{1} W_{2}\right)
$$

Now Theorem3.1implies that $S(W)=\int_{X} W_{1} d m \exp \int_{X} \log W_{2} d m$.

5 Disc Algebra on \bar{D}

In this section, A denotes the disc algebra on $X=\bar{D}, \tau(f)=f(0)(f \in A)$, and $d m=r d r d \theta / \pi$. Then m is a Jensen measure of τ. In this situation, $S(W)$ has not been studied. $H(D)$ denotes the set of all holomorphic functions on D. In the following theorem, the "if" part is just a corollary of Theorem 2.2. For the "only if" part we can use Theorem 2.2 unlike in the case of the bidisc algebra (see $\S 4$ or [3]).
Theorem 5.1 Let $X=\bar{D}, A=$ the disc algebra on \bar{D} and $d m=r d r d \theta / \pi$. Suppose W is a nonnegative function in $L^{1}(\bar{D}, m)$ and $\log W$ is in $L^{1}(\bar{D}, m)$. Then $S(W)=$ $\exp \int_{X} \log W d m$ if and only if $W=|h|^{2}$ for some generator h in $H^{2}(\bar{D}, m)$.
Proof By Theorem 2.2, if $W=|h|^{2}$ for some generator h in $H^{2}(m)$, then $S(W)=$ $\exp \int_{\bar{D}} \log W d m>0$.

If $S(W)=\exp \int_{\bar{D}} \log W d m>0$, then τ is continuous on $H^{2}(W)$ and so there exists a function f in $H^{2}(W)$ such that

$$
f(0)=\int_{\bar{D}} f d m=1 \text { and } S(W)=\int_{\bar{D}}|f|^{2} W d m
$$

Since $\int_{\bar{D}} \log W d m>-\infty, H^{2}(W) \subset H(D)$ by [4] and so f is analytic on D. Since

$$
\int_{\bar{D}}|f|^{2} W d m \geq \exp \int_{\bar{D}} \log W d m \exp \int_{\bar{D}} \log |f|^{2} d m \geq \exp \int_{\bar{D}} \log W d m
$$

because $\exp \int_{\bar{D}} \log |f|^{2} d m \geq|f(0)|^{2}=1,|f|^{2} W=c>0$ a.e.m. If $f(a)=0$ for some $a \in D$, then there exists a positive integer ℓ such that $f=(z-a)^{\ell} g, g \neq 0$ on
$D(a, 2 \varepsilon)$ for some $\varepsilon>0$ and $g \in H(D)$. Hence

$$
\begin{aligned}
\int_{\bar{D}} W d m & =c \int_{\bar{D}}\left|f^{-1}\right|^{2} d m=c \int_{D} \frac{1}{|z-a|^{2 \ell}}\left|g^{-1}\right|^{2} d m \\
& \geq c \delta \int_{D(a, \varepsilon)} \frac{1}{|z-a|^{2 \ell}} d m
\end{aligned}
$$

where $\delta^{-1}=\inf \left\{|g(z)|^{2}: z \in D(a, \varepsilon)\right\}$. While

$$
\begin{aligned}
\int_{D(a, \varepsilon)} \frac{1}{|z-a|^{2 \ell}} d m & =\int_{D(0, \varepsilon)} \frac{1}{|z|^{2 \ell}} \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d m \\
& \geq\left(\frac{1-|a|}{1+|a|}\right)^{2} \int_{D(0, \varepsilon)} \frac{1}{|z|^{2 \ell}} d m=\infty
\end{aligned}
$$

This contradiction implies that f has no zeros on D. Hence f^{-1} belongs to $H(D) \cap$ $L^{2}(m)$. Since it is known that $H(D) \cap L^{2}(m)=H^{2}(m), f^{-1}$ belongs to $H^{2}(m)$. Hence $\int_{\bar{D}} \log |f| d m=\log |f(0)|$ because $\int_{\bar{D}} \log |f| d m \geq \log |f(0)|$. Put $h=\sqrt{c} f^{-1}$, then $W=|h|^{2}$ and

$$
S(W)=\exp \int_{\bar{D}} \log W d m=|h(0)|^{2}
$$

and so $h-h(0)$ belongs to $\left[h A_{\tau}\right]_{m}$. This implies that $h(0)$ belongs to $[h A]_{m}$, and so h is a generator in $H^{2}(m)$.

If $W=|f|^{2}$ for some $f \in H^{2}(\bar{D}, m)$, then $W=W_{1} W_{2}$, where $W_{1}=|Q|^{2}$ for some inner function in $H^{2}(\bar{D}, m), W_{1} d m / \int_{\bar{D}} W_{1} d m$ is a representing measure of the origin and $W_{2}=|h|^{2}$ for some generator h in $H^{2}(\bar{D}, m)$. This is a deep result of a factorization theorem for a function in the Bergman space [1]. Hence if W_{1} is in $L^{\infty}(\bar{D}, m)$, then $H^{2}(\bar{D}, m) \subseteq H^{2}\left(\bar{D}, W_{1} d m\right)$, and so $h A$ is dense in $H^{2}\left(\bar{D}, W_{1} d m\right)$. Hence

$$
S(W)=\left|\int_{\bar{D}} h W_{1} d m\right|^{2}\left(\int_{\bar{D}} W_{1} d m\right)^{-1}
$$

Moreover, if W_{1}^{-1} is in $L^{\infty}(\bar{D}, m)$, then

$$
\begin{aligned}
S(W) & =\left|\int_{\bar{D}} h d m\right|^{2} \int_{\bar{D}} W_{1} d m \\
& =\int_{\bar{D}} W_{1} d m \exp \int_{\bar{D}} \log W_{2} d m
\end{aligned}
$$

In general, it is easy to see that

$$
\begin{aligned}
S(W) & \geq \int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi \\
& \geq \exp \int_{\bar{D}} \log W d m
\end{aligned}
$$

Theorem 5.2 Let $X=\bar{D}, A=$ the disc algebra on \bar{D} and $d m=r d r d \theta / \pi$. Suppose W is a positive function in $L^{1}(\bar{D}, m)$ and $\log W$ is in $L^{1}(\bar{D}, m)$. If

$$
S(W)=\int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi
$$

then $W\left(r e^{i \theta}\right)=\phi(r)\left|h\left(r e^{i \theta}\right)\right|^{2}$, where

$$
h \in H(D), \quad \exp \int_{0}^{2 \pi} \log \left|h\left(r e^{i \theta}\right)\right| d \theta / 2 \pi=|h(0)|>0
$$

and ϕ is a positive function in $L^{1}([0,1], d r)$. Conversely if $W\left(r e^{i \theta}\right)=\phi(r)\left|h\left(r e^{i \theta}\right)\right|^{2}$ and h is a generator in $H^{2}(\bar{D}, \phi d m)$, then

$$
S(W)=\int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi
$$

Proof Since $\log W \in L^{1}(m)$, by the proof of Theorem[5.1]there exists f in $H(D)$ with $f(0)=1$ such that

$$
\begin{aligned}
\inf _{g \in A_{\tau}} \int_{\bar{D}}|1-g|^{2} W d m & =\int_{\bar{D}}|f|^{2} W d m=\int_{0}^{1} 2 r d r \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right) d \theta / 2 \pi \\
& \geq \int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right) d \theta / 2 \pi \\
& \geq \int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi
\end{aligned}
$$

If $S(W)=\int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi$, then

$$
\begin{aligned}
& \int_{0}^{1} 2 r d r \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right) d \theta / 2 \pi= \\
& \int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right) d \theta / 2 \pi
\end{aligned}
$$

Hence for a.e. $r \in[0,1]$

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right) d \theta / 2 \pi=\exp \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right) d \theta / 2 \pi
$$

and $\int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta / 2 \pi=\log |f(0)|$. Therefore $\left|f\left(r e^{i \theta}\right)\right|^{2} W\left(r e^{i \theta}\right)=\phi(r)$ for a.e. $\theta \in[0,2 \pi]$. If $f(a)=0$ for some $a \in D$, then $\phi(r)=0$ for $r=|a|$. Since $W\left(r e^{i \theta}\right)>0, f\left(r e^{i \theta}\right)=0$ for $r=|a|$. This contradiction implies that $|f(z)|>0$ for
$z \in D$. Put $h\left(r e^{i \theta}\right)=1 / f\left(r e^{i \theta}\right)$, then $W\left(r e^{i \theta}\right)=\phi(r)\left|h\left(r e^{i \theta}\right)\right|^{2}$, where $h \in H(D)$ and $\exp \int_{0}^{2 \pi} \log \left|h\left(r e^{i \theta}\right)\right| d \theta / 2 \pi=\log |h(0)|$.

Conversely, if $W\left(r e^{i \theta}\right)=\phi(r)\left|h\left(r e^{i \theta}\right)\right|^{2}$ and h is a generator in $H^{2}(\bar{D}, \phi d m)$, then

$$
\begin{aligned}
\inf _{g \in A_{\tau}} \int_{\bar{D}}|1-g|^{2} W d m & =\left|\int_{\bar{D}} h \phi d m\right|^{2}=|h(0)|^{2} \int_{\bar{D}} \phi d m \\
& =\int_{0}^{1} 2 r \phi(r) d r \exp \int_{0}^{2 \pi} \log \left|h\left(r e^{i \theta}\right)\right|^{2} d \theta / 2 \pi \\
& =\int_{0}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi
\end{aligned}
$$

Here we used that $\phi d m / \int_{\bar{D}} \phi d m$ is a representing measure of τ.
Suppose $W=|f|^{2}$ for some f in the Hardy space $H^{2}(\partial D, d \theta / 2 \pi)$ and $f=q h$, where q is inner and h is outer. Then

$$
\exp \int_{\bar{D}} \log |h|^{2} d m \geq S(W) \geq \exp \int_{\bar{D}} \log |q|^{2} d m \exp \int_{\bar{D}} \log |h|^{2} d m
$$

In fact, $|h|^{2} \geq W$ and $S\left(|h|^{2}\right)=\exp \int_{\bar{D}} \log |h|^{2} d m$ by Theorem5.1
Suppose $W=\chi_{E}|h|^{2}$, where χ_{E} is the characteristic function of $E=\left\{z \in \bar{D}: r_{0} \leq\right.$ $|z|<1\}$, and h is a generator. Put $W_{1}=\chi_{E}$ then $W_{1} d m /\left(1-r_{0}^{2}\right)$ is a representing measure of τ. By the proof of Theorem 3.1,

$$
S(W)=\left|\int_{\bar{D}} h W_{1} d m\right|^{2}\left(\int_{\bar{D}} W_{1} d m\right)^{-1}=|h(0)|^{2}\left(1-r_{0}^{2}\right)
$$

Hence

$$
S(W)=\int_{r_{0}}^{1} 2 r d r \exp \int_{0}^{2 \pi} \log W\left(r e^{i \theta}\right) d \theta / 2 \pi
$$

Suppose E is a simply connected domain in D whose boundary contains the origin. Then $S\left(\chi_{E}\right)=0$, since

$$
\inf _{g \in A_{\tau}} \int_{E}|1-g|^{2} d m=\inf _{f \in A} \int_{\bar{D}}|1-(z-1) f|^{2} d m=0
$$

References

[1] A. Aleman, S. Richter, and C. Sundberg, Beurling's theorem for the Bergman space. Acta Math.177(1996), no. 2, 275-310. doi=10.1007/BF02392623 doi:10.1007/BF02392623
[2] T. W. Gamelin, Uniform algebras. Prentice-Hall, Englewood Cliffs, NJ, 1969.
[3] T. Nakazi, Szegö's theorem on a bidisc. Trans. Amer. Math. Soc. 328(1991), no. 1, 421-432. doi=10.2307/2001888 doi:10.2307/2001888
[4] T. Nakazi and M. Yamada, Riesz's functions in weighted Hardy and Bergman spaces. Canad. J. Math. 48(1996), no. 5, 930-945.
[5] G. Szegö, Beiträge zur Theorie der Toeplitzschen Formen. Math. Z. 6(1920), no. 3-4, 167-202. doi:10.1007/BF01199955

Hokusei Gakuen University, Sapporo 004-8631, Japan
e-mail: z00547@hokusei.ac.jp

[^0]: Received by the editors June 13, 2008; revised March 4, 2009. Published electronically February 10, 2011.
 This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education AMS subject classification: 32A35, 46J15, 60G25.
 Keywords: Szegö's theorem, uniform algebras, disc algebra, weighted Bergman space.

