SUPER-REFLEXIVE BANAGH SPAGES

ROBERT C. JAMES

Introduction. A super-reflexive Banach space is defined to be a Banach space B which has the property that no non-reflexive Banach space is finitely representable in B. Super-reflexivity is invariant under isomorphisms; a Banach space B is super-reflexive if and only if B^{*} is super-reflexive. This concept has many equivalent formulations, some of which have been studied previously. For example, two necessary and sufficient conditions for superreflexivity are: (i) There exist positive numbers $\delta<\frac{1}{3}, A$, and r such that $1<r<\infty$ and $A\left[\sum\left|a_{i}\right|^{r}\right]^{1 / r} \leqq\left\|\sum a_{i} e_{i}\right\|$ for every normalized basic sequence $\left\{e_{i}\right\}$ with char $\left\{e_{i}\right\} \geqq \delta$ and all numbers $\left\{a_{i}\right\}$; (ii) There exist positive numbers $\delta<\frac{1}{2}, B$, and s such that $1<s<\infty$ and $\left\|\sum a_{i} e_{i}\right\| \leqq B\left[\sum\left|a_{i}\right|^{r}\right]^{1 / r}$ for every normalized basic sequence $\left\{e_{i}\right\}$ with $\operatorname{char}\left\{e_{i}\right\} \geqq \delta$ and all numbers $\left\{a_{i}\right\}$.

Definition 1. A normed linear space X being finitely representable in a normed linear space Y means that, for each finite-dimensional subspace X_{n} of X and each number $\lambda>1$, there is an isomorphism T_{n} of X_{n} into Y for which

$$
\lambda^{-1}\|x\| \leqq\left\|T_{n}(x)\right\| \leqq \lambda\|x\| \quad \text { if } \quad x \in X_{n} .
$$

Definition 2. A normed linear space X being crudely finitely representable in a normed linear space Y means that there is a number $\lambda>1$ such that, for each finite-dimensional subspace X_{n} of X, there is an isomorphism T_{n} of X_{n} into Y for which

$$
\lambda^{-1}\|x\| \leqq\left\|T_{n}(x)\right\| \leqq \lambda\|x\| \quad \text { if } \quad x \in X_{n} .
$$

Definition 3. A super-reflexive Banach space is a Banach space B which has the property that no non-reflexive Banach space is finitely representable in B.

It follows directly from known facts that a Banach space is super-reflexive if it is isomorphic to a Banach space that is uniformly non-square [3, Lemma C]. Clearly, all super-reflexive spaces are reflexive. The next theorem will enable us to prove easily that super-reflexivity is isomorphically invariant.

Theorem 1. A Banach space B is super-reflexive if and only if no non-reflexive Banach space is crudely finitely representable in B.

Proof. Clearly, a Banach space B is super-reflexive if no non-reflexive Banach space is crudely finitely representable in B. We must show that if a non-reflexive space X is crudely finitely representable in B, then there is a

Received September 14, 1971 and in revised form, February 16, 1972. This research was partially supported by NSF Grant GP-28578.
non-reflexive space Y that is finitely representable in B. Since X is nonreflexive, there is an $\epsilon>0$ and a sequence $\left\{x_{n}\right\}$ in the unit ball of X such that

$$
\operatorname{dist}\left(\operatorname{conv}\left\{x_{1}, \ldots, x_{k}\right\}, \operatorname{conv}\left\{x_{k+1}, \ldots\right\}\right)>\epsilon
$$

for every $k \geqq 1$ [2, Theorem 7, p. 114]. Let $\lambda>1$ be a number such that, for each n, there is an isomorphism T_{n} of $\operatorname{lin}\left\{x_{1}, \ldots, x_{n}\right\}$ into B with

$$
\lambda^{-1}\|x\| \leqq\left\|T_{n}(x)\right\| \leqq \lambda\|x\| \text { if } x \in \operatorname{lin}\left\{x_{1}, \ldots, x_{n}\right\} .
$$

Let $y_{i}{ }^{n}=\lambda^{-1} T_{n}\left(x_{i}\right)$ for $i \leqq n$. Then $\left\|y_{i}{ }^{n}\right\| \leqq 1$ and, if $1 \leqq k<n$, $\operatorname{dist}\left(\operatorname{conv}\left\{y_{1}{ }^{n}, \ldots, y_{k}{ }^{n}\right\}, \operatorname{conv}\left\{y^{n}{ }_{k+1}, \ldots, y_{n}{ }^{n}\right\}\right)$

$$
\geqq \lambda^{-2} \operatorname{dist}\left(\operatorname{conv}\left\{x_{1}, \ldots, x_{k}\right\}, \operatorname{conv}\left\{x_{k+1}, \ldots, x_{n}\right\}\right),
$$

so that

$$
\operatorname{dist}\left(\operatorname{conv}\left\{y_{1}{ }^{n}, \ldots, y_{k}{ }^{n}\right\}, \operatorname{conv}\left\{y^{n}{ }_{k+1}, \ldots, y_{n}{ }^{n}\right\}\right) \geqq \lambda^{-2} \epsilon .
$$

Now the procedure used in the proof of Lemma B in [3] gives a space Y that is finitely representable in B and is non-reflexive by virtue of having a sequence $\left\{\eta_{n}\right\}$ for which $\left\|\eta_{n}\right\| \leqq 1$ and, for every $k \geqq 1$,

$$
\operatorname{dist}\left(\operatorname{conv}\left\{\eta_{1}, \ldots, \eta_{k}\right\}, \operatorname{conv}\left\{\eta_{k+1}, \ldots\right\}\right) \geqq \lambda^{-2} \epsilon .
$$

Theorem 2. Super-reflexivity is invariant under isomorphisms. A Banach space B is super-reflexive if and only if B^{*} is super-reflexive.

Proof. It follows from Theorem 1 that super-reflexivity is invariant under isomorphisms. Now suppose that X is non-reflexive and finitely representable in B. Since X^{*} is non-reflexive, there is an $\epsilon>0$ and a sequence of linear functionals $\left\{f_{n}\right\}$ in the unit ball of X^{*} for which

$$
\operatorname{dist}\left(\operatorname{conv}\left\{f_{1}, \ldots, f_{k}\right\}, \operatorname{conv}\left\{f_{k+1}, \ldots\right\}\right)>\epsilon \quad \text { if } \quad k \geqq 1 .
$$

For a positive integer n and a finite-dimensional subspace X_{p} of X, let T map X_{p} into B as described in Definition 1. Define $\phi_{k}{ }^{n}$ for $k \leqq n$ by letting $\phi_{k}{ }^{n}[T(x)]=f_{k}(x)$ if $x \in X_{p}$, and then extending ϕ_{k} to all of B. If X_{p} is chosen suitably and λ is close enough to 1 , then $\left\|\phi_{k}\right\|<2$ and

$$
\begin{equation*}
\operatorname{dist}\left(\operatorname{conv}\left\{\phi_{1}{ }^{n}, \ldots, \phi_{k}{ }^{n}\right\}, \operatorname{conv}\left\{\phi^{n}{ }_{k+1}, \ldots, \phi_{n}{ }^{n}\right\}\right)>\epsilon \tag{1}
\end{equation*}
$$

if $1 \leqq k<n$. Again, the procedure of [$\mathbf{3}$, Lemma B] gives a space Y that is finitely representable in B^{*} and is non-reflexive by virtue of containing a bounded sequence $\left\{\eta_{n}\right\}$ for which

$$
\operatorname{dist}\left(\operatorname{conv}\left\{\eta_{1}, \ldots, \eta_{k}\right\}, \operatorname{conv}\left\{\eta_{k+1}, \ldots\right\}\right) \geqq \epsilon \quad \text { if } \quad k \geqq 1
$$

Conversely, suppose Y is non-reflexive and finitely representable in B^{*}. As in the proof of Theorem 1, it then follows that there is an $\epsilon>0$ such that, for every positive integer n, there is a subset $\left\{\phi_{1}{ }^{n}, \ldots, \phi_{n}{ }^{n}\right\}$ of the unit ball of B^{*} for which (1) is satisfied. The procedure of [3, Lemma B] then gives a
space X that is finitely representable in B and is non-reflexive by virtue of there being a bounded sequence of linear functionals $\left\{f_{n}\right\}$ in X^{*} for which

$$
\operatorname{dist}\left(\operatorname{conv}\left\{f_{1}, \ldots, f_{k}\right\}, \operatorname{conv}\left\{f_{k+1}, \ldots\right\}\right) \geqq \epsilon \text { if } k \geqq 1 .
$$

The next two lemmas are needed to develop some characterizations of reflexivity that will be useful in establishing characterizations of superreflexivity. It is known that every non-reflexive Banach space has an infinitedimensional subspace with a non-shrinking basis and an infinite-dimensional subspace with a basis that is not boundedly complete [5, p. 374; 6, p. 362]. We shall need quantitative measures of how "good" these bases can be, as described by means of the characteristic of the basis. This is given by Lemmas 1 and 2. The proofs of Lemmas 1 and 2 are similar to the argument on pages 116-117 of [2], but these lemmas give more information. In fact, Lemma 2 is a combination of (31) and (35) in [2].

It is known that a sequence $\left\{x_{i}\right\}$ in a Banach space is a basis for its closed linear span if and only if there is a positive number ϵ such that

$$
\left\|\sum_{1}^{n+p} a_{i} x_{i}\right\| \geqq \epsilon\left\|\sum_{1}^{n} a_{i} x_{i}\right\|
$$

for all positive integers n and p and all numbers $\left\{a_{i}\right\}$. The largest such number ϵ is the characteristic of the basis.

The proofs of Lemmas 1 and 2 make repeated use of the following form of Helly's condition. "Given linear functionals f_{1}, \ldots, f_{n} on a Banach space B and numbers c_{1}, \ldots, c_{n} and M, the following two statements are equivalent.
(i) $\left|\sum_{1}^{n} a_{i} c_{i}\right| \leqq M| | \sum_{1}^{n} a_{i} f_{i} \|$ for all numbers $\left\{a_{i}\right\}$.
(ii) For every $\epsilon>0$, there is an x in B such that $\|x\|<M+\epsilon$ and $f_{i}(x)=c_{i}$ if $1 \leqq i \leqq n$."

Lemma 1. Let B be a non-reflexive Banach space. If $0<\theta<1$ and $0<\epsilon<1$, then there are sequences $\left\{z_{i}\right\}$ and $\left\{g_{i}\right\}$ in the interiors of the unit balls of B and B^{*} such that

$$
\begin{equation*}
g_{i}\left(z_{j}\right)=\theta \quad \text { if } \quad i \leqq j, \quad g_{i}\left(z_{j}\right)=0 \quad \text { if } \quad i>j \tag{2}
\end{equation*}
$$

and, for all positive integers n and p and all numbers $\left\{a_{i}\right\}$,

$$
\begin{equation*}
\left\|\sum_{1}^{n} a_{i} z_{i}+\sum_{n+1}^{n+p} a_{i}\left(z_{i}-z_{i-1}\right)\right\| \geqq \frac{1}{3} \epsilon\left\|\sum_{1}^{n} a_{i} z_{i}\right\| . \tag{3}
\end{equation*}
$$

Proof. Let θ and ϵ satisfy $0<\theta<1$ and $0<\epsilon<1$. Let F be a member of $B^{* *}$ for which $\|F\|<1$ and

$$
\operatorname{dist}\left(F, B^{c}\right)>\max \left\{\theta, \epsilon^{\frac{1}{2}}\right\}
$$

where B^{c} is the canonical image of B in $B^{* *}$. We shall show that a sequence $\left\{\left(z_{n}, g_{n}, H_{n}\right)\right\}$ can be chosen inductively so that $z_{n} \in B, g_{n} \in B^{*},\left\{H_{n}\right\}$ is an increasing sequence of finite sets of linear functionals with B as their domains, and:
(a) $\left\|z_{n}\right\|<1,\left\|g_{n}\right\|<1$;
(b) $F\left(g_{n}\right)=\theta$ for all n;
(c) $g_{i}\left(z_{j}\right)=\theta$ if $i \leqq j$ and $g_{i}\left(z_{j}\right)=0$ if $i>j$;
(d) $\|h\|<3 \epsilon^{-\frac{1}{2}}$ and $F(h)=h\left(z_{i}\right)$ if $h \in H_{n}$ and $i \geqq n$;
(e) if $z \in \operatorname{lin}\left\{z_{1}, \ldots, z_{n}\right\}$, then there is an h in H_{n} with $|h(z)| \geqq \epsilon^{\frac{1}{2}}| | z \|$.

Since $\|F\|>\theta$, we can choose g_{1} so that $\left\|g_{1}\right\|<1$ and $F\left(g_{1}\right)=\theta$. Then $\left\|g_{1}\right\|>\theta$ and we can choose z_{1} so that $g_{1}\left(z_{1}\right)=\theta$ and $\left\|z_{1}\right\|<1$. Let H_{1} contain a single member chosen by the procedure described below for determining H_{p+1}. Suppose that $\left(z_{i}, g_{i}, H_{i}\right)$ have been chosen to satisfy (a)-(e) when $i \leqq p$, where $p \geqq 1$. Then g_{p+1} must satisfy

$$
\left\|g_{p+1}\right\|<1, \quad F\left(g_{p+1}\right)=\theta, \quad g_{p+1}\left(z_{j}\right)=z_{j}^{c}\left(g_{p+1}\right)=0 \quad \text { if } \quad j \leqq p
$$

For the last two of these three conditions, Helly's condition (i) becomes

$$
\theta \leqq M\left\|\sum_{1}^{p} a_{i} z_{i}^{c}+F\right\| \quad \text { for all }\left\{a_{i}\right\} .
$$

Since this is satisfied if $M=\theta / \operatorname{dist}\left(F, B^{c}\right)<1, g_{p+1}$ can be chosen to satisfy $\left\|g_{p+1}\right\|<1$. Now z_{p+1} must satisfy

$$
\left\|z_{p+1}\right\|<1, \quad g_{i}\left(z_{p+1}\right)=\theta \quad \text { if } \quad i \leqq p+1, \quad h\left(z_{p+1}\right)=h\left(z_{p}\right) \quad \text { if } \quad h \in H_{p} .
$$

For the last two of these three conditions, Helly's condition (i) becomes

$$
\left|\theta \sum_{1}^{p+1} a_{i}+h\left(z_{p}\right)\right| \leqq M \| \sum_{1}^{p+1} a_{i} g_{i}+h| |
$$

for all $\left\{a_{i}\right\}$ and all $h \in \operatorname{lin}\left(H_{p}\right)$. Since

$$
\left|\theta \sum_{1}^{p+1} a_{i}+h\left(z_{p}\right)\right|=\left|F\left(\sum_{1}^{p+1} a_{i} g_{i}+h\right)\right| \leqq\|F\|\left\|\sum_{1}^{p+1} a_{i} g_{i}+h\right\|
$$

and $\|F\|<1$, we can let $M=\|F\|$ and choose z_{p+1} so that $\left\|z_{p+1}\right\|<1$. Now let G_{p} be a finite set of linear functionals with unit norms and domains B which contains suitable linear functionals so that, for each z in $\operatorname{lin}\left\{z_{1}, \ldots, z_{p+1}\right\}$,
 there is an h in B^{*} such that

$$
\begin{equation*}
\|h\|<3 \epsilon^{-\frac{1}{2}}, \quad F(h)=g\left(z_{p+1}\right), \quad z_{i}^{c}(h)=z_{i}^{c}(g) \quad \text { if } \quad i \leqq p+1 . \tag{4}
\end{equation*}
$$

For the last two of these conditions, Helly's condition (i) becomes
(5) $\left|a \cdot g\left(z_{p+1}\right)+\sum_{1}^{p+1} a_{i} z_{i}{ }^{c}(g)\right| \leqq M| | a F+\sum_{1}^{p+1} a_{i} z_{i}{ }^{c} \| \quad$ for all $\left\{a_{i}\right\}$ and a.

Since

$$
\begin{aligned}
&\left|a \cdot g\left(z_{p+1}\right)+\sum_{1}^{p+1} a_{i} z_{i}^{c}(g)\right|=\left|g\left(a z_{p+1}+\sum_{1}^{p+1} a_{i} z_{i}\right)\right| \leqq\left\|a z_{p+1}+\sum_{1}^{p+1} a_{i} z_{i}\right\| \\
& \leqq\left\|a F+\sum_{1}^{p+1} a_{i} z_{i}{ }^{c}\right\|+\left\|a F-a z_{p+1}^{c}\right\| \\
& \leqq\left(1+\left[\left\|F-z_{p+1}^{c}\right\| /\left\|F+\sum_{1}^{p+1} a_{i} z_{i}^{c} / a\right\|\right]\right) \\
& \times\left\|a F+\sum_{1}^{p+1} a_{i} z_{i}{ }^{c}\right\| \\
& \leqq\left(1+2 \epsilon^{-\frac{1}{2}}\right)\left\|a F+\sum_{1}^{p+1} a_{i} z_{i}^{c}\right\|,
\end{aligned}
$$

we can satisfy (5) with $M=1+2 \epsilon^{-\frac{1}{2}}$ and choose h so that $\|h\|<3 \epsilon^{-\frac{1}{2}}$. It follows from (4) that $h \equiv g$ on $\operatorname{lin}\left\{z_{1}, \ldots, z_{p+1}\right\}$. Let each member of G_{p} be replaced in this way and then let H_{p+1} be the union of H_{p} and all such replacements of members of G_{p}. Clearly the sequence $\left\{\left(z_{i}, g_{i}\right)\right\}$ satisfies (2). It follows from (e) that, for any sum $\sum_{1}^{n} a_{i} z_{i}$, there is an h in H_{n} such that

$$
\left|h\left(\sum_{1}^{n} a_{i} z_{i}\right)\right| \geqq \epsilon^{\frac{1}{2}}| | \sum_{1}^{n} a_{i} z_{i}| |
$$

Since $\|h\|<3 \epsilon^{-\frac{1}{2}}$ and $h\left(z_{i}-z_{i-1}\right)=0$ if $i>n$, we have

$$
\begin{aligned}
\left\|\sum_{1}^{n} a_{i} z_{i}+\sum_{n+1}^{n+p} a_{i}\left(z_{i}-z_{i-1}\right)\right\| & \geqq \frac{1}{3} \epsilon^{\frac{1}{2}}\left|h\left[\sum_{1}^{n} a_{i} z_{i}+\sum_{n+1}^{n+p} a_{i}\left(z_{i}-z_{i-1}\right)\right]\right| \\
& \left.=\frac{1}{3} \epsilon^{\frac{1}{2}}\left|h\left(\sum_{1}^{n} a_{i} z_{i}\right)\right| \geqq \frac{1}{3} \epsilon| | \sum_{1}^{n} a_{i} z_{i} \right\rvert\, \| .
\end{aligned}
$$

Lemma 2. Let B be a non-reflexive Banach space. If $0<\theta<1$ and $0<\epsilon<1$, then there are sequences $\left\{z_{i}\right\}$ and $\left\{g_{i}\right\}$ in the interiors of the unit balls of B and B^{*} such that

$$
g_{1}\left(z_{j}\right)=\theta \quad \text { if } \quad i \leqq j, \quad g_{i}\left(z_{j}\right)=0 \quad \text { if } \quad i>j,
$$

and, for all positive integers n and p and all numbers $\left\{a_{i}\right\}$,

$$
\begin{equation*}
\left\|\sum_{1}^{n+p} a_{i} z_{i}\right\| \geqq \frac{1}{2} \epsilon\left\|\sum_{1}^{n} a_{i} z_{i}\right\| \tag{6}
\end{equation*}
$$

Proof. Let θ and ϵ satisfy $0<\theta<1$ and $0<\epsilon<1$. Let F be a member of $B^{* *}$ for which $\|F\|<1$ and

$$
\operatorname{dist}\left(F, B^{c}\right)>\max \left\{\theta, \epsilon^{\frac{1}{2}}\right\}
$$

where B^{c} is the canonical image of B in $B^{* *}$. We shall show that a sequence $\left\{\left(z_{n}, g_{n}, H_{n}\right)\right\}$ can be chosen inductively so that $z_{n} \in B, g_{n} \in B^{*},\left\{H_{n}\right\}$ is an increasing sequence of finite sets of linear functionals with B as their domains, and:
(a) $\left\|z_{n}\right\|<1,\left\|g_{n}\right\|<1$;
(b) $F\left(g_{n}\right)=\theta$ for all n;
(c) $g_{i}\left(z_{j}\right)=\theta$ if $i \leqq j$ and $g_{i}\left(z_{j}\right)=0$ if $i>j$;
(d) $\|h\|<2 \epsilon^{-\frac{1}{2}}$ and $F(h)=h\left(z_{i}\right)=0$ if $h \in H_{n}$ and $i>n$;
(e) If $z \in \operatorname{lin}\left\{z_{1}, \ldots, z_{n}\right\}$, then there is an h in H_{n} with $|h(z)| \geqq \epsilon^{\frac{1}{2}}| | z| |$.

Assuming that $\left(z_{i}, g_{i}, H_{i}\right)$ have been chosen to satisfy (a)-(e) for $i \leqq p$, the choice of g_{p+1} is made exactly as in the proof of Lemma 1. Then z_{p+1} must satisfy

$$
\left\|z_{p+1}\right\|<1, \quad g_{i}\left(z_{p+1}\right)=\theta \quad \text { if } \quad i \leqq p+1, \quad h\left(z_{p+1}\right)=0 \quad \text { if } \quad h \in H_{p} .
$$

For the last two of these conditions, Helly's condition (i) becomes

$$
\left|\theta \sum_{1}^{p+1} a_{i}\right| \leqq M| | \sum_{1}^{p+1} a_{i} g_{i}+h| |
$$

for all $\left\{a_{i}\right\}$ and all $h \in \operatorname{lin}\left(H_{p}\right)$. Since

$$
\left|\theta \sum_{1}^{p+1} a_{i}\right|=\left|F\left(\sum_{1}^{p+1} a_{i} g_{i}+h\right)\right| \leqq||F||\left\|\sum_{1}^{p+1} a_{i} g_{i}+h\right\|
$$

and $\|F\|<1$, we can let $M=\|F\|$ and choose z_{p+1} so that $\left\|z_{p+1}\right\|<1$. The remaining argument is similar to that for Lemma 1, with (4) replaced by

$$
\|h\|<2 \epsilon^{\frac{1}{2}}, \quad F(h)=0, \quad z_{i}{ }^{c}(h)=z_{i}{ }^{c}(g) \quad \text { if } \quad i \leqq p+1,
$$

and (5) replaced by

$$
\left|\sum_{1}^{p+1} a_{i} z_{i}^{c}(g)\right| \leqq M| | F+\sum_{1}^{p+1} a_{i} z_{i}^{c} \| .
$$

The coefficient $\frac{1}{2}$ in (6) is the best possible. To see this, suppose θ is a positive number and $\left\{x^{n}\right\}$ is a normalized basic sequence in c_{0} for which there is a continuous linear functional g such that $g\left(x^{n}\right) \geqq \theta$ for every n. We shall show that $\operatorname{char}\left\{x^{n}\right\} \leqq \frac{1}{2}$. Let $\left\{y^{n}\right\}$ be a subsequence of $\left\{x^{n}\right\}$ for which

$$
\lim _{n \rightarrow \infty} y^{n}(i)=\alpha_{i}
$$

exists for each i. Then $\left|\alpha_{i}\right| \leqq 1$ for every i. Also $g\left(x^{n}\right) \geqq \theta$ for every n implies $\sup \left\{\left|\alpha_{i}\right|\right\}>0$. For an arbitrary $\epsilon>0$, let $\left\{z^{n}\right\}$ be a subsequence of $\left\{y^{n}\right\}$ such that, for every n,

$$
\left|z^{n}(i)-\alpha_{i}\right|<\epsilon \quad \text { if } \quad i \leqq p(n)<p(n+1),
$$

where $p(n)$ is an integer for which $\left|z^{k}(i)\right|<\epsilon$ if $k<n$ and $i \geqq p(n)$. Then, for every k and r,

$$
\left\|\sum_{i=1}^{k} z^{r+i}-\omega\right\|<k \epsilon+1
$$

where $\omega(i)=k \alpha_{i}$ if $1 \leqq i \leqq p(r+1), \omega(i)=(k-j) \alpha(i)$ if $p(r+j)<i \leqq p(r+j+1)$, and $\omega(i)=0$ if $i>p(r+k)$. Choose r such that $\sup \left\{\left|\alpha_{i}\right|: i \leqq p(r)\right\}>M-\epsilon$, where $M=\sup \left\{\left|\alpha_{i}\right|\right\}$. Then choose $s>k+r$. It follows that

$$
\begin{aligned}
&\left\|\sum_{i=1}^{k} z^{r+i}-\frac{1}{2} \sum_{i=1}^{k} z^{s+i}\right\|<\frac{1}{2} k M+2(k \epsilon+1) \\
&\left\|\sum_{i=1}^{k} z^{r+i}\right\|>k(M-\epsilon)-k \epsilon
\end{aligned}
$$

Thus, $\operatorname{char}\left\{x^{n}\right\} \leqq \operatorname{char}\left\{z^{n}\right\}<\left[\frac{1}{2} M+2(\epsilon+1 / k)\right] /[M-2 \epsilon]$. Since k and ϵ were arbitrary, $\operatorname{char}\left\{x^{n}\right\} \leqq \frac{1}{2}$.

Theorem 3. Each of the following is a necessary and sufficient condition for a Banach space B to be non-reflexive. (Equivalent conditions are obtained if the introductory phrases for (I), (II) and (III) are replaced by "For some positive numbers θ and ϵ," or the introductory phrases for (IV) and (V) are replaced by "For some positive number θ ".)
(I) For all θ and ϵ such that $0<\theta<1$ and $0<\epsilon<1$, there is a basic sequence $\left\{x_{i}\right\}$ in B such that $\left\|x_{i}\right\| \geqq \theta$ for every $i,\left\|\sum_{1}^{k} x_{i}\right\|<1$ for every k, and $\operatorname{char}\left\{e_{i}\right\} \geqq \frac{1}{3} \epsilon$.
(II) For all θ and ϵ such that $0<\theta<1$ and $0<\epsilon<1$, there are sequences $\left\{z_{n}\right\}$ and $\left\{g_{n}\right\}$ in the unit balls of B and B^{*}, respectively, such that $\left\{z_{2}\right\}$ is a basic sequence with char $\left\{e_{i}\right\} \geqq \frac{1}{2} \epsilon$ and

$$
g_{i}\left(z_{j}\right)=\theta \quad \text { if } \quad i \leqq j, \quad g_{i}\left(z_{j}\right)=0 \quad \text { if } \quad i>j .
$$

(III) For all θ and ϵ such that $0<\theta<1$ and $0<\epsilon<1$, there is a basic sequence $\left\{z_{n}\right\}$ in the unit ball of B such that char $\left\{z_{n}\right\} \geqq \frac{1}{2} \epsilon$ and

$$
\|z\| \geqq \theta \quad \text { if } \quad z \in \operatorname{conv}\left\{z_{n}\right\}
$$

(IV) For all θ such that $0<\theta<1$, there is a sequence $\left\{z_{n}\right\}$ in the unit ball of B such that, for every sequence of numbers $\left\{a_{i}\right\}$ such that $\sum_{1}^{\infty} a_{i} z_{i}$ is convergent,

$$
\begin{equation*}
\theta \cdot \sup \left\{\left|\sum_{k}^{\infty} a_{i}\right|: k \leqq n\right\} \leqq\left\|\sum_{1}^{\infty} a_{i} z_{i}\right\| \tag{7}
\end{equation*}
$$

(V) For all θ such that $0<\theta<1$, there is a sequence $\left\{x_{n}\right\}$ in B such that, for every sequence of numbers $\left\{a_{i}\right\}$ for which $\sum_{1}^{\infty} a_{i} x_{i}$ is convergent and $a_{i} \rightarrow 0$,

$$
\begin{equation*}
\theta \cdot \sup \left\{\left|a_{i}\right|\right\} \leqq\left\|\sum_{1}^{\infty} a_{i} x_{i}\right\| \leqq \sum_{1}^{\infty}\left|a_{i}-a_{i+1}\right| \tag{8}
\end{equation*}
$$

Proof. Suppose first that B is not reflexive. Let $\left\{\left(z_{i}, g_{i}\right)\right\}$ be as described in Lemma 1. Let $x_{1}=z_{1}$ and $x_{i}=z_{i}-z_{i-1}$ if $i>1$. Then, for every i, $g_{i}\left(x_{i}\right)=\theta$ and therefore $\left\|x_{i}\right\| \geqq \theta$. Also, $\sum_{1}^{k} x_{i}=z_{k}$, so that $\left\|\sum_{1}^{k} x_{i}\right\|<1$ for every k. Inequality (3) is equivalent to char $\left\{x_{i}\right\} \geqq \frac{1}{3} \epsilon$. Thus (I) is satisfied. Clearly, (II) follows from Lemma 2 and (II) implies (III). Also, (II) implies (IV), since if $\left\{\left(z_{l}, g_{i}\right)\right\}$ are as described in (II), then

$$
\theta \cdot \sup \left\{\left|\sum_{n}^{\infty} a_{i}\right|\right\}=\sup \left\{\left|g_{n}\left(\sum_{1}^{\infty} a_{i} z_{i}\right)\right|\right\} \leqq \| \sum_{1}^{\infty} a_{i} z_{i}| | .
$$

Let us now show that (IV) implies (V). To do this, let $\left\{z_{n}\right\}$ and θ be as described in (IV). Let $x_{1}=z_{1}$ and $x_{i}=z_{i}-z_{i-1}$ if $i>1$. Then $\sum_{1}^{\infty} a_{i} x_{i}=$ $\sum_{1}^{\infty}\left(a_{i}-a_{i+1}\right) z_{i}$, so that (7) and $\left\|z_{i}\right\| \leqq 1$ imply (8).

To complete the proof, it is sufficient to show that B is non-reflexive if (I), (III) or (V) is satisfied (note that the following arguments use only the existence of positive numbers θ and ϵ as described in (I)-(V), rather than the possibility of using arbitrary θ and ϵ in the interval (0,1)). If (I) or (III) is satisfied, then a subspace of B has a basis that is not boundedly complete or is not shrinking, so that B is not reflexive [1, Theorem 3, p. 71]. Now suppose θ and $\left\{x_{n}\right\}$ are as described in (V). For each n, let

$$
K_{n}=\operatorname{cl}\left\{\sum_{1}^{p} \alpha_{i} x_{i}: p \geqq n \quad \text { and } \quad 1=\alpha_{1}=\ldots=\alpha_{n} \geqq \alpha_{n+1} \geqq \ldots \geqq \alpha_{p} \geqq 0\right\} .
$$

Then K_{n} is bounded, closed and convex, with $K_{n} \supset K_{n+1}$. Thus we can show B is non-reflexive by showing that $\cap K_{n}$ is empty [1, Theorem 1, p. 48]. Suppose $x \in \cap K_{n}$. Then there exist sequences $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ that decrease monotonically to 0 for which

$$
\left\|x-\sum_{1}^{p} \alpha_{i} x_{i}\right\|<\frac{1}{2} \theta, \quad\left\|x-\sum_{1}^{q} \beta_{i} x_{i}\right\|<\frac{1}{2} \theta
$$

and $\beta_{i}=1$ if $i \leqq p+1$. Then $\left\|\sum_{1}^{p} \alpha_{i} x_{i}-\sum_{1}^{q} \beta_{i} x_{i}\right\|<\theta$, but from (8) we have

$$
\left\|\sum_{1}^{p} \alpha_{i} x_{i}-\sum_{1}^{q} \beta_{i} x_{i}\right\| \geqq \theta \beta_{p+1}=\theta .
$$

There are many properties of Banach spaces whose equivalence to non-super-reflexivity follows easily from the definition of super-reflexivity, but
which will not be discussed in this paper (see Lemmas B and C and Theorem 6 of [3]). The first five characterizations in the next theorem are closely related to (I)-(V) of Theorem 3. Characterizations (vi) and (viii) are known [4, Theorem 6], but are included here to show their relation to (vii).

Theorem 4. Each of the following is a necessary and sufficient condition for a Banach space B not to be super-reflexive. (Equivalent conditions are obtained if the introductory phrases for (i), (ii) and (iii) are replaced by "For some positive numbers θ and ϵ," or the introductory phrases for (iv) and (v) are replaced by "For some positive number $\theta^{\text {".) }}$
(i) If $0<\theta<1$ and $0<\epsilon<1$, then for every positive integer n there is a subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of B such that $\left\|x_{i}\right\| \geqq \theta$ for every $i,\left\|\sum_{1}^{k} x_{i}\right\|<1$ if $k \leqq n$, and, for every sequence of numbers $\left\{a_{i}\right\}$,

$$
\left\|\sum_{1}^{n} a_{i} x_{i}\right\| \geqq \frac{1}{3} \epsilon\left\|\sum_{1}^{k} a_{i} x_{i}\right\| \quad \text { if } \quad k \leqq n .
$$

(ii) If $0<\theta<1$ and $0<\epsilon<1$, then for every positive integer n there are subsets $\left\{z_{1}, \ldots, z_{n}\right\}$ and $\left\{g_{1}, \ldots, g_{n}\right\}$ of the unit balls of B and B^{*}, respectively, such that

$$
g_{i}\left(z_{j}\right)=\theta \quad \text { if } \quad i \leqq j, \quad g_{i}\left(z_{j}\right)=0 \quad \text { if } \quad i>j,
$$

and, for every sequence of numbers $\left\{a_{i}\right\}$ and every $k \leqq n$,

$$
\left\|\sum_{1}^{n} a_{i} z_{i}\right\| \geqq \frac{1}{2} \epsilon\left\|\sum_{1}^{k} a_{i} z_{i}\right\|
$$

(iii) If $0<\theta<1$ and $0<\epsilon<1$, then for every positive integer n there is a subset $\left\{z_{1}, \ldots, z_{n}\right\}$ of the unit ball of B such that $\|z\|>\theta$ if $z \in$ conv $\left\{z_{1}, \ldots, z_{n}\right\}$, and, for every sequence of numbers $\left\{a_{i}\right\}$ and every $k \leqq n$,

$$
\left\|\sum_{1}^{n} a_{i} z_{i}\right\| \geqq \frac{1}{2} \epsilon\left\|\sum_{1}^{k} a_{i} z_{i}\right\| .
$$

(iv) If $0<\theta<1$, then for every positive integer n there is a subset $\left\{y_{1}, \ldots, y_{n}\right\}$ of the unit ball of B such that, for every sequence of numbers $\left\{a_{i}\right\}$,

$$
\theta \cdot \sup \left\{\left|\sum_{k}^{n} a_{i}\right|: k \leqq n\right\} \leqq\left\|\sum_{1}^{n} a_{i} y_{i}\right\| .
$$

(v) If $0<\theta<1$, then for every positive integer n there is a subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of B such that, for every sequence of numbers $\left\{a_{i}\right\}$ for which $a_{n+1}=0$,

$$
\theta \cdot \sup \left\{\left|a_{i}\right|: 1 \leqq i \leqq n\right\} \leqq \| \sum_{1}^{n} a_{i} x_{i}| | \leqq \sum_{1}^{n}\left|a_{i}-a_{i+1}\right|
$$

(vi) For every A, δ and B such that $0<2 A<\delta \leqq 1<B$, there exist numbers r and s for which $1<r<\infty, 1<s<\infty$, and, if $\left\{e_{i}\right\}$ is any normalized basic sequence in B with char $\left\{e_{2}\right\} \geqq \delta$, then

$$
A\left[\sum\left|a_{i}\right|^{r}\right]^{1 / r} \leqq\left\|\sum a_{i} e_{i}\right\| \leqq B\left[\sum\left|a_{i}\right|^{s}\right]^{1 / s}
$$

for every sequence of numbers $\left\{a_{i}\right\}$ such that $\sum a_{i} e_{i}$ is convergent.
(vii) There exist positive numbers δ, A and r such that $\delta<1,1<r<\infty$, and

$$
\begin{equation*}
A\left[\sum\left|a_{i}\right|^{r}\right]^{1 / r} \leqq\left\|\sum a_{i} e_{i}\right\|, \tag{9}
\end{equation*}
$$

for every normalized basic sequence $\left\{e_{i}\right\}$ with char $\left\{e_{i}\right\} \geqq \frac{1}{3} \delta$ and every sequence of numbers $\left\{a_{i}\right\}$ such that $\sum a_{i} e_{i}$ is convergent.
(viii) There exist positive numbers δ, B and such that $\delta<1,1<s<\infty$, and

$$
\begin{equation*}
\left|\sum a_{i} e_{i}\right| \leqq B\left[\sum\left|a_{i}\right|^{s}\right]^{1 / s} \tag{10}
\end{equation*}
$$

for every normalized basic sequence $\left\{e_{i}\right\}$ with char $\left\{e_{i}\right\} \geqq \frac{1}{2} \delta$ and every sequence of numbers $\left\{a_{i}\right\}$ such that $\sum a_{i} e_{i}$ is convergent.
Proof. Observe first that if a Banach space B is not super-reflexive, then there is a non-reflexive space X that is finitely representable in B. The fact that X has each of properties (I)-(V) of Theorem 3 implies that B has each of properties (i)-(v). The proof that each of (i)-(v) implies there is a nonreflexive space X that is finitely representable in B is essentially the same as a known process that will not be repeated here (see the proof of Lemma B in [3]). This completes the proof of (i)-(v). It is known that (vi) is implied by super-reflexivity [4, Theorem 4]. Clearly (vi) implies both (vii) and (viii). Let us suppose that B is not super-reflexive, but that (vii) is satisfied. For δ, A and r as described in (vii), choose ϵ and n so that $\delta<\epsilon<1$ and

$$
n^{1 / \tau} \delta A>1
$$

For this ϵ and for $\theta=\delta$, choose $\left\{x_{1}, \ldots, x_{n}\right\}$ as described in (i). Since $\left\{x_{1}, \ldots, x_{n}\right\}$ can be extended to a basic sequence with characteristic greater than $\frac{1}{3} \delta,(9)$ gives the contradiction:

$$
n^{1 / \tau} \delta A \leqq A\left[\sum_{1}^{n}\left\|x_{i}\right\|^{r}\right]^{1 / \tau} \leqq\left\|\sum_{1}^{n} x_{i}\right\|<1 .
$$

Similarly, if B is not super-reflexive, but (viii) is satisfied, choose ϵ and n so that $\delta<\epsilon<1$ and

$$
\theta n>B n^{1 / s} .
$$

For this ϵ and for $\theta=\delta$, choose $\left\{z_{1}, \ldots, z_{n}\right\}$ as described in (iii). Since $\left\{z_{1}, \ldots, z_{n}\right\}$ can be extended to a basic sequence with characteristic greater than $\frac{1}{2} \delta,(10)$ gives the contradiction

$$
\theta n<\left\|\sum_{1}^{n} z_{1}\right\| \leqq B\left[\sum\left\|z_{i}\right\|^{s}\right]^{1 / s} \leqq B n^{1 / s} .
$$

References

1. M. M. Day, Normed linear spaces (Academic Press, New York, 1962).
2. R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101-119.
3. -_Some self-dual properties of normed linear spaces, Symposium on Infinite Dimensional Topology, Annals of Mathematics Studies 69 (1972),159-175.
4. - Super-reflexive spaces with bases (to appear in Pacific J. Math.).
5. A Pełczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces', Studia Math. 21 (1962), 371-374.
6. I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961-62), 351-369.

Claremont Graduate School, Claremont, California

