SUPER-REFLEXIVE BANACH SPACES

ROBERT C. JAMES

Introduction. A super-reflexive Banach space is defined to be a Banach space B which has the property that no non-reflexive Banach space is finitely representable in B. Super-reflexivity is invariant under isomorphisms; a Banach space B is super-reflexive if and only if B^* is super-reflexive. This concept has many equivalent formulations, some of which have been studied previously. For example, two necessary and sufficient conditions for super-reflexivity are: (i) There exist positive numbers $\delta < \frac{1}{3}$, A, and r such that $1 < r < \infty$ and $A[\sum |a_i|^r]^{1/r} \leq ||\sum a_i e_i||$ for every normalized basic sequence $\{e_i\}$ with char $\{e_i\} \geq \delta$ and all numbers $\{a_i\}$; (ii) There exist positive numbers $\delta < \frac{1}{2}$, B, and s such that $1 < s < \infty$ and $||\sum a_i e_i|| \leq B[\sum |a_i|^r]^{1/r}$ for every normalized basic sequence $\{e_i\}$ with char $\{e_i\} \geq \delta$ and all numbers $\{a_i\} \geq \delta$ and all numbers $\{a_i\}$.

Definition 1. A normed linear space X being finitely representable in a normed linear space Y means that, for each finite-dimensional subspace X_n of X and each number $\lambda > 1$, there is an isomorphism T_n of X_n into Y for which

$$\lambda^{-1}||x|| \leq ||T_n(x)|| \leq \lambda ||x||$$
 if $x \in X_n$.

Definition 2. A normed linear space X being crudely finitely representable in a normed linear space Y means that there is a number $\lambda > 1$ such that, for each finite-dimensional subspace X_n of X, there is an isomorphism T_n of X_n into Y for which

$$\lambda^{-1}||x|| \leq ||T_n(x)|| \leq \lambda ||x||$$
 if $x \in X_n$.

Definition 3. A super-reflexive Banach space is a Banach space B which has the property that no non-reflexive Banach space is finitely representable in B.

It follows directly from known facts that a Banach space is super-reflexive if it is isomorphic to a Banach space that is uniformly non-square [3, Lemma C]. Clearly, all super-reflexive spaces are reflexive. The next theorem will enable us to prove easily that super-reflexivity is isomorphically invariant.

THEOREM 1. A Banach space B is super-reflexive if and only if no non-reflexive Banach space is crudely finitely representable in B.

Proof. Clearly, a Banach space B is super-reflexive if no non-reflexive Banach space is crudely finitely representable in B. We must show that if a non-reflexive space X is crudely finitely representable in B, then there is a

Received September 14, 1971 and in revised form, February 16, 1972. This research was partially supported by NSF Grant GP-28578.

non-reflexive space Y that is finitely representable in B. Since X is non-reflexive, there is an $\epsilon > 0$ and a sequence $\{x_n\}$ in the unit ball of X such that

$$dist(conv\{x_1, ..., x_k\}, conv\{x_{k+1}, ...\}) > e$$

for every $k \ge 1$ [2, Theorem 7, p. 114]. Let $\lambda > 1$ be a number such that, for each *n*, there is an isomorphism T_n of $\lim \{x_1, \ldots, x_n\}$ into *B* with

$$\lambda^{-1}||x|| \leq ||T_n(x)|| \leq \lambda ||x|| \text{ if } x \in \lim\{x_1,\ldots,x_n\}.$$

Let $y_i^n = \lambda^{-1} T_n(x_i)$ for $i \leq n$. Then $||y_i^n|| \leq 1$ and, if $1 \leq k < n$,

dist(conv{ y_1^n , ..., y_k^n }, conv{ y_{k+1}^n , ..., y_n^n })

 $\geq \lambda^{-2} \operatorname{dist}(\operatorname{conv}\{x_1,\ldots,x_k\},\operatorname{conv}\{x_{k+1},\ldots,x_n\}),$

so that

dist(conv{
$$y_1^n, \ldots, y_k^n$$
}, conv{ y_{k+1}^n, \ldots, y_n^n }) $\geq \lambda^{-2}\epsilon$.

Now the procedure used in the proof of Lemma B in [3] gives a space Y that is finitely representable in B and is non-reflexive by virtue of having a sequence $\{\eta_n\}$ for which $||\eta_n|| \leq 1$ and, for every $k \geq 1$,

dist(conv{
$$\eta_1, \ldots, \eta_k$$
}, conv{ η_{k+1}, \ldots }) $\geq \lambda^{-2} \epsilon$.

THEOREM 2. Super-reflexivity is invariant under isomorphisms. A Banach space B is super-reflexive if and only if B^* is super-reflexive.

Proof. It follows from Theorem 1 that super-reflexivity is invariant under isomorphisms. Now suppose that X is non-reflexive and finitely representable in B. Since X^* is non-reflexive, there is an $\epsilon > 0$ and a sequence of linear functionals $\{f_n\}$ in the unit ball of X^* for which

dist
$$(\operatorname{conv}\{f_1,\ldots,f_k\},\operatorname{conv}\{f_{k+1},\ldots\}) > \epsilon$$
 if $k \ge 1$.

For a positive integer n and a finite-dimensional subspace X_p of X, let T map X_p into B as described in Definition 1. Define ϕ_k^n for $k \leq n$ by letting $\phi_k^n[T(x)] = f_k(x)$ if $x \in X_p$, and then extending ϕ_k to all of B. If X_p is chosen suitably and λ is close enough to 1, then $||\phi_k|| < 2$ and

(1)
$$\operatorname{dist}(\operatorname{conv}\{\phi_1^n,\ldots,\phi_k^n\},\operatorname{conv}\{\phi_{k+1}^n,\ldots,\phi_n^n\}) > \epsilon$$

if $1 \leq k < n$. Again, the procedure of [3, Lemma B] gives a space Y that is finitely representable in B^* and is non-reflexive by virtue of containing a bounded sequence $\{\eta_n\}$ for which

dist
$$(\operatorname{conv}\{\eta_1,\ldots,\eta_k\},\operatorname{conv}\{\eta_{k+1},\ldots\}) \ge \epsilon$$
 if $k \ge 1$.

Conversely, suppose Y is non-reflexive and finitely representable in B^* . As in the proof of Theorem 1, it then follows that there is an $\epsilon > 0$ such that, for every positive integer n, there is a subset $\{\phi_1^n, \ldots, \phi_n^n\}$ of the unit ball of B^* for which (1) is satisfied. The procedure of [3, Lemma B] then gives a space X that is finitely representable in B and is non-reflexive by virtue of there being a bounded sequence of linear functionals $\{f_n\}$ in X* for which

dist
$$(\operatorname{conv}{f_1,\ldots,f_k},\operatorname{conv}{f_{k+1},\ldots}) \ge \epsilon$$
 if $k \ge 1$.

The next two lemmas are needed to develop some characterizations of reflexivity that will be useful in establishing characterizations of superreflexivity. It is known that every non-reflexive Banach space has an infinitedimensional subspace with a non-shrinking basis and an infinite-dimensional subspace with a basis that is not boundedly complete [5, p. 374; 6, p. 362]. We shall need quantitative measures of how "good" these bases can be, as described by means of the characteristic of the basis. This is given by Lemmas 1 and 2. The proofs of Lemmas 1 and 2 are similar to the argument on pages 116–117 of [2], but these lemmas give more information. In fact, Lemma 2 is a combination of (31) and (35) in [2].

It is known that a sequence $\{x_i\}$ in a Banach space is a basis for its closed linear span if and only if there is a positive number ϵ such that

$$\left|\left|\sum_{1}^{n+p} a_{i} x_{i}\right|\right| \ge \epsilon \left|\left|\sum_{1}^{n} a_{i} x_{i}\right|\right|$$

for all positive integers *n* and *p* and all numbers $\{a_i\}$. The largest such number ϵ is the *characteristic* of the basis.

The proofs of Lemmas 1 and 2 make repeated use of the following form of *Helly's condition*. "Given linear functionals f_1, \ldots, f_n on a Banach space B and numbers c_1, \ldots, c_n and M, the following two statements are equivalent.

(i) $|\sum_{i=1}^{n} a_i c_i| \leq M ||\sum_{i=1}^{n} a_i f_i||$ for all numbers $\{a_i\}$.

(ii) For every $\epsilon > 0$, there is an x in B such that $||x|| < M + \epsilon$ and $f_i(x) = c_i$ if $1 \le i \le n$."

LEMMA 1. Let B be a non-reflexive Banach space. If $0 < \theta < 1$ and $0 < \epsilon < 1$, then there are sequences $\{z_i\}$ and $\{g_i\}$ in the interiors of the unit balls of B and B^{*} such that

(2)
$$g_i(z_j) = \theta$$
 if $i \leq j$, $g_i(z_j) = 0$ if $i > j$,

and, for all positive integers n and p and all numbers $\{a_i\}$,

(3)
$$||\sum_{1}^{n} a_{i}z_{i} + \sum_{n+1}^{n+p} a_{i}(z_{i} - z_{i-1})|| \ge \frac{1}{3}\epsilon ||\sum_{1}^{n} a_{i}z_{i}||.$$

Proof. Let θ and ϵ satisfy $0 < \theta < 1$ and $0 < \epsilon < 1$. Let F be a member of B^{**} for which ||F|| < 1 and

dist(F, B^c) > max{
$$\theta, \epsilon^{\frac{1}{2}}$$
},

where B^c is the canonical image of B in B^{**} . We shall show that a sequence $\{(z_n, g_n, H_n)\}$ can be chosen inductively so that $z_n \in B$, $g_n \in B^*$, $\{H_n\}$ is an increasing sequence of finite sets of linear functionals with B as their domains, and:

(a) $||z_n|| < 1$, $||g_n|| < 1$;

(b) $F(g_n) = \theta$ for all n;

- (c) $g_i(z_j) = \theta$ if $i \leq j$ and $g_i(z_j) = 0$ if i > j;
- (d) $||h|| < 3\epsilon^{-\frac{1}{2}}$ and $F(h) = h(z_i)$ if $h \in H_n$ and $i \ge n$;
- (e) if $z \in \lim\{z_1, \ldots, z_n\}$, then there is an h in H_n with $|h(z)| \ge \epsilon^{\frac{1}{2}} ||z||$.

Since $||F|| > \theta$, we can choose g_1 so that $||g_1|| < 1$ and $F(g_1) = \theta$. Then $||g_1|| > \theta$ and we can choose z_1 so that $g_1(z_1) = \theta$ and $||z_1|| < 1$. Let H_1 contain a single member chosen by the procedure described below for determining H_{p+1} . Suppose that (z_i, g_i, H_i) have been chosen to satisfy (a)-(e) when $i \leq p$, where $p \geq 1$. Then g_{p+1} must satisfy

$$||g_{p+1}|| < 1, \quad F(g_{p+1}) = \theta, \quad g_{p+1}(z_j) = z_j^{c}(g_{p+1}) = 0 \quad \text{if} \quad j \leq p.$$

For the last two of these three conditions, Helly's condition (i) becomes

 $\theta \leq M || \sum_{1}^{p} a_{i} z_{i}^{c} + F || \quad \text{for all } \{a_{i}\}.$

Since this is satisfied if $M = \theta/\text{dist}(F, B^c) < 1$, g_{p+1} can be chosen to satisfy $||g_{p+1}|| < 1$. Now z_{p+1} must satisfy

$$||z_{p+1}|| < 1, \quad g_i(z_{p+1}) = \theta \quad \text{if} \quad i \leq p+1, \quad h(z_{p+1}) = h(z_p) \quad \text{if} \quad h \in H_p.$$

For the last two of these three conditions, Helly's condition (i) becomes

$$|\theta \sum_{1}^{p+1} a_i + h(z_p)| \leq M ||\sum_{1}^{p+1} a_i g_i + h||$$

for all $\{a_i\}$ and all $h \in lin(H_p)$. Since

$$|\theta \sum_{1}^{p+1} a_i + h(z_p)| = |F(\sum_{1}^{p+1} a_i g_i + h)| \le ||F|| ||\sum_{1}^{p+1} a_i g_i + h||$$

and ||F|| < 1, we can let M = ||F|| and choose z_{p+1} so that $||z_{p+1}|| < 1$. Now let G_p be a finite set of linear functionals with unit norms and domains B which contains suitable linear functionals so that, for each z in $\lim\{z_1, \ldots, z_{p+1}\}$, there is a g in G_p with $|g(z)| \ge \epsilon^{\frac{1}{2}}||z||$. Let us now show that, for each g in G_p , there is an h in B^* such that

(4)
$$||h|| < 3\epsilon^{-\frac{1}{2}}, F(h) = g(z_{p+1}), z_i^c(h) = z_i^c(g) \text{ if } i \leq p+1.$$

For the last two of these conditions, Helly's condition (i) becomes

(5) $|a \cdot g(z_{p+1}) + \sum_{i=1}^{p+1} a_i z_i^{c}(g)| \leq M ||aF + \sum_{i=1}^{p+1} a_i z_i^{c}||$ for all $\{a_i\}$ and a. Since

we can satisfy (5) with $M = 1 + 2\epsilon^{-\frac{1}{2}}$ and choose h so that $||h|| < 3\epsilon^{-\frac{1}{2}}$. It follows from (4) that $h \equiv g$ on $\lim\{z_1, \ldots, z_{p+1}\}$. Let each member of G_p be replaced in this way and then let H_{p+1} be the union of H_p and all such replacements of members of G_p . Clearly the sequence $\{(z_i, g_i)\}$ satisfies (2). It follows from (e) that, for any sum $\sum_{i=1}^{n} a_i z_i$, there is an h in H_n such that

$$|h(\sum_{1}^{n} a_{i} z_{i})| \geq \epsilon^{\frac{1}{2}} ||\sum_{1}^{n} a_{i} z_{i}||.$$

Since $||h|| < 3\epsilon^{-\frac{1}{2}}$ and $h(z_i - z_{i-1}) = 0$ if i > n, we have

$$\begin{aligned} ||\sum_{1}^{n} a_{i} z_{i} + \sum_{n+1}^{n+p} a_{i} (z_{i} - z_{i-1})|| &\geq \frac{1}{3} \epsilon^{\frac{1}{2}} |h[\sum_{1}^{n} a_{i} z_{i} + \sum_{n+1}^{n+p} a_{i} (z_{i} - z_{i-1})]| \\ &= \frac{1}{3} \epsilon^{\frac{1}{2}} |h(\sum_{1}^{n} a_{i} z_{i})| \geq \frac{1}{3} \epsilon ||\sum_{1}^{n} a_{i} z_{i}||. \end{aligned}$$

LEMMA 2. Let B be a non-reflexive Banach space. If $0 < \theta < 1$ and $0 < \epsilon < 1$, then there are sequences $\{z_i\}$ and $\{g_i\}$ in the interiors of the unit balls of B and B^{*} such that

$$g_1(z_j) = \theta$$
 if $i \leq j$, $g_i(z_j) = 0$ if $i > j$,

and, for all positive integers n and p and all numbers $\{a_i\}$,

(6)
$$\left|\left|\sum_{1}^{n+p} a_{i} z_{i}\right|\right| \geq \frac{1}{2} \epsilon \left|\left|\sum_{1}^{n} a_{i} z_{i}\right|\right|.$$

Proof. Let θ and ϵ satisfy $0 < \theta < 1$ and $0 < \epsilon < 1$. Let F be a member of B^{**} for which ||F|| < 1 and

dist
$$(F, B^c)$$
 > max $\{\theta, \epsilon^{\frac{1}{2}}\},\$

where B^c is the canonical image of B in B^{**} . We shall show that a sequence $\{(z_n, g_n, H_n)\}$ can be chosen inductively so that $z_n \in B$, $g_n \in B^*$, $\{H_n\}$ is an increasing sequence of finite sets of linear functionals with B as their domains, and:

(a)
$$||z_n|| < 1$$
, $||g_n|| < 1$;

(b)
$$F(g_n) = \theta$$
 for all n ;

- (c) $g_i(z_j) = \theta$ if $i \leq j$ and $g_i(z_j) = 0$ if i > j;
- (d) $||h|| < 2\epsilon^{-\frac{1}{2}}$ and $F(h) = h(z_i) = 0$ if $h \in H_n$ and i > n;

(e) If $z \in \lim\{z_1, \ldots, z_n\}$, then there is an h in H_n with $|h(z)| \ge \epsilon^{\frac{1}{2}}||z||$. Assuming that (z_i, g_i, H_i) have been chosen to satisfy (a)-(e) for $i \le p$,

the choice of g_{p+1} is made exactly as in the proof of Lemma 1. Then z_{p+1} must satisfy

 $||z_{p+1}|| < 1, g_i(z_{p+1}) = \theta \text{ if } i \leq p+1, h(z_{p+1}) = 0 \text{ if } h \in H_{p}.$

For the last two of these conditions, Helly's condition (i) becomes

$$|\theta \sum_{1}^{p+1} a_i| \leq M ||\sum_{1}^{p+1} a_i g_i + h||$$

for all $\{a_i\}$ and all $h \in \lim(H_p)$. Since

$$|\theta \sum_{1}^{p+1} a_i| = |F(\sum_{1}^{p+1} a_i g_i + h)| \le ||F|| ||\sum_{1}^{p+1} a_i g_i + h||$$

900

BANACH SPACES

and ||F|| < 1, we can let M = ||F|| and choose z_{p+1} so that $||z_{p+1}|| < 1$. The remaining argument is similar to that for Lemma 1, with (4) replaced by

$$||h|| < 2\epsilon^{\frac{1}{2}}, \quad F(h) = 0, \quad z_i^{c}(h) = z_i^{c}(g) \quad \text{if} \quad i \leq p+1,$$

and (5) replaced by

$$\left|\sum_{1}^{p+1} a_{i} z_{i}^{c}(g)\right| \leq M ||F + \sum_{1}^{p+1} a_{i} z_{i}^{c}||.$$

The coefficient $\frac{1}{2}$ in (6) is the best possible. To see this, suppose θ is a positive number and $\{x^n\}$ is a normalized basic sequence in c_0 for which there is a continuous linear functional g such that $g(x^n) \ge \theta$ for every n. We shall show that char $\{x^n\} \le \frac{1}{2}$. Let $\{y^n\}$ be a subsequence of $\{x^n\}$ for which

$$\lim_{n\to\infty}y^n(i)=\alpha_i$$

exists for each *i*. Then $|\alpha_i| \leq 1$ for every *i*. Also $g(x^n) \geq \theta$ for every *n* implies $\sup\{|\alpha_i|\} > 0$. For an arbitrary $\epsilon > 0$, let $\{z^n\}$ be a subsequence of $\{y^n\}$ such that, for every *n*,

$$|z^n(i) - \alpha_i| < \epsilon$$
 if $i \leq p(n) < p(n+1)$,

where p(n) is an integer for which $|z^k(i)| < \epsilon$ if k < n and $i \ge p(n)$. Then, for every k and r,

$$||\sum_{i=1}^k z^{r+i} - \omega|| < k\epsilon + 1,$$

where $\omega(i) = k\alpha_i$ if $1 \le i \le p(r+1)$, $\omega(i) = (k-j)\alpha(i)$ if $p(r+j) < i \le p(r+j+1)$, and $\omega(i) = 0$ if i > p(r+k). Choose *r* such that $\sup\{|\alpha_i| : i \le p(r)\} > M - \epsilon$, where $M = \sup\{|\alpha_i|\}$. Then choose s > k + r. It follows that

$$\begin{aligned} ||\sum_{i=1}^{k} z^{r+i} - \frac{1}{2} \sum_{i=1}^{k} z^{s+i}|| &< \frac{1}{2}kM + 2(k\epsilon + 1), \\ ||\sum_{i=1}^{k} z^{r+i}|| &> k(M - \epsilon) - k\epsilon. \end{aligned}$$

Thus, $\operatorname{char}\{x^n\} \leq \operatorname{char}\{z^n\} < [\frac{1}{2}M + 2(\epsilon + 1/k)]/[M - 2\epsilon]$. Since k and ϵ were arbitrary, $\operatorname{char}\{x^n\} \leq \frac{1}{2}$.

THEOREM 3. Each of the following is a necessary and sufficient condition for a Banach space B to be non-reflexive. (Equivalent conditions are obtained if the introductory phrases for (I), (II) and (III) are replaced by "For some positive numbers θ and ϵ ," or the introductory phrases for (IV) and (V) are replaced by "For some positive number θ ".)

- (I) For all θ and ϵ such that $0 < \theta < 1$ and $0 < \epsilon < 1$, there is a basic sequence $\{x_i\}$ in B such that $||x_i|| \ge \theta$ for every i, $||\sum_{i=1}^{k} x_i|| < 1$ for every k, and char $\{e_i\} \ge \frac{1}{3}\epsilon$.
- (II) For all θ and ϵ such that $0 < \theta < 1$ and $0 < \epsilon < 1$, there are sequences $\{z_n\}$ and $\{g_n\}$ in the unit balls of B and B^{*}, respectively, such that $\{z_i\}$ is a basic sequence with char $\{e_i\} \ge \frac{1}{2}\epsilon$ and

$$g_i(z_j) = \theta$$
 if $i \leq j$, $g_i(z_j) = 0$ if $i > j$.

ROBERT C. JAMES

(III) For all θ and ϵ such that $0 < \theta < 1$ and $0 < \epsilon < 1$, there is a basic sequence $\{z_n\}$ in the unit ball of B such that $\operatorname{char}\{z_n\} \ge \frac{1}{2}\epsilon$ and

 $||z|| \ge \theta \quad \text{if} \quad z \in \operatorname{conv}\{z_n\}.$

(IV) For all θ such that $0 < \theta < 1$, there is a sequence $\{z_n\}$ in the unit ball of B such that, for every sequence of numbers $\{a_i\}$ such that $\sum_{i=1}^{\infty} a_i z_i$ is convergent,

(7)
$$\theta \cdot \sup\{|\sum_{k=0}^{\infty} a_{i}| : k \leq n\} \leq ||\sum_{i=0}^{\infty} a_{i}z_{i}||.$$

(V) For all θ such that $0 < \theta < 1$, there is a sequence $\{x_n\}$ in B such that, for every sequence of numbers $\{a_i\}$ for which $\sum_{i=1}^{\infty} a_i x_i$ is convergent and $a_i \rightarrow 0$,

(8)
$$\theta \cdot \sup\{|a_i|\} \leq ||\sum_{1}^{\infty} a_i x_i|| \leq \sum_{1}^{\infty} |a_i - a_{i+1}|.$$

Proof. Suppose first that *B* is not reflexive. Let $\{(z_i, g_i)\}$ be as described in Lemma 1. Let $x_1 = z_1$ and $x_i = z_i - z_{i-1}$ if i > 1. Then, for every *i*, $g_i(x_i) = \theta$ and therefore $||x_i|| \ge \theta$. Also, $\sum_{i=1}^{k} x_i = z_k$, so that $||\sum_{i=1}^{k} x_i|| < 1$ for every *k*. Inequality (3) is equivalent to char $\{x_i\} \ge \frac{1}{3}\epsilon$. Thus (I) is satisfied. Clearly, (II) follows from Lemma 2 and (II) implies (III). Also, (II) implies (IV), since if $\{(z_i, g_i)\}$ are as described in (II), then

$$\theta \cdot \sup\{\left|\sum_{n=1}^{\infty} a_{i}\right|\} = \sup\{\left|g_{n}\left(\sum_{1=1}^{\infty} a_{i}z_{i}\right)\right|\} \leq \left|\left|\sum_{1=1}^{\infty} a_{i}z_{i}\right|\right|.$$

Let us now show that (IV) implies (V). To do this, let $\{z_n\}$ and θ be as described in (IV). Let $x_1 = z_1$ and $x_i = z_i - z_{i-1}$ if i > 1. Then $\sum_{i=1}^{\infty} a_i x_i = \sum_{i=1}^{\infty} (a_i - a_{i+1}) z_i$, so that (7) and $||z_i|| \leq 1$ imply (8).

To complete the proof, it is sufficient to show that *B* is non-reflexive if (I), (III) or (V) is satisfied (note that the following arguments use only the existence of positive numbers θ and ϵ as described in (I)-(V), rather than the possibility of using arbitrary θ and ϵ in the interval (0,1)). If (I) or (III) is satisfied, then a subspace of B has a basis that is not boundedly complete or is not shrinking, so that *B* is not reflexive [1, Theorem 3, p. 71]. Now suppose θ and $\{x_n\}$ are as described in (V). For each *n*, let

$$K_n = \operatorname{cl} \{ \sum_{i=1}^{p} \alpha_i x_i : p \ge n \text{ and } 1 = \alpha_1 = \ldots = \alpha_n \ge \alpha_{n+1} \ge \ldots \ge \alpha_p \ge 0 \}.$$

Then K_n is bounded, closed and convex, with $K_n \supset K_{n+1}$. Thus we can show B is non-reflexive by showing that $\bigcap K_n$ is empty [1, Theorem 1, p. 48]. Suppose $x \in \bigcap K_n$. Then there exist sequences $\{\alpha_i\}$ and $\{\beta_i\}$ that decrease monotonically to 0 for which

$$||x - \sum_{1}^{p} \alpha_{i} x_{i}|| < \frac{1}{2}\theta, \qquad ||x - \sum_{1}^{q} \beta_{i} x_{i}|| < \frac{1}{2}\theta,$$

and $\beta_i = 1$ if $i \leq p + 1$. Then $\left\|\sum_{i=1}^{p} \alpha_i x_i - \sum_{i=1}^{q} \beta_i x_i\right\| < \theta$, but from (8) we have

$$\left|\left|\sum_{1}^{p} \alpha_{i} x_{i} - \sum_{1}^{q} \beta_{i} x_{i}\right|\right| \ge \theta \beta_{p+1} = \theta$$

There are many properties of Banach spaces whose equivalence to nonsuper-reflexivity follows easily from the definition of super-reflexivity, but

BANACH SPACES

which will not be discussed in this paper (see Lemmas B and C and Theorem 6 of [3]). The first five characterizations in the next theorem are closely related to (I)-(V) of Theorem 3. Characterizations (vi) and (viii) are known [4, Theorem 6], but are included here to show their relation to (vii).

THEOREM 4. Each of the following is a necessary and sufficient condition for a Banach space B not to be super-reflexive. (Equivalent conditions are obtained if the introductory phrases for (i), (ii) and (iii) are replaced by "For some positive numbers θ and ϵ ," or the introductory phrases for (iv) and (v) are replaced by "For some positive number θ ".)

(i) If 0 < θ < 1 and 0 < ε < 1, then for every positive integer n there is a subset {x₁,..., x_n} of B such that ||x_i|| ≥ θ for every i, ||∑^k₁ x_i|| < 1 if k ≤ n, and, for every sequence of numbers {a_i},

$$||\sum_{1}^{n} a_{i} x_{i}|| \ge \frac{1}{3} \epsilon ||\sum_{1}^{k} a_{i} x_{i}|| \quad \text{if} \quad k \le n.$$

(ii) If $0 < \theta < 1$ and $0 < \epsilon < 1$, then for every positive integer n there are subsets $\{z_1, \ldots, z_n\}$ and $\{g_1, \ldots, g_n\}$ of the unit balls of B and B^* , respectively, such that

 $g_i(z_j) = \theta$ if $i \leq j$, $g_i(z_j) = 0$ if i > j,

and, for every sequence of numbers $\{a_i\}$ and every $k \leq n$,

$$||\sum_{1}^{n} a_{i} z_{i}|| \geq \frac{1}{2} \epsilon ||\sum_{1}^{k} a_{i} z_{i}||.$$

(iii) If $0 < \theta < 1$ and $0 < \epsilon < 1$, then for every positive integer n there is a subset $\{z_1, \ldots, z_n\}$ of the unit ball of B such that $||z|| > \theta$ if $z \in \text{conv} \{z_1, \ldots, z_n\}$, and, for every sequence of numbers $\{a_i\}$ and every $k \leq n$,

$$||\sum_{1}^{n} a_{i} z_{i}|| \geq \frac{1}{2} \epsilon ||\sum_{1}^{k} a_{i} z_{i}||.$$

(iv) If $0 < \theta < 1$, then for every positive integer n there is a subset $\{y_1, \ldots, y_n\}$ of the unit ball of B such that, for every sequence of numbers $\{a_i\}$,

$$\partial \cdot \sup\{\left|\sum_{k=1}^{n} a_{i}\right| : k \leq n\} \leq \left|\left|\sum_{i=1}^{n} a_{i} y_{i}\right|\right|$$

(v) If $0 < \theta < 1$, then for every positive integer *n* there is a subset $\{x_1, \ldots, x_n\}$ of *B* such that, for every sequence of numbers $\{a_i\}$ for which $a_{n+1} = 0$,

$$\theta \cdot \sup\{|a_i| : 1 \le i \le n\} \le ||\sum_{1}^n a_i x_i|| \le \sum_{1}^n |a_i - a_{i+1}|.$$

(vi) For every A, δ and B such that $0 < 2A < \delta \leq 1 < B$, there exist numbers r and s for which $1 < r < \infty$, $1 < s < \infty$, and, if $\{e_i\}$ is any normalized basic sequence in B with char $\{e_i\} \geq \delta$, then

$$A[\sum |a_i|^r]^{1/r} \leq ||\sum a_i e_i|| \leq B[\sum |a_i|^s]^{1/s},$$

for every sequence of numbers $\{a_i\}$ such that $\sum a_i e_i$ is convergent.

(vii) There exist positive numbers δ , A and r such that $\delta < 1, 1 < r < \infty$, and

(9)
$$A[\sum |a_i|^r]^{1/r} \leq ||\sum a_i e_i||,$$

ROBERT C. JAMES

for every normalized basic sequence $\{e_i\}$ with char $\{e_i\} \ge \frac{1}{3}\delta$ and every sequence of numbers $\{a_i\}$ such that $\sum a_i e_i$ is convergent.

(viii) There exist positive numbers δ , B and s such that $\delta < 1, 1 < s < \infty$, and

(10)
$$|\sum a_i e_i| \leq B[\sum |a_i|^s]^{1/s},$$

for every normalized basic sequence $\{e_i\}$ with char $\{e_i\} \ge \frac{1}{2}\delta$ and every sequence of numbers $\{a_i\}$ such that $\sum a_i e_i$ is convergent.

Proof. Observe first that if a Banach space B is not super-reflexive, then there is a non-reflexive space X that is finitely representable in B. The fact that X has each of properties (I)-(V) of Theorem 3 implies that B has each of properties (i)-(v). The proof that each of (i)-(v) implies there is a nonreflexive space X that is finitely representable in B is essentially the same as a known process that will not be repeated here (see the proof of Lemma B in [3]). This completes the proof of (i)-(v). It is known that (vi) is implied by super-reflexivity [4, Theorem 4]. Clearly (vi) implies both (vii) and (viii). Let us suppose that B is not super-reflexive, but that (vii) is satisfied. For δ , A and r as described in (vii), choose ϵ and n so that $\delta < \epsilon < 1$ and

$$n^{1/r}\delta A > 1.$$

For this ϵ and for $\theta = \delta$, choose $\{x_1, \ldots, x_n\}$ as described in (i). Since $\{x_1, \ldots, x_n\}$ can be extended to a basic sequence with characteristic greater than $\frac{1}{3}\delta$, (9) gives the contradiction:

$$n^{1/r} \delta A \leq A \left[\sum_{1}^{n} ||x_{i}||^{r} \right]^{1/r} \leq ||\sum_{1}^{n} x_{i}|| < 1.$$

Similarly, if B is not super-reflexive, but (viii) is satisfied, choose ϵ and n so that $\delta < \epsilon < 1$ and

$$\theta n > B n^{1/s}$$
.

For this ϵ and for $\theta = \delta$, choose $\{z_1, \ldots, z_n\}$ as described in (iii). Since $\{z_1, \ldots, z_n\}$ can be extended to a basic sequence with characteristic greater than $\frac{1}{2}\delta$, (10) gives the contradiction

$$\theta n < ||\sum_{1}^{n} z_{1}|| \leq B[\sum_{i} ||z_{i}||^{s}]^{1/s} \leq Bn^{1/s}.$$

References

- 1. M. M. Day, Normed linear spaces (Academic Press, New York, 1962).
- 2. R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101-119.
- Some self-dual properties of normed linear spaces, Symposium on Infinite Dimensional Topology, Annals of Mathematics Studies 69 (1972),159–175.
- 4. ——— Super-reflexive spaces with bases (to appear in Pacific J. Math.).
- 5. A Pełczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), 371-374.
- 6. I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961-62), 351-369.

Claremont Graduate School, Claremont, California