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1. Recently Karachentsev's group at SAO (6-meter Telescope 

Observatory) published a list of 84 triple systems of galaxies 

with their distances, radial (line of sight) velocities, and 

angular sizes (Karachentseva et al., 1988). This gives a new 

ground for studies of the dark matter problem which fills the gap 

between the large cosmic scales (White, 1987; Dekel and Rees, 

1987, and Einasto et al., 1977) and the scale of individual 

galaxies (Erickson et al., 1987). The data on the typical 

velocity dispersions and linear dimension of the triplets 

indicate that they contain considerable amounts of dark matter 

(see also earlier work of Karachentseva et al. (1979). Numerical 

simulations show that the statistical characteristics of the 

Karachentsev triplets can be imitated by model ensembles of 

triple systems with dark matter masses M^ = (1 - 3) x 1012 MQ, 

which is almost ten times greater than the typical mass of 

stellar galaxies estimated by the standard mass-to-luminosity 

ratio (Kiseleva and Chernin, 1988). 
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Here we report that important information can be drawn from 

the data on the visible configurations of these systems. The 

statistics of configurations provide an independent evidence for 

dark matter in the triplets; moreover, it enables one to argue 

that dark matter seems to be distributed over the whole volume of 

the typical triplet forming its commom corona rather than 

concentrated within individual coronae (or haloes) of the member 

galaxies. 

Let us consider a configuration diagram for triplets (Figure 

1) where AB is the largest side of each of the visible 

configurational triangles; CBD is a part of circle of radius AB 

with the center in A; AB = AD, AC « DC, and CD is normal to AB. 

Any triangle finds its top (opposite to the largest side) in the 

area CBD, and therefore any triple system can be plotted as a 

point in this area (Agekian and Anosova, 1967). 

Figure 1 presents such a 

diagram for 46 "physical" triplets 

of the Karachentsev list. Their 

distribution over the diagram 

proves to be fairly homogeneous. 

The mean number density of the 

points in each of the four zones 

(as shown in Figure 1) is the same 

6n 
within the limits |-T-r| < 1«36 a, 

where a = 0.28, is the r.m.s. 

deviation in the Monte-Carlo experiment carried out especially 

for a random scattering of 46 points over the diagram area. 
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In our computer simulations, two types of numerical models 

imitating the observed triplets were studied: isolated three 

body system with components of equal masses (Model I), and 

three mass system with distributed dark matter spread spheri-

cally over the main volume of the system with density p ~ 1/r 

(r-i < r < r0j r-, = 10 Kpc, r9 = 1 Mps) (Model II). The 
• 2 2 1/2 

"softened" potential <j>(r) = -Gm/(r^ + e ) for body-body 

interactions was used, where e = 10-2 in the unit system with 

G = m = 1. The time was measured in the units of the crossing 

1/2 i i 3/2 
time T = G(£ m.) / I m.m ./(2|E|) , where E is the total energy 

i if J J 

of the triplet. A set of ensembles of 46 triplets for each type 

of model has been compiled and analyzed. The results (Table 1) 

appear to be in favor of Model II. 

TABLE 1 

Relative Number Density, n~ " , for Configuration Zones 
1 <n> a 

1 - 4 of Figure 1 

Zones 

Observations 

Model I 

Model II 

1 

-0.32 

-0.70 

-0.26 

2 

0.10 

-0.80 

-0.24 

3 

-0.12 

-0.30 

0.16 

4 

0.34 

1.80 

0.34 

Any ensemble of Model I reveals a considerable excess of 

configurations in zone 4: in a typical example shown in Table 
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1 \-r—-r-l = 7.3 a. Zone 4 contains hierarchial structures in 
i<n>i . 4 

which one side of the configurational triangle is much less than 

the other two. This excess of configurations in the physical 

space cannot be smoothed out by projection effects; on the 

contrary, projection would lead to an even greater excess of this 

kind in the statistics of visible configurations, as a special 

analysis shows. Only ensembles of Model II can provide 

homogeneous distributions of configurations over zones 1 - 4 

similar to the observed statistics; in a typical example 

I^" I < 1.3 0. Dynamical explanation of such a difference is 1<n>I J * 

related to the fact that the probability of formation and 

existance of a close binary within a system of three gravitating 

bodies is rather high (Kiseleva and Chernin, 1988). Systems with 

close binaries look in projection mostly like hierarchical 

configurations. However, distributed dark matter makes body-body 

interactions less effective and decreases essentially the 

probability of binary formation in Model II in comparison to 

Model I. Table 1 presents an example of ensembles in which this 

dynamical effect reveals itself most clearly. Generallly, 

ensembles of Models II demonstrate a wide variety of 

configuration statistics which merits a special study in the 

whole context of the statistical properties and stochatic 

behavior of triple galaxies. 

2. Numerical experiments have demonstrated that chaotic 

dynamics can develop in the triple systems with a characteristic 

time scale which is sufficiently less than the age of the 

observed triple galaxies. We studied stochasticity of the 
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systems using the method by Casartelli et al. (1976) and computed 

the maximum Liapunov exponent A(t) = ,, * n (-r) In ,,^; that 
a \o)+v t d(0) 

gives one the mean exponential rate of divergence of two 

initially close trajectories. Here d(t) is distance between two 

trajectories in the phase space. More than 50 individual 

trajectories are analyzed. The Liapunov exponent proves to be 

positive for each of them, and reaches the values ~20 1/T. 

Figure 2 shows a typical curve for the time dependent Liapunov 

exponent. It provides a clear indication for dynamical 

instability in the system. 

The numerical experiments enable one to trace also the 

divergence of trajectories directly. Figure 3 shows a typical 

evolution of d(t). It demonstrates the high sensitivity of the 

system to the small difference in the initial conditions which 

leads inevitably to stochastic behavior of the system in time. 

Figure 4 demonstrates the autocorrelation function for the 
DE "configuration radius" R(t) = The rapid decrease (close to 
AB 

the exponential one) of the autocorrelation function is the 

characteristic feature of a system with stochastic motions. 

The stochastic process described by Figures 2 - 4 develops 

in an extremely non-monotonic manner. The magnitude of d(t) 

increases (and then decreases) rapidly within the time period 

< 10 T. Each of its jumps, by 200 - 400 times in value, is due 

to close approaches of the gravitating bodies. Distributed dark 

matter forming a common massive corona of the system stimulates 

transition to chaos because it decreases probability of regular 

structures like close binaries in these systems. 
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5 t A 5 t/r 1 2 At A 

F i g u r e 2 F i g u r e 3 F i g u r e 4 
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