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SUPER-REFLEXIVE BANACH SPACES 

ROBERT C. JAMES 

Introduction, A super-reflexive Banach space is defined to be a Banach 
space B which has the property that no non-reflexive Banach space is finitely 
representable in B. Super-reflexivity is invariant under isomorphisms; a 
Banach space B is super-reflexive if and only if J3* is super-reflexive. This 
concept has many equivalent formulations, some of which have been studied 
previously. For example, two necessary and sufficient conditions for super-
reflexivity are: (i) There exist positive numbers 8 < ^, A, and r such that 
1 < r < oo and A\J^ \(ii\r]1/r ^ | | £ aiet\\ f° r every normalized basic sequence 
{et) with c r ia rd} ^ 8 and all numbers {a^ ; (ii) There exist positive numbers 
8 < \, B, and s such that 1 < 5 < oo and | | L atei\\ ^ B [ £ k*IT / r for every 
normalized basic sequence {et} with char{e*} ^ 8 and all numbers {&*}. 

Definition 1. A normed linear space X being finitely representable in a normed 
linear space F means that, for each finite-dimensional subspace Xn of X and 
each number X > 1, there is an isomorphism Tn of Xn into F for which 

A ÎNI ^ ||rn(*)|| s \\\x\\ if x G x,. 
Definition 2. A normed linear space X being crudely finitely representable 

in a normed linear space F means that there is a number X > 1 such that, 
for each finite-dimensional subspace Xn of X, there is an isomorphism Tn of 
Xn into F for which 

\~l\\x\\ S \\Tn{x)\\ S \\\x\\ if x e Xn. 

Definition 3. A super-reflexive Banach space is a Banach space B which has 
the property that no non-reflexive Banach space is finitely representable in B. 

It follows directly from known facts that a Banach space is super-reflexive 
if it is isomorphic to a Banach space that is uniformly non-square [3, Lemma 
C]. Clearly, all super-reflexive spaces are reflexive. The next theorem will 
enable us to prove easily that super-reflexivity is isomorphically invariant. 

THEOREM 1. A Banach space B is super-reflexive if and only if no non-reflexive 
Banach space is crudely finitely representable in B. 

Proof. Clearly, a Banach space B is super-reflexive if no non-reflexive 
Banach space is crudely finitely representable in B. We must show that if 
a non-reflexive space X is crudely finitely representable in B, then there is a 
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BANACH SPACES 897 

non-reflexive space Y that is finitely representable in B. Since X is non-
reflexive, there is an e > 0 and a sequence {xn} in the unit ball of X such that 

dist(conv{xi, . . . ,xk\, conv{^+i , . . . } ) > e 

for every k ^ 1 [2, Theorem 7, p. 114]. Let X > 1 be a number such that, 
for each n, there is an isomorphism Tn of linjxi, . . . , xn) into B with 

X"1!!^!! S \\Tn(x)\\ S M\x\\ it x £ lin{xi, . . . , xn\. 

Let y? = X^Tnixt) for i ^ n. Then \\y?\\ S 1 and, if 1 ^ k < n, 

dist(conv{^in, . . . , yk
n}, conv{yn

k+1, • • • > Jnn)) 

^ X~2dist(conv{xi, . . . , xk}, conv{^+i> • • • > xn})> 
so that 

dist(conv{;yA . . . , yk
n), convjyVn* • • > 3^"}) ^ ^~2e-

Now the procedure used in the proof of Lemma B in [3] gives a space Y that 
is finitely representable in B and is non-reflexive by virtue of having a sequence 
{rjn} for which \\rjn\\ ̂  1 and, for every k ^ 1, 

dist(convoi, • • • , Vk], conv{^+i, . . . }) è X~2e. 

THEOREM 2. Super-reflexivity is invariant under isomorphisms. A Banach 
space B is super-reflexive if and only if B* is super-reflexive. 

Proof. It follows from Theorem 1 that super-reflexivity is invariant under 
isomorphisms. Now suppose that X is non-reflexive and finitely representable 
in B. Since X* is non-reflexive, there is an e > 0 and a sequence of linear 
functionals {fn} in the unit ball of X* for which 

dist(conv{/i, . . . , / * } , conv{/*+i, . . . } ) > e if k è 1. 

For a positive integer n and a finite-dimensional subspace Xv of X> let T 
map Xv into B as described in Definition 1. Define <t>k

n for k ^ n by letting 
<j>k

n[T{x)] = /*(#) if x Ç Xp, and then extending <f>k to all of B. If Xp is chosen 
suitably and X is close enough to 1, then H^H < 2 and 

(1) dist(conv{0A • • • , **"}, conv{0Vi, . . . , « /} ) > e 

if 1 rg & < n. Again, the procedure of [3, Lemma B] gives a space Y that is 
finitely representable in 5* and is non-reflexive by virtue of containing a 
bounded sequence {r]n} for which 

dist(convoi, . . . , 77*}, conv^+ i , . . . }) ^ e if k ^ 1. 

Conversely, suppose Y is non-reflexive and finitely representable in B*. As 
in the proof of Theorem 1, it then follows that there is an e > 0 such that, 
for every positive integer n, there is a subset {4>in, . . . , <£/} of the unit ball 
of B* for which (1) is satisfied. The procedure of [3, Lemma B] then gives a 
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space X that is finitely representable in B and is non-reflexive by virtue of 
there being a bounded sequence of linear functionals {fn} in X* for which 

dist(conv{/i, . . . , / * } , conv{/*+i, . . . }) è e if i ^ 1. 

The next two lemmas are needed to develop some characterizations of 
reflexivity that will be useful in establishing characterizations of super-
reflexivity. It is known that every non-reflexive Banach space has an infinite-
dimensional subspace with a non-shrinking basis and an infinite-dimensional 
subspace with a basis that is not boundedly complete [5, p. 374; 6, p. 362]. 
We shall need quantitative measures of how "good" these bases can be, as 
described by means of the characteristic of the basis. This is given by Lemmas 1 
and 2. The proofs of Lemmas 1 and 2 are similar to the argument on pages 
116-117 of [2], but these lemmas give more information. In fact, Lemma 2 
is a combination of (31) and (35) in [2]. 

It is known that a sequence {xi} in a Banach space is a basis for its closed 
linear span if and only if there is a positive number e such that 

H \~^n+P M v M V^w | | 

2-fi a&i\\ ^ eW^idiXiW 
for all positive integers n and p and all numbers {a*} . The largest such number 
e is the characteristic of the basis. 

The proofs of Lemmas 1 and 2 make repeated use of the following form of 
Hetty's condition. "Given linear functionals/i, . . . , / „ on a Banach space B 
and numbers Ci, . . . , cn and M, the following two statements are equivalent. 

(i) | X)ï aici\ = M\ | 2Zï atfi\ | for all numbers {at}. 
(ii) For every e > 0, there is an x in B such that | \x\ \ < M + e and/i(x) =ct 

if 1 g i ^ nr 

LEMMA 1. Let B be a non-reflexive Banach space. If 0 < 6 < 1 and 0 < e < 1, 
then there are sequences {zt} and {gi} in the interiors of the unit balls of B and B* 
such that 

(2) gt(z,) = 6 if i£ j , gt(z,) = 0 if i>j, 

and, for all positive integers n and p and all numbers {at}, 

(3) 11 £ï<*«*«+ Effi*i(*<-*^i)ll è WIZW*||. 
Proof. Let 6 and e satisfy 0 < 6 < 1 and 0 < e < 1. Let F be a member of 

B** for which \\F\\ < l a n d 

distCF,£c) > max{0, 6*}, 

where 5 C is the canonical image of B in JB**. We shall show that a sequence 
{(Zn, gn, Hn)} can be chosen inductively so that zn G B, gn Ç £*, {iJTC} is an 
increasing sequence of finite sets of linear functionals with B as their domains, 
and: 
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(a) \\zn\\ < 1, \\gn\\ < 1; 
(b) F(gn) = B for all n; 
(c) gzfe) = 6iîi Sj and £,(*,) = 0 if i > j ; 
(d) ||À|| < 3e-^ and F (A) = h(zt) ii h £ Hn and i è n; 
(e) if s G lin{Si, . . . , zn}, then there is an h in Hn with |A(s)| ^ <^||;s||. 

Since | |F| | > 0, we can choose gi so that ||gi|| < 1 and F(gi) = 6. Then 
||gi|| > 6 and we can choose zi so that gi(si) = 0 and ||zi|| < 1. Let i?i contain 
a single member chosen by the procedure described below for determining 
Hp+\. Suppose that (zuguHi) have been chosen to satisfy (a)-(e) when 
i tk Pi where p ^ 1. Then gp+1 must satisfy 

ll&+i|| < 1, F(gp+1) = 0, gp+iM = V f e + i ) = 0 if 3 ^ P-

For the last two of these three conditions, Helly's condition (i) becomes 

eûM\\Y,ï<Wie + F\\ for all {a,}. 

Since this is satisfied if M = 0/dist(F, Bc) < 1, gp+1 can be chosen to satisfy 
Hgp+ill < 1. Now Zp+i must satisfy 

Ita+ill < 1, gtOh+i) = 0 if * ^ £ + 1, MVn) = hfo) if A G iZ„. 

For the last two of these three conditions, Helly's condition (i) becomes 

|0Z?+1^ + M^)l ^Jf| IE?"1 **< + *! I 
for all {at) and all h £ \in(HP). Since 

|tf E^f l i + AWI = i n l ^ ^ + i)! ^ I I ^ I I I I S ^ ^ + AII 
and ||JP|| < 1, we can let M = ||7?|| and choose zp+i so that ||Vhi|| < 1. Now let 
Gp be a finite set of linear functionals with unit norms and domains B which 
contains suitable linear functionals so that, for each z in linjzi, . . . , zp+i), 
there is a g in Gv with \g(z)\ ^ €5||z||. Let us now show that, for each g in Gpy 

there is an h in B* such that 

(4) \\h\\ < 3e-*f F(A) = g(zp+1), zfQi) = zt'(g) if i^p+1. 

For the last two of these conditions, Helly's condition (i) becomes 

(5) \a • g(zp+1) + Z ï + 1 a ^ c ( g ) | ^ M\\aF + Y?1 afifW for all [a,] and a. 

Since 

k-g(Vhi) + JlV'1aizi
c(g)\ = |g(aj^+i + X ï + 1 a ^ 0 | S \\azp+1+ X ï + 1 ^ * l l 

£\WF+ TF^fit'W + \\aF - azc
P+1\\ 

^ (l + [\\F-zc
P+1\\/\\F+ Z ? + 1 ^ C A I I D 

X\\aF+ Zi+1^iC\\ 

s (1 + 2 6 - ^ ) 1 ^ + 1 : ^ ^ 1 1 , 
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we can satisfy (5) with M = 1 + 2e~* and choose h so that \\h\\ < 3e~*. 
It follows from (4) that h = g on linjzi, . . . , zp+i}. Let each member of Gv 

be replaced in this way and then let Hp+i be the union of Hp and all such 
replacements of members of Gp. Clearly the sequence {{zugi)} satisfies (2). 
It follows from (e) that, for any sum Xa a%zu there is an h in Hn such that 

Since ||A|| < 3e_* and h(zt — zz_i) = 0 if i > n, we have 

= ie*|A(Z?^i)l ^fcll£"«*i||. 
LEMMA 2. Let B be a non-reflexive Banach space. If 0 < 6 < 1 and 0 < e < 1, 

/Aew tfAere are sequences [zi] and {gi\ in the interiors of the unit balls of B and 
J5* such that 

gi(Zj) = 6 if i S j , gi(Zj) = 0 if i > 7, 

and, for all positive integers n and p and all numbers \ai\, 

(6) llZr^H ^§€||X>^||. 
Proof. Let 0 and e satisfy 0 < 0 < 1 and 0 < e < 1. Let F be a member of 

B** for which | |F | | < 1 and 

dist(F, Bc) > max{0, e^}, 

where Bc is the canonical image of B in i3**. We shall show that a sequence 
{ (X, gn> -^w)} can be chosen inductively so that zn £ B, gn £ B*, {Hn} is an 
increasing sequence of finite sets of linear functionals with B as their domains, 
and: 

(a) \\zn\\ < 1, \\gn\\ < 1; 
(b) F(gn) = 0 for a l l » ; 
(c) £*(**) = 0 if i ^ j and g<(z,) = 0 if i > j ; 
(d) ll&H < 2e-^ and F(fc) = h(zt) = 0 if h G H„ and i > n\ 
(e) If z G linjzi, . . . , zn), then there is an h in i7w with \h{z)\ ^ e*||z|[. 

Assuming that {zuguHt) have been chosen to satisfy (a)-(e) for i S P, 
the choice of gp+i is made exactly as in the proof of Lemma 1. Then zp+i must 
satisfy 

llsp+ill < 1, gi(zp+1) = 0 if i^p + 1, h(zp+1) = 0 if h € Hv. 

For the last two of these conditions, Helly's condition (i) becomes 

\eZl+1at\ èM\\ZPi+1aiii + h\\ 

for all {at} and all h £ \m(Hp). Since 

kEf+1«ii = mT,?1
 atgt + m s \\F\\ WJ:?1 aigi + h\\ 
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and \\F\\ < 1, we can let M — \\F\\ and choose zv+\ so that Hẑ +iH <C 1. The 
remaining argument is similar to that for Lemma 1, with (4) replaced by 

| |A | |<2e*, F(h)=0, zt
c(h) = zt

c(g) if i^p+1, 

and (5) replaced by 

| £ ? " W ( g ) | ^M\\F+ YA+1aiZl
c\\. 

The coefficient § in (6) is the best possible. To see this, suppose 6 is a 
positive number and {xn) is a normalized basic sequence in c0 for which there 
is a continuous linear functional g such that g(xn) ^ 6 for every n. We shall 
show that char{x%} ^ J. Let {yn} be a subsequence of \xn) lor which 

lim yn(i) = at 

exists for each i. Then \at\ ^ 1 for every i. Also g(xn) ^ 6 for every n implies 
sup{|a*|} > 0. For an arbitrary e > 0, let \zn) be a subsequence of {yn} 
such that, for every n, 

\zn{i) - at\ < e if i S pin) < p(n + 1), 

where p(n) is an integer for which \zk(i)\ < e if k < n and i ^ pin). Then, 
for every k and r, 

| lZt-iSr+ i-a>|| <ke + l, 
where co(i) = &a*if 1 ^ i^pir + 1), co(i) = (& — j)a(i)iîp(r + j)<i^p(r+j + l), 
and co(i) = 0 if i > pir + k). Chooser such that sup {|a |̂ : i tk p(r)} > M — e, 
where M = sup{|a^|}. Then choose s > k + r. It follows that 

11 Z t i zr+i - h £**-i zs+i\ \<hkM + 2(ke + 1), 

| | Z t i ^ + i l >k(M-e)-ke. 

Thus, char{xw} ^ char{sw} < f^M + 2(e + l/ife)]/[Af - 2e]. Since k and € 
were arbitrary, char{xw} ^ | . 

THEOREM 3. Each of the following is a necessary and sufficient condition for a 
Banach space B to be non-reflexive. {Equivalent conditions are obtained if the 
introductory phrases for (I), (II) and (III) are replaced by uFor some positive 
numbers 6 and e," or the introductory phrases for (IV) and (V) are replaced by 
"For some positive number 0".) 

(I) For all 6 and e such that 0 < 6 < 1 and 0 < e < 1, there is a basic 
sequence \x%) in B such that \\xt\\ ^ 6for every iy | |XÏ %i\\ < lfor every k, 
and charje*} ^ \e. 

(II) For all 6 and e such that 0 < 6 < 1 and 0 < e < 1, there are sequences 
{zn} and {gn} in the unit balls of B and B*y respectively, such that {zt) 
is a basic sequence with char{e*} ^ \e and 

giizf) = d if i ^ j , giizj) = 0 if i> j . 
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(III) For all 6 and e such that 0 < 6 < 1 and 0 < e < 1, there is a basic 
sequence {zn} in the unit ball of B such that char{zw} ^ | e a ^ 

| |z| | è 0 if s Ç conv{sw}. 

(IV) For all d such that 0 < 6 < 1, ^ e r e is a sequence [zn) in the unit ball of 
B such that, for every sequence of numbers {at} such that X ? a%z% is 
convergent, 

(7) 0 - s u p { | £ ? a « | :k^n] S | | £ ï a < * * | | . 

(V) For all 6 such that 0 < 6 < 1, there is a sequence {xn\ in B such that, for 
every sequence of numbers {at} for which X)T atXi is convergent and at —>0, 

(8) 0 -sup{ |a , | } ^ | |E?0<*< l l S E ? |a , - a,+i| . 

Proof. Suppose first t h a t B is no t reflexive. Le t {(zu gt)} be as described 
in L e m m a 1. Le t X\ = z\ and xt = zt — z^i if i > 1. Then , for every i, 
gi(Xi) = 0 and therefore \\xl\\ ^ 0. Also, YA^i = ZK, SO t h a t | |]CiX*|| < 1 
for every k. Inequal i ty (3) is equivalent to c h a r f ^ } ^ -|e. T h u s (I) is satisfied. 
Clearly, ( I I ) follows from Lemma 2 and ( I I ) implies ( I I I ) . Also, ( I I ) implies 
( IV), since if {(zz, gt)} are as described in ( I I ) , then 

0 - s u p { | £ ? a « | } = sup{\gn(J^r aiZi)\} ^ | | £ î a * i | | . 

Le t us now show tha t (IV) implies (V). T o do this, let {zn} and 6 be as de
scribed in ( IV). Le t Xi = Z\ and xt = zt — Zi-i if i > 1. Then J]T atXi = 
£ T ( a < - ai+i)zt, so t h a t (7) and \\zt\\ ^ 1 imply (8). 

T o complete the proof, it is sufficient to show t h a t B is non-reflexive if ( I ) , 
( I I I ) or (V) is satisfied (note t h a t the following arguments use only the 
existence of positive numbers 6 and e as described in ( I ) - (V) , ra ther t han 
the possibility of using arb i t ra ry 6 and e in the interval (0,1)). If (I) or ( I I I ) 
is satisfied, then a subspace of B has a basis t h a t is not boundedly complete 
or is not shrinking, so t h a t B is not reflexive [1, Theorem 3, p . 71]. Now 
suppose 6 and \xn) are as described in (V). For each n, let 

Kn = Cl{ Y^ai%i : P = U a n d 1 = «i = . . . = «n ^ «n+1 ^ . . - ^ t t p ^ O j . 

Then Kn is bounded, closed and convex, with Kn Z) Kn+1. T h u s we can show B 
is non-reflexive by showing t h a t O Kn is e m p t y [1, Theorem 1, p . 48]. Suppose 
x £ O Kn. Then there exist sequences {«$} and {/^j t h a t decrease monoton-
ically to 0 for which 

\\x — Y%aixi\\ < ¥, \\% ~ S ï^^i l l < ie> 
andjS^ = 1 if i rg p + 1. Then H ^ i c ^ x * — S î /5̂ x̂ 11 < 0, bu t from (8) we have 

There are m a n y properties of Banach spaces whose equivalence to non-
super-reflexivity follows easily from the definition of super-reflexivity, b u t 

https://doi.org/10.4153/CJM-1972-089-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-089-7


BANACH SPACES 903 

which will not be discussed in this paper (see Lemmas B and C and Theorem 6 
of [3]). The first five characterizations in the next theorem are closely related 
to (I)-(V) of Theorem 3. Characterizations (vi) and (viii) are known [4, 
Theorem 6], but are included here to show their relation to (vii). 

THEOREM 4. Each of the following is a necessary and sufficient condition for 
a Banach space B not to be super-reflexive. (Equivalent conditions are obtained 
if the introductory phrases for (i), (ii) and (iii) are replaced by u For some positive 
numbers 6 and e," or the introductory phrases for (iv) and (v) are replaced by 
"For some positive number 0".) 

(i) If 0 < 6 < 1 and 0 < e < 1, then for every positive integer n there is a 
subset {xi, . . . , xn] of B such that \\xt\\ ^ 6 for every i, | |S î#z | | < 1 
if k ^ n, and, for every sequence of numbers {a*}, 

||Z)Ï0<*i|| = ihllZli^*!! if k = n-
(ii) If 0 < 6 < 1 and 0 < e < 1, then for every positive integer n there are 

subsets {zi, . . . , zn\ and [g\, . . . , gn\ of the unit balls of B and B*, 
respectively, such that 

gi(zj) = 6 if i ^j, gt(Zj) = 0 if i > j , 

and, for every sequence of numbers {a*} and every k ^ n, 

||2>«*<ll èi6||£î«*«ll-
(iii) If 0 < 6 < 1 and 0 < e < 1, then for every positive integer n there is a 

subset {zi, . . . , zn} of the unit ball of B such that \\z\\ > 6 if z £ conv 
{zi, . . . , zn], and, for every sequence of numbers {a*} and every k rg n, 

\\Y2aizi\\ è èe | |Xia^i | | . 

(iv) IfO < 6 < 1, then for every positive integer n there is a subset {yi, . . . , yn} 
of the unit ball of B such that, for every sequence of numbers {a^}, 

*-sup{|2><l :k^n} ^ ||2><y*l|. 
(v) If 0 < 6 < 1, then for every positive integer n there is a subset {xi,..., xn] 

of B such that, for every sequence of numbers {at} for which an+i = 0, 

6 • sup{|a*| : 1 ^ i ^ n] ^ | | ] C i a ^ l l ^ S i \ai ~ a*+i|-

(vi) For every A, ô and B such that 0<2A<8^1<B, there exist 
numbers r and s for which l < r < c o , l < s < o o , and, if {et} is any 
normalized basic sequence in B with char{e*} ^ ô, then 

4 E W r ^ IE««*II ^ B[£ Hs]1/S. 
for every sequence of numbers {at) such that ]£ axex is convergent. 

(vii) There exist positive numbers ô, A and r such that 5 < l , l < r < o o , and 

(9) ^ [ E N T ' â IE «««ill, 
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for every normalized basic sequence {e*} with charfe*} ^ |5 awd every 
sequence of numbers {a^ such that X) a%e% is convergent. 

(viii) There exist positive numbers 3, B and s such that 5 < l , l < s < o o , and 

(10) | E aiet\ = B[£ | a , | 'P" , 

for every normalized basic sequence {^} with charj^} ^ \3 and every 
sequence of numbers {at} such that E aie% is convergent. 

Proof. Observe first that if a Banach space B is not super-reflexive, then 
there is a non-reflexive space X that is finitely representable in B. The fact 
that X has each of properties (I)-(V) of Theorem 3 implies that B has each of 
properties (i)-(v). The proof that each of (i)-(v) implies there is a non-
reflexive space X that is finitely representable in B is essentially the same as a 
known process that will not be repeated here (see the proof of Lemma B in 
[3]). This completes the proof of (i)-(v). It is known that (vi) is implied by 
super-reflexivity [4, Theorem 4]. Clearly (vi) implies both (vii) and (viii). 
Let us suppose that B is not super-reflexive, but that (vii) is satisfied. For 3, 
A and r as described in (vii), choose e and n so that <5 < e < 1 and 

n1/T8A > 1. 

For this e and for 6 = 3, choose { described in (i). Since 
jxi, . . . , ocfii can be extended to a basic sequence with characteristic greater 
than \h, (9) gives the contradiction: 

n1/TsA ^ [ £ î l N n 1 / r ^ II2>>II < i . 
Similarly, if B is not super-reflexive, but (viii) is satisfied, choose e and n 
so that 3 < e < 1 and 

On > Bn1/S. 

For this e and for 6 = 3, choose {zi, . . . , zn] as described in (iii). Since 
{zij . . . , zn) can be extended to a basic sequence with characteristic greater 
than \8, (10) gives the contradiction 

Sn< 11 E ï * i | | =B[Y.\\zi\\s]Vs =-Bnlls. 
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