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Abstract. Invariant submanifolds of contact (κ, μ)-manifolds are studied. Our
main result is that any invariant submanifold of a non-Sasakian contact (κ, μ)-manifold
is always totally geodesic and, conversely, every totally geodesic submanifold of a non-
Sasakian contact (κ, μ)-manifold, μ �= 0, such that the characteristic vector field is
tangent to the submanifold is invariant. Some consequences of these results are then
discussed.
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1. Introduction. It is well known [2] that the tangent sphere bundle of a flat
Riemannian manifold admits a contact metric structure satisfying RXYξ = 0, where R
is the curvature tensor. On the other hand, on a manifold M equipped with a Sasakian
structure (ϕ, ξ, η, g), one has

RXYξ = η (Y ) X − η (X) Y, X, Y ∈ � (TM) . (1.1)

As a generalization of both RXYξ = 0 and the Sasakian case (1.1), Blair, Koufogiorgos
and Papantoniou [4] introduced the class of contact metric manifolds with contact
metric structures (ϕ, ξ, η, g) which satisfy

RXYξ = (κI + μh) (η (Y ) X − η (X) Y ) (1.2)

for all X, Y ∈ � (TM), where κ and μ are real constants and 2h is the Lie derivative
of ϕ in the direction ξ . A contact metric manifold belonging to this class is called
a contact (κ, μ)-manifold. In fact there are many motivations for studying contact
(κ, μ)-manifolds: the first is that, in the non-Sasakian case (that is for κ �= 1), the
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condition (1.2) determines the curvature completely; moreover, while the values of κ

and μ change, the form of (1.2) is invariant under D-homothetic deformations [4];
finally, there is a complete classification of these manifolds, given in [7] by Boeckx, who
proved also that any non-Sasakian contact (κ, μ)-manifold is locally homogeneous
and strongly locally ϕ-symmetric [5], [6]. There are also non-trivial examples of
contact (κ, μ)-manifolds, the most important being the unit tangent sphere bundle
of a Riemannian manifold of constant sectional curvature with the usual contact
metric structure.

An invariant submanifold of a contact (κ, μ)-manifold is a submanifold for
which the structure tensor field ϕ maps tangent vectors into tangent vectors. Such
a submanifold inherits a contact metric structure from the ambient space and it is in
fact a contact (κ, μ)-manifold [23].

There is a well-known result of Kon that an invariant submanifold of a Sasakian
manifold is totally geodesic, provided the second fundamental form of the immersion
is covariantly constant [15]. In general, an invariant submanifold of a Sasakian
manifold needs not to be totally geodesic. For example, the circle bundle (S, Qn)
over an n-dimensional complex quadric Qn in a complex projective space �Pn+1 is an
invariant submanifold of a (2n + 3)-dimensional Sasakian space form S2n+3(c) with
c > −3, which is not totally geodesic [24, pp. 328–329]. Some necessary conditions
for invariant submanifolds of contact (κ, μ)-manifolds (or particular cases of contact
(κ, μ)-manifolds) to be totally geodesic are also found in some other papers (e.g. [1],
[14], [18]). As a generalization of the result of Kon, in [23] it is proven that if the
second fundamental form of an invariant submanifold in a contact (κ, μ)-manifold is
covariantly constant then either κ = 0 or the submanifold is totally geodesic.

These circumstances motivate us to consider invariant submanifolds of non-
Sasakian contact (κ, μ)-manifolds. In this paper we find in fact a much stronger result.
Surprisingly, we prove that every invariant submanifold of a non-Sasakian contact
(κ, μ)-manifold is totally geodesic (cf. Theorem 3.1). Conversely, we prove that every
totally geodesic submanifold of a non-Sasakian contact (κ, μ)-manifold, with μ �= 0,
such that the characteristic vector field is tangent to the submanifold is invariant.
Finally, we discuss some examples and consequences of these results.

2. Contact (κ, μ)-manifolds. A differentiable 1-form η on a (2n + 1)-dimensional
differentiable manifold M is called a contact form if η ∧ (dη)n �= 0 everywhere on M,
and M equipped with a contact form is a contact manifold. Since dη has rank 2n
on the Grassmann algebra

∧
T∗

p M at each point p ∈ M, there exists a unique global
vector field ξ , called the characteristic vector field, such that η(ξ ) = 1 and dη(ξ, ·) = 0.
Moreover, it is well known that M admits a Riemannian metric g and a (1, 1)-tensor
field ϕ such that

ϕξ = 0, η ◦ ϕ = 0, η (X) = g (X, ξ ) , ϕ2 = −I + η ⊗ ξ, (2.1)

dη (X, Y ) = g (X, ϕY ) , g(X, Y ) = g(ϕX, ϕY ) + η(X)η(Y ), (2.2)

for all X, Y ∈ � (TM). The structure (ϕ, ξ, η, g) is called a contact metric structure and
the manifold M endowed with such a structure is called a contact metric manifold. In a
contact metric manifold M, the (1, 1)-tensor field h = 1

2Lξϕ is symmetric and satisfies

hξ = 0, η ◦ h = 0, hϕ + ϕh = 0, ∇ξ = −ϕ − ϕh, tr(h) = tr(ϕh) = 0, (2.3)
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where ∇ is the Levi-Civita connection of g. A contact metric manifold such that ξ is
Killing (or equivalently h = 0, cf. [3], p. 65) is said to be K-contact, and a contact metric
manifold satisfying (1.1) is said to be Sasakian. Any Sasakian manifold is K-contact,
and in dimension 3 also the converse holds. A contact metric manifold satisfying (1.2)
is called a contact (κ, μ)-manifold. In [4] it is proven that necessarily κ ≤ 1 and that the
class of contact (κ, μ)-manifolds contains the Sasakian manifolds for κ = 1. Moreover,
if a contact (κ, μ)-manifold is K-contact then κ = 1 and it is Sasakian. Hence a non-
Sasakian (κ, μ)-manifold cannot be K-contact. Examples of contact (κ, μ)-manifolds
exist for all values of κ ≤ 1 and μ ∈ � (cf. [4, 7]).

In a contact (κ, μ)-manifold the following properties hold [4]:

(∇Xϕ)Y = g(X, Y + hY )ξ − η(Y )(X + hX),

(∇X h)Y = ((1 − κ)g(X, ϕY ) + g(X, ϕhY ))ξ + η(Y )h(ϕX + ϕhX) − μϕhY,

for all X, Y ∈ � (TM), from which, in particular, it follows that

∇ξ h = μh ◦ ϕ. (2.4)

Moreover, h2 = (κ − 1) ϕ2 and the eigenvalues of h are 0, λ and −λ, where λ = √
1 − κ.

The eigenspace relative to the eigenvalue 0 is {ξ}. Moreover, for κ �= 1, the subbundle
D = ker(η) can be decomposed in the eigenspace distributions D+ and D− relative
to the eigenvalues λ and −λ, respectively. These distributions are orthogonal to each
other and have dimension n.

Another approach to contact (κ, μ)-manifolds has been presented in [10], where
the authors observed that in fact D+ and D− define two conjugate (that is, they
satisfy ϕD+ = D− and ϕD− = D+) Legendrian foliations, so that any contact (κ, μ)-
manifold (M, ϕ, ξ, η, g) is endowed with a canonical bi-Legendrian structure given by
the mutually orthogonal integrable distributions D+ and D− . Then they proved the
following characterization.

THEOREM 2.1 [10]. Let (M, ϕ, ξ, η, g) be a contact metric manifold, which is not
K-contact. Then (M, ϕ, ξ, η, g) is a contact (κ, μ)-manifold if and only if it admits two
orthogonal Legendrian distributions L and Q and a linear connection ∇̄ satisfying the
following properties:

(i) ∇̄L ⊂ L, ∇̄Q ⊂ Q,
(ii) ∇̄η = 0, ∇̄dη = 0, ∇̄g = 0, ∇̄ϕ = 0, ∇̄h = 0,

(iii) T̄ (X, Y ) = 2dη (X, Y ) ξ for all X, Y ∈ �(D),
T̄(X, ξ ) = [ξ, XL]Q + [ξ, XQ]L for all X ∈ �(TM),

where T̄ denotes the torsion tensor field of ∇̄ and XL and XQ are, respectively, the
projections of X onto the sub-bundles L and Q of TM. Furthermore ∇̄ is uniquely
determined, L and Q are integrable and coincide with the eigenspaces D+ and D− of the
operator h.

The connection stated in Theorem 2.1 is in fact the bi-Legendrian connection [8]
corresponding to the bi-Legendrian structure (L, Q). An explicit formula for ∇̄ in this
case is the following (cf. [9], [10]):

∇̄X Y = −(ϕ[X+, ϕY+])+ − (ϕ[X−, ϕY−])− + [X−, Y+]+ + [X+, Y−]−
+ η(X)([ξ, Y+]+ + [ξ, Y−]−) + X(η(Y ))ξ, (2.5)
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where for any X ∈ �(TM), X+ and X− denote, respectively, the components of X on
the distributions D+ and D−, according to the decomposition TM = D+ ⊕ D− ⊕ {ξ}.
On the contact distribution D, the above connection is related to the Levi-Civita
connection by

∇̄X Y = ∇X Y − η(∇X Y )ξ, (2.6)

for all X, Y ∈ �(D) [10].

3. The main results. Let M′ be a submanifold in a manifold M equipped with a
Riemannian metric g. The Gauss and Weingarten formulae are given respectively by

∇X Y = ∇′
X Y + B(X, Y ), (3.1)

∇X N = − ANX + ∇⊥
X N, (3.2)

for X, Y ∈ � (TM′) and N ∈ �
(
T⊥M′). Here ∇′ and ∇⊥ are the induced Riemannian

and the induced normal connections on M′ and on the normal bundle T⊥M′,
respectively, and B is the second fundamental form related to the shape operator
AN in the direction of N by

g (B (X, Y ) , N) = g (ANX, Y ) .

A submanifold M′ of a contact metric manifold (M, ϕ, ξ, η, g) is called an invariant
submanifold if for each x ∈ M′, ϕ (TxM′) ⊂ TxM′. As a consequence, ξ becomes
tangent to M′ and M′ inherits a contact metric structure by restriction (cf. [3]).
Moreover, as it is proven in [11] and [13], any invariant submanifold of a contact
metric manifold is minimal.

In [23], the authors studied invariant submanifolds of a contact (κ, μ)-manifold
(M, ϕ, ξ, η, g). In particular, they proved the following identities:

B(X, ξ ′) = 0, (3.3)

B(X, ϕY ) = B(ϕX, Y ) = ϕB(X, Y ), (3.4)

where X, Y ∈ � (TM′), N ∈ �
(
T⊥M′) and ξ ′ represents the restriction of the

characteristic vector field of M to M′. Furthermore, they proved that an invariant
submanifold of a contact (κ, μ)-manifold is in turn a contact (κ, μ)-manifold. It is
easy to show that h preserves the tangent spaces to M′ and then h′ = 1

2Lξ ′ϕ′ coincides
with the restriction of h to M′. Moreover, h′ has the same eigenvalues as h and the
eigenspace distributions are given by D′

+ = D+ ∩ TM′ and D′
− = D− ∩ TM′.

Now, we prove the main result of this section.

THEOREM 3.1. Every invariant submanifold of a non-Sasakian contact (κ, μ)-
manifold is totally geodesic.

Proof. Let M′ be an invariant submanifold of a contact (κ, μ)-manifold
(M, ϕ, ξ, η, g). Since M′ is in turn a contact (κ, μ)-manifold, by virtue of Theorem 2.1,
M′ admits an orthogonal bi-Legendrian structure (L′, Q′), given just by L′ = D′+ and
Q′ = D′−, and a unique linear connection ∇̄′ satisfying (i), (ii) and (iii) of Theorem 2.1.
Then, taking into account (2.5) and the fact that M′ is invariant, it is easy to see that
the connection ∇̄′ is nothing but the connection induced by ∇̄ on M′. From this remark
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and from (2.6) it follows directly that B(X, Y ) = 0 for all X, Y ∈ �(D′). Moreover, by
(3.3) we have B(X, ξ ′) = 0 for all X ∈ �(TM′) and this concludes the proof. �

REMARK 3.2. Another way for proving Theorem 3.1 is the following. Let X, Y ∈
�(TM′). Since the tensor field h maps tangent vectors into tangent vectors, by (1.2)
it follows that RXYξ ′ is a vector field tangent to the submanifold. Then we have
(∇X B)(Y, ξ ′) = (∇Y B)(X, ξ ′) (cf. e.g. [24]), that is,

∇⊥
X B(Y, ξ ′) − B(∇X Y, ξ ′) − B(Y,∇Xξ ′) = ∇⊥

Y B(X, ξ ′) − B(∇Y X, ξ ′) − B(X,∇Yξ ′).

So taking into account (3.3) we get B(X,∇Yξ ′) = B(Y,∇Xξ ′) and then, by (2.3),

B(X, ϕY + ϕhY ) = B(Y, ϕX + ϕhX). (3.5)

Continuing the computation, from (3.4) and (3.5) it follows that

ϕB(X, hY ) = ϕB(Y, hX). (3.6)

Since for any X, Y ∈ �(TM), η(B(X, Y )) = 0, from (2.1) and (3.6) we get

B(X, hY ) = B(Y, hX). (3.7)

Now using X ∈ �(D′+) and Y ∈ �(D′−) in (3.7), we have λB(X, Y ) = −λB(X, Y ),
from which B(X, Y ) = 0 since λ �= 0 because of the assumption that (M, ϕ, ξ, η, g) is
not Sasakian. The same conclusion is true if X ∈ �(D′−) and Y ∈ �(D′+). It remains
to prove that B(X, Y ) = 0 for X, Y ∈ �(D′+) and X, Y ∈ �(D′−). Let X, Y ∈ �(D′+).
Since ϕD′+ = D′−, we can write Y = ϕZ with Z ∈ �(D′−). Then, by (3.4), we have
B(X, Y ) = B(X, ϕZ) = ϕB(X, Z) = 0 because of our previous result. Analogously one
can prove the assertion for X, Y ∈ �(D′−).

Now we provide an example of an invariant submanifold of a non-Sasakian contact
(κ, μ)-manifold.

EXAMPLE 3.3. In [4] the authors proved that the tangent sphere bundle T1M
of a Riemannian manifold (M, G) of constant sectional curvature c �= 1 with the
standard contact metric structure is a non-Sasakian contact (κ, μ)-manifold with κ =
c (2 − c) , μ = 2c. Let M′ be a totally geodesic submanifold of M. Then M′ equipped
with the induced Riemannian metric G′ has constant sectional curvature c and also its
tangent sphere bundle T1M′ is a contact (κ, μ)-manifold with κ = c(2 − c), μ = 2c.
Thus it is reasonable to ask whether T1M′ is an invariant submanifold of T1M. The
answer is affirmative as we are going to see and then, due to Theorem 3.1, T1M′ is
a totally geodesic submanifold of T1M. We need to recall various constructions on
the tangent bundle π : TM → M (for more details see, e.g., [12, 17, 19, 20]). The
connection map K : TTM → TM corresponding to the Levi-Civita connection ∇ of
G (or any linear connection) is defined as follows: if U is a normal neighbourhood of
a point p of M then the canonical map τ : π−1(U) → TpM maps any Z ∈ π−1(U) to
the vector τ (Z) obtained by parallel translation of Z along the only ∇-geodesic joining
π (Z) with p. For each A ∈ TZTM we put

K(A) := lim
t→0

τ (ζ (t)) − Z
t

,
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where ζ : t → ζ (t) is a path in TM such that ζ̇ (0) = A. It is well known that the
linear connection ∇ induces a decomposition of the bundle TM in horizontal and
vertical sub-bundles and that for each Z ∈ TM the horizontal subspace H(TZTM) of
TZTM is nothing but the kernel of K and the vertical subspace V(TZTM) the kernel
of π∗. Then, for any vector field X on M there exist unique horizontal and vertical lifts
XH ∈ H(TM) and XV ∈ V(TM) such that at each Z ∈ TM we have

π∗XZ
H = Xπ(Z), KXZ

H = 0π(Z), π∗XZ
V = 0π(Z), KXZ

V = Xπ(Z).

We can also consider the 1-form β defined for each Z ∈ TM, X ∈ TTM by

β(X)Z := G(Z, π∗X).

The decomposition of TTM in its horizontal and vertical sub-bundles allows us to
define an almost complex structure J on TM as JXH := XV , JXV := −XH (cf. [12]).
Using the classical procedure for a hypersurface of an almost Hermitian manifold, it
is possible to construct a contact metric structure on the tangent sphere bundle T1M
as follows (cf. [21, 22]). Let ν be the unit vector field on TM normal to T1M. We put

ξ := − 2Jν, η := 1
2

β, ϕX := JX − η(X)ν . (3.8)

Moreover we consider the Sasaki metric g on T1M, defined for X, Y ∈ TTM by

g(X, Y ) := 1
4

(G(π∗X, π∗Y ) + G(KX, KY )). (3.9)

Then (ϕ, ξ, η, g) is a contact metric structure on T1M. The factors 1
4 in (3.9), 2 and 1

2
in (3.8) are necessary since we use the convention 2dω(X, Y ) = X(ω(Y )) − Y (ω(X)) −
ω([X, Y ]) for any 1-form ω and for a contact metric manifold the equation dη(· , ·) =
g(· , ϕ ·) has to hold. Of course, all the constructions we have recalled can be repeated
for the totally geodesic submanifold M′: we shall label all the geometric objects relative
to M′ with prime. Moreover, by an abuse of notation, we will denote with the same
symbol a vector field on M′ and any of its extensions to M. We observe that if U
is a normal neighbourhood in M then U ′ = U ∩ M′ is a normal neighbourhood in
M′, hence for each pair p , q of points of U ′ the only geodesic in U ′ with respect to
the Levi-Civita connection ∇′ of G′ joining p and q is also the unique geodesic in U
with respect to ∇ joining p and q. Then we can conclude that the connection map
K ′ : TTM′ → TM′ corresponding to ∇′ is the restriction of K to TTM′. Then the
following facts hold:

(i) we have the following relations regarding the horizontal and vertical bundles

H(TM′) = H(TM) ∩ TTM′, V(TM′) = V(TM) ∩ TTM′;

(ii) the horizontal and vertical lifts of a vector field X on M′ are the restrictions
to M′ of the horizontal and vertical lifts of X and the 1-form β ′ on M′ is the
restriction of β to M′;

(iii) the almost complex structure J ′ defined on TTM′ coincides with the almost
complex structure induced by J on TTM′;

(iv) since the vector field ν ′ normal to M′ is the restriction of ν to M′, the
characteristic vector field of the contact metric structure (ϕ′, ξ ′, η′, g′) is the
restriction of ξ to M′ and hence ξ is tangent to M′;
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(v) if X is tangent to M′ then, from ϕ′X = J ′X − η′(X)ν ′ it follows that ϕX = ϕ′X
is tangent to M′.

In particular, from (v) and Theorem 3.1, it follows that T1M′ is a totally geodesic
invariant submanifold of T1M.

We try to generalize the previous example by showing that the contact (κ, μ)-
manifolds are in fact the only totally geodesic invariant submanifolds of a given non-
Sasakian contact (κ, μ)-manifold provided that μ �= 0.

THEOREM 3.4. Let M′ be a totally geodesic submanifold of a non-Sasakian contact
(κ, μ)-manifold (M, ϕ, ξ, η, g) such that ξ is tangent to M′. Assume that μ �= 0. Then
M′ is an invariant submanifold of M.

Proof. Since M′ is totally geodesic, for each X ∈ �(TM′) and p ∈ M′ we have, by
(1.2),

(R′
ξ ′Xξ ′)p = (RξXξ )p = (κ(η(X)ξ − X) − μhX)p

from which

(hX)p = 1
μ

(RXξ ξ − κ(η(X)ξ − X)p ∈ TpM′.

It follows that (hX)|M′ is tangent to M′, as well as ((∇ξ h)X)|M′ = (∇ξ hX − h∇ξ X)|M′ .
By (2.4) we get h2(ϕX) = 1

μ
h((∇ξ h)X), from which, using the formula h2 = (κ − 1)ϕ2,

it follows that

ϕX = 1
μ(1 − κ)

h((∇ξ h)X).

Hence ϕX is tangent to M′. �

REMARK 3.5. Theorem 3.4 does not hold for κ = μ = 0. Indeed, let (M, ϕ, ξ, η, g)
be a contact metric manifold satisfying RXYξ = 0 for all X, Y ∈ �(TM). These
manifolds have been deeply studied in [2] where the author proves that the distribution
D+ ⊕ {ξ} is integrable and defines a totally geodesic foliation of M, where D+ is
the eigenspace distribution corresponding to the eigenvalue λ = 1 of h. Thus its
leaves give examples of totally geodesic submanifolds of M, which are not invariant
because ϕD+ = D− so that ϕ maps tangent vectors into normal vectors. On the
other hand, there are also examples of invariant submanifolds of contact metric
manifolds satisfying RXYξ = 0. For instance, one is given just by Example 3.3 taking
c = 0.

We conclude by recalling the notion of contact (κ, μ)-space form. For a unit vector
X orthogonal to ξ , the sectional curvature K(X, ϕX) is called ϕ-sectional curvature.
In [16], Koufogiorgos showed that if the ϕ-sectional curvature at a point p of a contact
(κ, μ)-manifold (M, ϕ, ξ, η, g) is independent of the ϕ-section at p, then it is constant.
Moreover, he proved that a non-Sasakian contact (κ, μ)-manifold is of constant
ϕ-sectional curvature c if and only if μ = κ + 1; in this case c = −2κ − 1 and the
contact (κ, μ)-manifold in question is referred as a contact (κ, μ)-space form and
denoted by M(c).

https://doi.org/10.1017/S0017089508004369 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004369


506 B. CAPPELLETTI MONTANO, L. DI TERLIZZI AND M. M. TRIPATHI

Returning to invariant submanifolds, we have in particular the following results:

PROPOSITION 3.6. Any invariant submanifold of a non-Sasakian contact (κ, μ)-space
form is in turn a contact (κ, μ)-space form.

Proof. The condition for M to have constant ϕ-sectional curvature is μ = κ + 1,
which is also verified in M′, since M′ is a contact (κ, μ)-manifold with the same
constants κ and μ as in M. �

PROPOSITION 3.7. Let M′ be an invariant submanifold of a non-Sasakian contact
(κ, μ)-space form M(c). Then the normal connection of M′ is trivial if and only if c = 1
or, equivalently, κ = −1.

Proof. It follows easily from Theorem 3.1 and [23, Theorem 5.1]. �
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