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Summary. In a previous paper [1] an approximate analytical solution, useful for large times,
was obtained for the transient heat flow from a thin circular disk held at constant temperature
and immersed in an infinite medium. In the present work a first approximation has been found
for the complementary "small-time" solution and the details of this solution examined. Some
numerical calculations are included.

1. Introduction

Several years ago the author and a colleague published a paper on transient
heat flow from oblate and prolate spheroids held at constant temperature and
immersed in a medium of infinite extent [1].

The circular disk of vanishingly small thickness was treated as a limiting case
of the oblate spheroid and, in fact, the need for a solution to the experimental
problem of the disk provided the original motivation for the problem. It was
noted in the paper that the constant-temperature disk problem is much more
difficult than that of a disk generating heat at a known rate.

A deficiency of the solution in the 1964 paper was that the formal expansion
obtained was suitable for calculation only when the dimensionless time parameter
was large compared with unity. All attempts at the time to obtain a complementary
"small-time" solution failed.

Recently the writer, helped by the view-point of singular perturbation theory,
has been able to obtain a formal first approximation to a "small-time" solution.
This solution is discussed below for the circular disk — the method may be readily
extended to the general spheroids but for simplicity and since the experimental
significance of the more general cases is probably slight, the latter are not included.

In outline the method is as follows. The Fourier heat conduction equation
in oblate spheroidal co-ordinates is Laplace-transformed with respect to time. In
the resulting Helmholtz equation the parameter q — p*a jk* (where 'p' is the
transform variable, 'a' the disk radius, and 'fc' the thermal diffusivity) is treated
as large and the spheroidal co-ordinates "stretched" in terms of it. An expansion
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in inverse powers of q is then assumed for the stretched equation and boundary
conditions, and successive subsidiary problems result. The first-approximate
problem is then solved and inverse transformed.

Implicit throughout is the assumption that inverse transformation of an
approximate solution for large pia/ki yields an approximate solution for small
kt/a2 (2).

Before developing the present method an attempt was made without success
to solve the problem in cylindrical co-ordinates using the technique of dual
integral equations.

2. Analysis

The oblate spheroidal co-ordinates (e, rj) used are related to ordinary cylin-
drical co-ordinates by

r = a[(l + e2) (1 - ^2)]* 0 ^ e,

z = asr\ — 1 ^ r\ ^ 1,

<£ = </> 0 ^ 0 g 2TT

and, with axial symmetry, the heat conduction equation and boundary conditions
in these co-ordinates are:-

0<e; - 1 ^ / 7 ^ 1 ; t > 0
with

(2) e = 0 6 = d0 - ^ JJ ^ 1; f > 0

(3) #/ = 0 -|^- = 0 0 < e ; f> 0

(4) ( = 0 0 = 0 0 < e ; - l g i j ^ l

where
z,r\,t are the "radial" and "angular" co-ordinates and the time insert 9(e,r],t),k
are the temperature and thermal diffusivity of the external medium semi-color
0O, a are the temperature and radius of the disk, £ = 0.

Taking the Laplace transform of equation (1) and boundary conditions with
respect o time we obtain

0 < e ; - 1 <r]<

https://doi.org/10.1017/S144678870001106X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001106X


[3] Transient heat flow from a thin circular disk 435

with

(6) £ = O 0 = ^ - - 1 £ i/ £ 1

(7) ri = 0 - f?- = 0 0 < e

where 0 (e,/?,/>) = L,6(s,r],t) and g =
The problem of (5), (6), (7) can be solved exactly in terms of spheroidal

wave-functions and reference to this was made in the original paper [1]. In the
latter case, the algebraic complexity of manipulating and inverting these functions
led us to abandon the approach in favour of the less direct, but algebraically
simpler one employed.

With the present work, where the basic requirement is to find an approximate
solution of (5), (6), (7) for large values of the parameter 'q\ the argument for
finding an alternative to the exact solution seems, if anything, stronger. The
employment of a Watson transformation, as suggested by the referee, would
undoubtedly help in reducing the exact solution but, in the writer's opinion, the
method below will lead much more quickly and simply to a first-approximate
solution of the original problem described by (1), (2), (3), (4).

Since 'q' is to be regarded as large in equation (5), when we divide that
equation by 'q2', the highest order (in this instance, all) derivatives are multiplied
by the small parameter 'l/q2'. This suggests that we adopt the viewpoint of
singular perturbation theory [3] [4] and look for an "inner" or "boundary-
layer" type solution. This will involve:

(a) "stretching" the variables, e,rj so that in the limit l/q->0 the highest
derivatives in the "stretched" variables will be retained

(b) assuming an expansion for the solution in a series of functions of the
"stretched" variables, whose coefficients form an appropriate asymptotic sequence
in powers of 1 jq.
The appropriate stretching is given by

v = qie

Then in terms of v, co (5), (6), (7) becomes

.,2\
= (V2 + GJ2)0

with

(9) v = o e - $

(10) < » = 0 | t = 0
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Now assume an expansion for (©) in inverse powers of q

= - ^ - e ^ v . a i ) + -^3-02(v,o>)+ -

substitute in (8), (9), (10) and equate coefficients of like powers of 1 jq. We obtain:

(i)

(11) ®ivv + © i « ~ (v2 + co2)®, = 0

with

(12) v = 0 6 l = °-*£

(13) co = 0 ®la = 0

(ii)

(14) 02 v v + G2aa - (v2 + o>2)02 = - - ^ (v 2 ©! , ) + ^ ( « 2 © i J

with

(15) v = 0 0 2 = 0

(16) co = 0 e2l0 = 0
and so on.

The problem (i) can be solved in closed form in terms of familiar trans-
cendental functions. In the method used by the writer, the independent variables
are first transformed to *,</> denned by

x = i (v2 + co2) (j> = tan~ \colv).

The boundary-value problem in the new independent variables is then solved
by a Kontorovitch-Lebedevtransform[5] and we obtain

2 /60a
2\ f00

n \ k 1 Jo
cosh | roc cosh 2</>a

coshua

Much tedious reduction of this integral leads to

Hence the first approximation to 0 is

Having obtained 0 t it is possible, in principle, to then solve problem (ii) and
so on.
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In fact, the solution of even problem (ii) is extremely complex and, in the
writer's opinion, the usefulness of the result does not justify the labour which
would be required in obtaining it. Let us now consider the inverse transformation
of equation (18). Rewriting that equation, we have

(19a) 0<» = A [e~«< erfc { ^ ^ } + *« erfc

or

By standard methods, we can invert (19) and express the result as a real infinite
integral which can be evaluated numerically. However, in view of the fact that
the solution (19) is itself just the leading term in an expansion of 0 in powers of
1 jq, it is probably more useful to proceed with further expansion of (19) and make
approximate inverse transformation. The quite complicated integral resulting
from 'exact' inversion of [19] has been derived by the writer but is not, for the
reason just stated, included in this paper. To avoid confusion we shall assume in
the following that rj ^ 0. Results for r\ ^ 0 follow at once from symmetry.

Two cases can be distinguished: -

Case (0 i\,e not approximately equal;

Case (ii) r\,e approximately equal i.e. | e— r\ | <^e.

Not surprisingly, neither solution is valid in the limit of points on the disk periphery
(e = t] = 0), where there is an impulsive redistribution of temperature at t = 0.

We shall require the following transform pairs [6]

Case (i): rj,s not approximately equal.

In this case we can treat the arguments of the function in the square bracket
of equation (19b) as large in magnitude and replace the functions by the dominant
terms of their asymptotic expansions

For x with large positive real part

erfc x ~ n~ie~x2jx
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erfc ( - x) = 2 -erfc x ~ 2 - n'^e-** \x

Hence we have

(23)
(b) 0 ^

Then inverting, using [21]

(a) 0 £ i , < 8 :
(24)

(25) (b) 0 ^ e < f,:

where
T —

a2

2)2r,2)

32T

Since T is small and hence X large we can simplify these results further by
introducing the asymptotic expansions of the Bessel functions

(26)

Substituting the dominant term, we have finally

(27) (a) 0 ^ » ; < 2
, ,2-v

(b) 0 < e < rf. 6(l) :

(28)

- 2 7 / 2 7 i " 1
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The limiting solution on the plane surrounding the disk {rj = 0) is, from (27)

(JO\ n(l) ^, 21t27Z~1 Tc~2X° — 27/>27T~1 ^0 rp~2Xn

where

_ ( r 2 / « 2 - l ) 2

A ° ~ 32T

On the axis of the disk above the plane, r\ = 1, and e = zja. Thus on the axis,
from equations (27), (28)

(30) (a) 1 < E : 0(1) ~

(b) 0 ̂  £ < 1

-21'2 7 T - 1 - — Te~2X

(z2 + a2yi\a2 - z2)

where
1

X =

It will be noted that the approximate solutions (27), (28) indeed satisfy the
initial and boundary conditions at t = 0, e = 0, r] = 0, except when e ̂  >j =± 0.
A rough estimate of the range of validity of (27) and (28) is

1 32T
(32) X (e2 + r,2)2 "

C a s e (( '( ' ) : | £ — f/| <? £,

In the immediate neighbourhood of r\ = e we treat the argument

\qH*-i)\

as small. We expand the first term in equation [19b] in its ascending series ex-
pansion in

and retain the dominant terms, that is,

iq(E-rj)2\ lqHe->i)\ , [^ +/ ^
exp < —-—\ erfc ( . \ x 1 — /—q*(e — r\).

Treating the second term as in case (1) and substituting in (19b) we get
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(33) O«> * A
2p 2

Then inverting, using (20) and (21)

(34)
" V*(£ + ")

- (3e2 - n
2)^(Z) | I

As before, introducing the dominant terms in the asymptotic expansions of
the Bessel functions we get

(35)

It is quickly seen that to the order of the approximation used in (35), we may
replace

e2 +

Thus we can rewrite (35)

(35a,

by eri i.e. by z/a

When e = ?/ i.e. on the sphere radius 'a', centre at the origin, the temperature
in this approximation is just half what it would be if the whole plane z = 0 were
held at temperature 90.

With similar reasoning to that of case (i), we expect the solution of equation
(35) to be useful for

3. Numerical illustration

Some numerical values of 0/0o for the case r\ = 0 are shown in Table 1.
The table contains values calculated from the large-time solution of the

original paper [1], shown in italics, and, in ordinary type, values calculated from
the small-time solution of equation (29).

For certain pairs near the limit of validity of one or both of the approximations
values obtained from each are shown. In Figures 1, 2 6 J6O is plotted against T
for £ = 1,2, the solid curves representing the values given by the two approxima-
tions and the dotted curve a smooth-curve interpolation in the region where neither
approximation is valid.
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arge time approximation

Figure 2 a f e o vs T for r |«0, i " 2

4. Discussion

Although the usefulness of small-time approximate solutions is usually not
as great as those for large-times, the present work completes the unifinshed work
of the earlier paper on a classical problem of transient heat conduction.

An exact solution is closed form of the complete problem seems impossibly
difficult to obtain, and, if required, the obvious way to improve on these results
by a full numerical treatment.
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TABLE 1

Values of 0/0o for r\ = 0

T \

25

4

1

0.5

0.1
0.05
0.03
0.01

1

0.464

0.412

0,332

0.278
1.589
0.193
0.052
0.013

< 1 0 " 4

0.244

0.169

0.098
0.083
0.015

0.148

0.062
0.050

<io-3

0.098
0.185
0.0010

0.0027

<io - 8

<10 ~5
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