INVARIANT SUBMANIFOLDS OF CONTACT (κ , μ)-MANIFOLDS

BENIAMINO CAPPELLETTI MONTANO

Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy e-mail: cappelletti@dm.uniba.it

LUIGIA DI TERLIZZI

Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy e-mail: terlizzi@dm.uniba.it

and MUKUT MANI TRIPATHI

Department of Mathematics and Astronomy, Lucknow University, Lucknow 226 007, India Present Address: Department of Mathematics, Banaras Hindu University, Varanasi 221 005, India e-mail: mmtripathi66@yahoo.com

(Received 15 September 2007; revised 19 February 2008; accepted 22 February 2008)

Dedicated to the memory of Late Professor Jerzy J. Konderak on the second anniversary of his departure.

Abstract. Invariant submanifolds of contact (κ, μ) -manifolds are studied. Our main result is that any invariant submanifold of a non-Sasakian contact (κ, μ) -manifold is always totally geodesic and, conversely, every totally geodesic submanifold of a non-Sasakian contact (κ, μ) -manifold, $\mu \neq 0$, such that the characteristic vector field is tangent to the submanifold is invariant. Some consequences of these results are then discussed.

2000 Mathematics Subject Classification. Primary 53C40; Secondary 53C25, 53D10, 53D15.

1. Introduction. It is well known [2] that the tangent sphere bundle of a flat Riemannian manifold admits a contact metric structure satisfying $R_{XY}\xi = 0$, where *R* is the curvature tensor. On the other hand, on a manifold *M* equipped with a Sasakian structure (φ, ξ, η, g), one has

$$R_{XY}\xi = \eta(Y)X - \eta(X)Y, \qquad X, Y \in \Gamma(TM).$$
(1.1)

As a generalization of both $R_{XY}\xi = 0$ and the Sasakian case (1.1), Blair, Koufogiorgos and Papantoniou [4] introduced the class of contact metric manifolds with contact metric structures (φ, ξ, η, g) which satisfy

$$R_{XY}\xi = (\kappa I + \mu h)(\eta(Y)X - \eta(X)Y)$$
(1.2)

for all $X, Y \in \Gamma(TM)$, where κ and μ are real constants and 2h is the Lie derivative of φ in the direction ξ . A contact metric manifold belonging to this class is called a *contact* (κ , μ)-*manifold*. In fact there are many motivations for studying contact (κ , μ)-manifolds: the first is that, in the non-Sasakian case (that is for $\kappa \neq 1$), the condition (1.2) determines the curvature completely; moreover, while the values of κ and μ change, the form of (1.2) is invariant under \mathcal{D} -homothetic deformations [4]; finally, there is a complete classification of these manifolds, given in [7] by Boeckx, who proved also that any non-Sasakian contact (κ , μ)-manifold is locally homogeneous and strongly locally φ -symmetric [5], [6]. There are also non-trivial examples of contact (κ , μ)-manifolds, the most important being the unit tangent sphere bundle of a Riemannian manifold of constant sectional curvature with the usual contact metric structure.

An invariant submanifold of a contact (κ, μ) -manifold is a submanifold for which the structure tensor field φ maps tangent vectors into tangent vectors. Such a submanifold inherits a contact metric structure from the ambient space and it is in fact a contact (κ, μ) -manifold [23].

There is a well-known result of Kon that an invariant submanifold of a Sasakian manifold is totally geodesic, provided the second fundamental form of the immersion is covariantly constant [15]. In general, an invariant submanifold of a Sasakian manifold needs not to be totally geodesic. For example, the circle bundle (S, Q^n) over an *n*-dimensional complex quadric Q^n in a complex projective space $\mathbb{C}P^{n+1}$ is an invariant submanifold of a (2n + 3)-dimensional Sasakian space form $S^{2n+3}(c)$ with c > -3, which is not totally geodesic [24, pp. 328–329]. Some necessary conditions for invariant submanifolds of contact (κ, μ) -manifolds (or particular cases of contact (κ, μ) -manifolds) to be totally geodesic are also found in some other papers (e.g. [1], [14], [18]). As a generalization of the result of Kon, in [23] it is proven that if the second fundamental form of an invariant submanifold in a contact (κ, μ) -manifold is covariantly constant then either $\kappa = 0$ or the submanifold is totally geodesic.

These circumstances motivate us to consider invariant submanifolds of non-Sasakian contact (κ , μ)-manifolds. In this paper we find in fact a much stronger result. Surprisingly, we prove that every invariant submanifold of a non-Sasakian contact (κ , μ)-manifold is totally geodesic (cf. Theorem 3.1). Conversely, we prove that every totally geodesic submanifold of a non-Sasakian contact (κ , μ)-manifold, with $\mu \neq 0$, such that the characteristic vector field is tangent to the submanifold is invariant. Finally, we discuss some examples and consequences of these results.

2. Contact (κ, μ) -manifolds. A differentiable 1-form η on a (2n + 1)-dimensional differentiable manifold M is called a *contact form* if $\eta \wedge (d\eta)^n \neq 0$ everywhere on M, and M equipped with a contact form is a *contact manifold*. Since $d\eta$ has rank 2n on the Grassmann algebra $\bigwedge T_p^*M$ at each point $p \in M$, there exists a unique global vector field ξ , called the *characteristic vector field*, such that $\eta(\xi) = 1$ and $d\eta(\xi, \cdot) = 0$. Moreover, it is well known that M admits a Riemannian metric g and a (1, 1)-tensor field φ such that

$$\varphi\xi = 0, \ \eta \circ \varphi = 0, \quad \eta \left(X \right) = g\left(X, \xi \right), \quad \varphi^2 = -I + \eta \otimes \xi, \tag{2.1}$$

$$d\eta(X, Y) = g(X, \varphi Y), \quad g(X, Y) = g(\varphi X, \varphi Y) + \eta(X)\eta(Y), \tag{2.2}$$

for all $X, Y \in \Gamma(TM)$. The structure (φ, ξ, η, g) is called a *contact metric structure* and the manifold M endowed with such a structure is called a *contact metric manifold*. In a contact metric manifold M, the (1, 1)-tensor field $h = \frac{1}{2}\mathcal{L}_{\xi}\varphi$ is symmetric and satisfies

 $h\xi = 0, \quad \eta \circ h = 0, \quad h\varphi + \varphi h = 0, \quad \nabla \xi = -\varphi - \varphi h, \quad \operatorname{tr}(h) = \operatorname{tr}(\varphi h) = 0, \quad (2.3)$

where ∇ is the Levi-Civita connection of g. A contact metric manifold such that ξ is Killing (or equivalently h = 0, cf. [3], p. 65) is said to be *K*-contact, and a contact metric manifold satisfying (1.1) is said to be Sasakian. Any Sasakian manifold is K-contact, and in dimension 3 also the converse holds. A contact metric manifold satisfying (1.2)is called a *contact* (κ , μ)-*manifold*. In [4] it is proven that necessarily $\kappa \leq 1$ and that the class of contact (κ , μ)-manifolds contains the Sasakian manifolds for $\kappa = 1$. Moreover, if a contact (κ, μ)-manifold is K-contact then $\kappa = 1$ and it is Sasakian. Hence a non-Sasakian (κ , μ)-manifold cannot be K-contact. Examples of contact (κ , μ)-manifolds exist for all values of $\kappa < 1$ and $\mu \in \mathbb{R}$ (cf. [4, 7]).

In a contact (κ, μ) -manifold the following properties hold [4]:

$$(\nabla_X \varphi) Y = g(X, Y + hY)\xi - \eta(Y)(X + hX),$$

$$(\nabla_X h)Y = ((1 - \kappa)g(X, \varphi Y) + g(X, \varphi hY))\xi + \eta(Y)h(\varphi X + \varphi hX) - \mu\varphi hY,$$

for all $X, Y \in \Gamma(TM)$, from which, in particular, it follows that

$$\nabla_{\xi} h = \mu h \circ \varphi. \tag{2.4}$$

Moreover, $h^2 = (\kappa - 1)\varphi^2$ and the eigenvalues of h are 0, λ and $-\lambda$, where $\lambda = \sqrt{1 - \kappa}$. The eigenspace relative to the eigenvalue 0 is $\{\xi\}$. Moreover, for $\kappa \neq 1$, the subbundle $\mathcal{D} = \ker(\eta)$ can be decomposed in the eigenspace distributions \mathcal{D}_+ and \mathcal{D}_- relative to the eigenvalues λ and $-\lambda$, respectively. These distributions are orthogonal to each other and have dimension n.

Another approach to contact (κ, μ) -manifolds has been presented in [10], where the authors observed that in fact \mathcal{D}_+ and \mathcal{D}_- define two conjugate (that is, they satisfy $\varphi \mathcal{D}_+ = \mathcal{D}_-$ and $\varphi \mathcal{D}_- = \mathcal{D}_+$) Legendrian foliations, so that any contact (κ, μ)manifold $(M, \varphi, \xi, \eta, g)$ is endowed with a canonical bi-Legendrian structure given by the mutually orthogonal integrable distributions \mathcal{D}_+ and \mathcal{D}_- . Then they proved the following characterization.

THEOREM 2.1 [10]. Let $(M, \varphi, \xi, \eta, g)$ be a contact metric manifold, which is not K-contact. Then $(M, \varphi, \xi, \eta, g)$ is a contact (κ, μ) -manifold if and only if it admits two orthogonal Legendrian distributions L and Q and a linear connection $\overline{\nabla}$ satisfying the following properties:

- (i) $\overline{\nabla}L \subset L$, $\overline{\nabla}Q \subset Q$, (ii) $\overline{\nabla}\eta = 0$, $\overline{\nabla}d\eta = 0$, $\overline{\nabla}g = 0$, $\overline{\nabla}\varphi = 0$, $\overline{\nabla}h = 0$,
- (iii) $\overline{T}(X, Y) = 2d\eta(X, Y)\xi$ for all $X, Y \in \Gamma(\mathcal{D})$,

$$\overline{T}(X,\xi) = [\xi, X_L]_O + [\xi, X_O]_L$$
 for all $X \in \Gamma(TM)$,

where \overline{T} denotes the torsion tensor field of $\overline{\nabla}$ and X_L and X_O are, respectively, the projections of X onto the sub-bundles L and Q of TM. Furthermore $\overline{\nabla}$ is uniquely determined, L and Q are integrable and coincide with the eigenspaces \mathcal{D}_+ and \mathcal{D}_- of the operator h.

The connection stated in Theorem 2.1 is in fact the *bi-Legendrian connection* [8] corresponding to the bi-Legendrian structure (L, Q). An explicit formula for $\overline{\nabla}$ in this case is the following (cf. [9], [10]):

$$\overline{\nabla}_X Y = -(\varphi[X_+, \varphi Y_+])_+ - (\varphi[X_-, \varphi Y_-])_- + [X_-, Y_+]_+ + [X_+, Y_-]_- + \eta(X)([\xi, Y_+]_+ + [\xi, Y_-]_-) + X(\eta(Y))\xi,$$
(2.5)

where for any $X \in \Gamma(TM)$, X_+ and X_- denote, respectively, the components of X on the distributions \mathcal{D}_+ and \mathcal{D}_- , according to the decomposition $TM = \mathcal{D}_+ \oplus \mathcal{D}_- \oplus \{\xi\}$. On the contact distribution \mathcal{D} , the above connection is related to the Levi-Civita connection by

$$\bar{\nabla}_X Y = \nabla_X Y - \eta (\nabla_X Y) \xi, \qquad (2.6)$$

for all $X, Y \in \Gamma(\mathcal{D})$ [10].

3. The main results. Let M' be a submanifold in a manifold M equipped with a Riemannian metric g. The Gauss and Weingarten formulae are given respectively by

$$\nabla_X Y = \nabla'_X Y + B(X, Y), \tag{3.1}$$

$$\nabla_X N = -A_N X + \nabla_X^{\perp} N, \qquad (3.2)$$

for $X, Y \in \Gamma(TM')$ and $N \in \Gamma(T^{\perp}M')$. Here ∇' and ∇^{\perp} are the induced Riemannian and the induced normal connections on M' and on the normal bundle $T^{\perp}M'$, respectively, and B is the second fundamental form related to the shape operator A_N in the direction of N by

$$g(B(X, Y), N) = g(A_N X, Y).$$

A submanifold M' of a contact metric manifold $(M, \varphi, \xi, \eta, g)$ is called an *invariant* submanifold if for each $x \in M'$, $\varphi(T_xM') \subset T_xM'$. As a consequence, ξ becomes tangent to M' and M' inherits a contact metric structure by restriction (cf. [3]). Moreover, as it is proven in [11] and [13], any invariant submanifold of a contact metric manifold is minimal.

In [23], the authors studied invariant submanifolds of a contact (κ, μ) -manifold $(M, \varphi, \xi, \eta, g)$. In particular, they proved the following identities:

$$B(X,\xi') = 0, (3.3)$$

$$B(X, \varphi Y) = B(\varphi X, Y) = \varphi B(X, Y), \qquad (3.4)$$

where $X, Y \in \Gamma(TM')$, $N \in \Gamma(T^{\perp}M')$ and ξ' represents the restriction of the characteristic vector field of M to M'. Furthermore, they proved that an invariant submanifold of a contact (κ, μ) -manifold is in turn a contact (κ, μ) -manifold. It is easy to show that h preserves the tangent spaces to M' and then $h' = \frac{1}{2}\mathcal{L}_{\xi'}\varphi'$ coincides with the restriction of h to M'. Moreover, h' has the same eigenvalues as h and the eigenspace distributions are given by $\mathcal{D}'_{+} = \mathcal{D}_{+} \cap TM'$ and $\mathcal{D}'_{-} = \mathcal{D}_{-} \cap TM'$.

Now, we prove the main result of this section.

THEOREM 3.1. Every invariant submanifold of a non-Sasakian contact (κ, μ) -manifold is totally geodesic.

Proof. Let M' be an invariant submanifold of a contact (κ, μ) -manifold $(M, \varphi, \xi, \eta, g)$. Since M' is in turn a contact (κ, μ) -manifold, by virtue of Theorem 2.1, M' admits an orthogonal bi-Legendrian structure (L', Q'), given just by $L' = \mathcal{D}'_+$ and $Q' = \mathcal{D}'_-$, and a unique linear connection $\overline{\nabla}'$ satisfying (i), (ii) and (iii) of Theorem 2.1. Then, taking into account (2.5) and the fact that M' is invariant, it is easy to see that the connection $\overline{\nabla}'$ is nothing but the connection induced by $\overline{\nabla}$ on M'. From this remark

and from (2.6) it follows directly that B(X, Y) = 0 for all $X, Y \in \Gamma(\mathcal{D}')$. Moreover, by (3.3) we have $B(X, \xi') = 0$ for all $X \in \Gamma(TM')$ and this concludes the proof.

REMARK 3.2. Another way for proving Theorem 3.1 is the following. Let $X, Y \in \Gamma(TM')$. Since the tensor field *h* maps tangent vectors into tangent vectors, by (1.2) it follows that $R_{XY}\xi'$ is a vector field tangent to the submanifold. Then we have $(\nabla_X B)(Y, \xi') = (\nabla_Y B)(X, \xi')$ (cf. e.g. [24]), that is,

$$\nabla_X^{\perp} B(Y,\xi') - B(\nabla_X Y,\xi') - B(Y,\nabla_X \xi') = \nabla_Y^{\perp} B(X,\xi') - B(\nabla_Y X,\xi') - B(X,\nabla_Y \xi').$$

So taking into account (3.3) we get $B(X, \nabla_Y \xi') = B(Y, \nabla_X \xi')$ and then, by (2.3),

$$B(X, \varphi Y + \varphi h Y) = B(Y, \varphi X + \varphi h X).$$
(3.5)

Continuing the computation, from (3.4) and (3.5) it follows that

$$\varphi B(X, hY) = \varphi B(Y, hX). \tag{3.6}$$

Since for any $X, Y \in \Gamma(TM)$, $\eta(B(X, Y)) = 0$, from (2.1) and (3.6) we get

$$B(X, hY) = B(Y, hX).$$
(3.7)

Now using $X \in \Gamma(\mathcal{D}'_+)$ and $Y \in \Gamma(\mathcal{D}'_-)$ in (3.7), we have $\lambda B(X, Y) = -\lambda B(X, Y)$, from which B(X, Y) = 0 since $\lambda \neq 0$ because of the assumption that $(M, \varphi, \xi, \eta, g)$ is not Sasakian. The same conclusion is true if $X \in \Gamma(\mathcal{D}'_-)$ and $Y \in \Gamma(\mathcal{D}'_+)$. It remains to prove that B(X, Y) = 0 for $X, Y \in \Gamma(\mathcal{D}'_+)$ and $X, Y \in \Gamma(\mathcal{D}'_-)$. Let $X, Y \in \Gamma(\mathcal{D}'_+)$. Since $\varphi \mathcal{D}'_+ = \mathcal{D}'_-$, we can write $Y = \varphi Z$ with $Z \in \Gamma(\mathcal{D}'_-)$. Then, by (3.4), we have $B(X, Y) = B(X, \varphi Z) = \varphi B(X, Z) = 0$ because of our previous result. Analogously one can prove the assertion for $X, Y \in \Gamma(\mathcal{D}'_-)$.

Now we provide an example of an invariant submanifold of a non-Sasakian contact (κ , μ)-manifold.

EXAMPLE 3.3. In [4] the authors proved that the tangent sphere bundle T_1M of a Riemannian manifold (M, G) of constant sectional curvature $c \neq 1$ with the standard contact metric structure is a non-Sasakian contact (κ, μ) -manifold with $\kappa = c(2-c)$, $\mu = 2c$. Let M' be a totally geodesic submanifold of M. Then M' equipped with the induced Riemannian metric G' has constant sectional curvature c and also its tangent sphere bundle T_1M' is a contact (κ, μ) -manifold with $\kappa = c(2-c)$, $\mu = 2c$. Thus it is reasonable to ask whether T_1M' is an invariant submanifold of T_1M . The answer is affirmative as we are going to see and then, due to Theorem 3.1, T_1M' is a totally geodesic submanifold of T_1M . We need to recall various constructions on the tangent bundle $\pi : TM \to M$ (for more details see, e.g., [12, 17, 19, 20]). The *connection map* $K : TTM \to TM$ corresponding to the Levi-Civita connection ∇ of G (or any linear connection) is defined as follows: if U is a normal neighbourhood of a point p of M then the *canonical map* $\tau : \pi^{-1}(U) \to T_pM$ maps any $Z \in \pi^{-1}(U)$ to the vector $\tau(Z)$ obtained by parallel translation of Z along the only ∇ -geodesic joining $\pi(Z)$ with p. For each $A \in T_Z TM$ we put

$$K(A) := \lim_{t \to 0} \frac{\tau(\zeta(t)) - Z}{t},$$

where $\zeta : t \to \zeta(t)$ is a path in *TM* such that $\dot{\zeta}(0) = A$. It is well known that the linear connection ∇ induces a decomposition of the bundle *TM* in horizontal and vertical sub-bundles and that for each $Z \in TM$ the horizontal subspace $\mathcal{H}(T_Z TM)$ of $T_Z TM$ is nothing but the kernel of *K* and the vertical subspace $\mathcal{V}(T_Z TM)$ the kernel of π_* . Then, for any vector field *X* on *M* there exist unique horizontal and vertical lifts $X^{\mathcal{H}} \in \mathcal{H}(TM)$ and $X^{\mathcal{V}} \in \mathcal{V}(TM)$ such that at each $Z \in TM$ we have

$$\pi_* X_Z^{\mathcal{H}} = X_{\pi(Z)}, \quad K X_Z^{\mathcal{H}} = 0_{\pi(Z)}, \quad \pi_* X_Z^{\mathcal{V}} = 0_{\pi(Z)}, \quad K X_Z^{\mathcal{V}} = X_{\pi(Z)}.$$

We can also consider the 1-form β defined for each $Z \in TM$, $X \in TTM$ by

$$\beta(X)_Z := G(Z, \pi_*X).$$

The decomposition of TTM in its horizontal and vertical sub-bundles allows us to define an almost complex structure J on TM as $JX^{\mathcal{H}} := X^{\mathcal{V}}, JX^{\mathcal{V}} := -X^{\mathcal{H}}$ (cf. [12]). Using the classical procedure for a hypersurface of an almost Hermitian manifold, it is possible to construct a contact metric structure on the tangent sphere bundle T_1M as follows (cf. [21, 22]). Let ν be the unit vector field on TM normal to T_1M . We put

$$\xi := -2J\nu, \quad \eta := \frac{1}{2}\beta, \quad \varphi X := JX - \eta(X)\nu.$$
 (3.8)

Moreover we consider the *Sasaki metric* g on T_1M , defined for $X, Y \in TTM$ by

$$g(X, Y) := \frac{1}{4} \left(G(\pi_* X, \pi_* Y) + G(KX, KY) \right).$$
(3.9)

Then (φ, ξ, η, g) is a contact metric structure on T_1M . The factors $\frac{1}{4}$ in (3.9), 2 and $\frac{1}{2}$ in (3.8) are necessary since we use the convention $2d\omega(X, Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X, Y])$ for any 1-form ω and for a contact metric manifold the equation $d\eta(\cdot, \cdot) = g(\cdot, \varphi \cdot)$ has to hold. Of course, all the constructions we have recalled can be repeated for the totally geodesic submanifold M': we shall label all the geometric objects relative to M' with prime. Moreover, by an abuse of notation, we will denote with the same symbol a vector field on M' and any of its extensions to M. We observe that if U is a normal neighbourhood in M then $U' = U \cap M'$ is a normal neighbourhood in M then $U' = U \cap M'$ is a normal neighbourhood in M', hence for each pair p, q of points of U' the only geodesic in U' with respect to the Levi-Civita connection ∇' of G' joining p and q is also the unique geodesic in U with respect to ∇ joining p and q. Then we can conclude that the connection map $K' : TTM' \to TM'$ corresponding to ∇' is the restriction of K to TTM'. Then the following facts hold:

(i) we have the following relations regarding the horizontal and vertical bundles

$$\mathcal{H}(TM') = \mathcal{H}(TM) \cap TTM', \quad \mathcal{V}(TM') = \mathcal{V}(TM) \cap TTM';$$

- (ii) the horizontal and vertical lifts of a vector field X on M' are the restrictions to M' of the horizontal and vertical lifts of X and the 1-form β' on M' is the restriction of β to M';
- (iii) the almost complex structure J' defined on TTM' coincides with the almost complex structure induced by J on TTM';
- (iv) since the vector field ν' normal to M' is the restriction of ν to M', the characteristic vector field of the contact metric structure $(\varphi', \xi', \eta', g')$ is the restriction of ξ to M' and hence ξ is tangent to M';

(v) if X is tangent to M' then, from $\varphi' X = J' X - \eta'(X) \nu'$ it follows that $\varphi X = \varphi' X$ is tangent to M'.

In particular, from (v) and Theorem 3.1, it follows that T_1M' is a totally geodesic invariant submanifold of T_1M .

We try to generalize the previous example by showing that the contact (κ, μ) -manifolds are in fact the only totally geodesic invariant submanifolds of a given non-Sasakian contact (κ, μ) -manifold provided that $\mu \neq 0$.

THEOREM 3.4. Let M' be a totally geodesic submanifold of a non-Sasakian contact (κ, μ) -manifold $(M, \varphi, \xi, \eta, g)$ such that ξ is tangent to M'. Assume that $\mu \neq 0$. Then M' is an invariant submanifold of M.

Proof. Since M' is totally geodesic, for each $X \in \Gamma(TM')$ and $p \in M'$ we have, by (1.2),

$$(R'_{\xi'X}\xi')_p = (R_{\xi X}\xi)_p = (\kappa(\eta(X)\xi - X) - \mu hX)_p$$

from which

$$(hX)_p = \frac{1}{\mu} (R_{X\xi}\xi - \kappa(\eta(X)\xi - X)_p \in T_pM'.$$

It follows that $(hX)_{|M'}$ is tangent to M', as well as $((\nabla_{\xi}h)X)_{|M'} = (\nabla_{\xi}hX - h\nabla_{\xi}X)_{|M'}$. By (2.4) we get $h^2(\varphi X) = \frac{1}{\mu}h((\nabla_{\xi}h)X)$, from which, using the formula $h^2 = (\kappa - 1)\varphi^2$, it follows that

$$\varphi X = \frac{1}{\mu(1-\kappa)} h((\nabla_{\xi} h) X).$$

Hence φX is tangent to M'.

REMARK 3.5. Theorem 3.4 does not hold for $\kappa = \mu = 0$. Indeed, let $(M, \varphi, \xi, \eta, g)$ be a contact metric manifold satisfying $R_{XY}\xi = 0$ for all $X, Y \in \Gamma(TM)$. These manifolds have been deeply studied in [2] where the author proves that the distribution $\mathcal{D}_+ \oplus \{\xi\}$ is integrable and defines a totally geodesic foliation of M, where \mathcal{D}_+ is the eigenspace distribution corresponding to the eigenvalue $\lambda = 1$ of h. Thus its leaves give examples of totally geodesic submanifolds of M, which are not invariant because $\varphi \mathcal{D}_+ = \mathcal{D}_-$ so that φ maps tangent vectors into normal vectors. On the other hand, there are also examples of invariant submanifolds of contact metric manifolds satisfying $R_{XY}\xi = 0$. For instance, one is given just by Example 3.3 taking c = 0.

We conclude by recalling the notion of *contact* (κ , μ)-*space form*. For a unit vector X orthogonal to ξ , the sectional curvature $K(X, \varphi X)$ is called φ -sectional curvature. In [16], Koufogiorgos showed that if the φ -sectional curvature at a point p of a contact (κ , μ)-manifold (M, φ , ξ , η , g) is independent of the φ -section at p, then it is constant. Moreover, he proved that a non-Sasakian contact (κ , μ)-manifold is of constant φ -sectional curvature c if and only if $\mu = \kappa + 1$; in this case $c = -2\kappa - 1$ and the contact (κ , μ)-manifold in question is referred as a contact (κ , μ)-space form and denoted by M(c).

Returning to invariant submanifolds, we have in particular the following results:

PROPOSITION 3.6. Any invariant submanifold of a non-Sasakian contact (κ, μ) -space form is in turn a contact (κ, μ) -space form.

Proof. The condition for M to have constant φ -sectional curvature is $\mu = \kappa + 1$, which is also verified in M', since M' is a contact (κ, μ) -manifold with the same constants κ and μ as in M.

PROPOSITION 3.7. Let M' be an invariant submanifold of a non-Sasakian contact (κ, μ) -space form M(c). Then the normal connection of M' is trivial if and only if c = 1 or, equivalently, $\kappa = -1$.

Proof. It follows easily from Theorem 3.1 and [23, Theorem 5.1].

REFERENCES

1. C. Agut, Submanifolds in contact metric manifolds with a nullity condition, *An. Univ. Timişoara Ser. Mat.-Inform.* **41** (2003), 3–9.

2. D. E. Blair, Two remarks on contact metric structures, *Tôhoku Math. J.* 29 (1977), 319–324.

3. D. E. Blair, *Riemannian geometry of contact and symplectic manifolds*, Progress in Mathematics, 203. (Birkhäuser Boston, Inc., Boston, MA, 2002).

4. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfyng a nullity condition, *Israel J. Math.* **91** (1995), 189–214.

5. E. Boeckx, A class of locally φ -symmetric contact metric spaces, *Arch. Math. (Basel)* **72** (1999), 466–472.

6. E. Boeckx, Contact-homogeneous locally φ -symmetric manifolds, *Glasg. Math. J.* **48** (2006), 93–109.

7. E. Boeckx, A full classification of contact metric (κ , μ)-spaces, *Illinois J. Math.* 44 (2000), 212–219.

8. B. Cappelletti Montano, Bi-Legendrian connections, Ann. Polon. Math. 86 (2005), 79–95.

9. B. Cappelletti Montano, Some remarks on the generalized Tanaka–Webster connection of a contact metric manifold, *Rocky Mountain J. Math.*, to appear.

10. B. Cappelletti Montano and L. Di Terlizzi, Contact metric (κ , μ)-spaces as bi-Legendrian manifolds, *Bull. Austral. Math. Soc.*, to appear.

11. D. Chinea, Invariant submanifolds of a quasi-K-Sasakian manifold, *Riv. Mat. Univ. Parma* 11 (1985), 25–29.

12. P. Dombrowski, On the geometry of the tangent bundle, J. Rein Angew. Math. 210 (1962), 73–88.

13. H. Endo, Invariant submanifolds in a contact Riemannian manifold, *Tensor* 42 (1985), 86–89.

14. H. Endo, On the curvature tensor field of a type of contact metric manifolds and of its certain submanifolds, *Publ. Math. Debrecen* 48 (1996), 253–269.

15. M. Kon, Invariant submanifolds of normal contact metric manifolds, *Kōdai Math. Sem. Rep.* **27** (1973), 330–336.

16. T. Koufogiorgos, Contact Riemannian manifolds with constant φ -sectional curvature, *Tokyo J. Math.* **20** (1997), 13–22.

17. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle, *J. Rein Angew. Math.* 250 (1971), 124–129.

18. C. Murathan, K. Arslan, C. Özgür and A. Yildiz, On invariant submanifolds satisfying a nullity condition, *An. Univ. Bucureşti Mat. Inform.* **50** (2001), 103–113.

19. S. Sasaki, On the differential geometry of tangent bundle of Riemannian manifolds, *Tôhoku Math. J.* **10** (1958), 338–354.

20. S. Sasaki, On the differential manifolds with contact metric structures. Part II, *Tôhoku Math. J.* **14** (1962), 146–155.

21. S. Sasaki and Y. Hatakeyama, On differentiable geometry of tangent bundle of Riemannian manifolds, *J. Math. Soc. Japan* **14** (1962), 249–271.

22. Y. Tashiro, On contact structures of tangent sphere bundles, *Tôhoku Math. J.* **21** (1969), 117–143.

23. M. M. Tripathi, T. Sasahara and J.-S. Kim, On invariant submanifolds of contact metric manifolds, *Tsukuba J. Math.* 29 (2) (2005), 495–510.

24. K. Yano and M. Kon, *Structures on manifolds*, Series in Pure Mathematics (World Scientific, Singapore, 1984).