BULL. AUSTRAL. MATH. SOC. VOL. 22 (1980), 479-480.

OPERATOR SEMISTABLE PROBABILITY MEASURES ON A HILBERT SPACE: CORRIGENDA

R.G. LAHA AND V.K. ROHATGI

A faulty typescript of [2] was, regrettably, submitted. The following changes should be made:

Page 398, line 7: replace $A \in G$ with $A \in L$.

Page 398, line 12: replace $A \in G$ with $A \in L$.

Page 400, line 7: replace "It follows ... $y \in H$." with

Since $\hat{\hat{P}}(0) = 1$ and $\hat{\hat{P}}$ is continuous on H, there exists a $\delta > 0$ such that $\hat{\hat{P}}(y) \neq 0$ for $||y|| < \delta$. It then follows from the above relation that $\hat{\hat{Q}}(A_n^*y) \rightarrow 1$, as $n \rightarrow \infty$ for $||y|| < \delta$.

Page 400, line 12: replace "From Proposition 7.4.2" with "From the corollary to Proposition 7.4.1 and from Proposition 7.4.2".

Page 401, immediately before Lemma 2, add the following:

COROLLARY. Let $P \in P$ be a full operator semistable measure. Then P is infinitely divisible.

The proof follows immediately from Lemma 1 and the limiting property of sums of independent H-valued random variables satisfying the uniformly asymptotically negligible condition (see [1], page 515).

As an immediate consequence of the above corollary, we note that $\hat{P}(y) \neq 0$ for all $y \in H$.

Page 402: replace last 3 lines with

Received 30 October 1980.

Moreover, we can verify after some computation that

$$P = \lim_{n \to \infty} (A^n P)^k * \delta_{b_n} = \lim_{n \to \infty} A^n P^k * \delta_{b_n},$$

where $b'_n = b_n k_n / \gamma^n \in H$. Hence it follows that P is operator semistable.

Page 403, line 3: replace "Lemma 1" with "the corollary to Lemma 1". Pages 403 and 404: replace "In view of (10), ... of Lemma 3" with In view of (10) we have, for every $m \ge 1$,

$$P = \lim_{n \to \infty} A_{mn} Q^{mn} \star \delta_{x_{mn}}$$
$$= \lim_{n \to \infty} A_{mn} A_n^{-1} A_n Q^{mn} \star \delta_{x_{mn}}$$
$$= \lim_{n \to \infty} \left(A_{mn} A_n^{-1} \right) \left(A_n Q^n \star \delta_{x_n} \right)^m \star \delta_{x_{mn}} - mx_n$$

In view of condition (3), $\left\{A_{mm}^{A-1}\right\}$ is compact. Let $C_m \in G$ be a limit point of the sequence. Passing to the limit through a subsequence if necessary we obtain

$$P = C_m P^m * \delta_{a_m}$$

for some $a_m \in H$ and for every $m \ge 1$. This completes the proof of Lemma 3.

Page 404, line 9: replace "In view of Lemma 1" with "In view of the corollary to Lemma 1".

References

- [1] R.G. Laha and V.K. Rohatgi, Probability theory (John Wiley & Sons, New York, Brisbane, Toronto, 1979).
- [2] R.G. Laha and V.K. Rohatgi, "Operator semistable probability measures on a Hilbert space", Bull. Austral. Math. Soc. 22 (1980), 397-406.

480