Y.K. Kwon, L. Sario, and J. Schiff Nagoya Math. J. Vol. 42 (1971), 95–108

BOUNDED ENERGY-FINITE SOLUTIONS OF $\Delta u = Pu$ ON A RIEMANNIAN MANIFOLD

Y.K. KWON, L. SARIO, AND J. SCHIFF

Introduction

1. The classification of Riemann surfaces with respect to the equation $\Delta u = Pu$ ($P \ge 0$, $P \ne 0$) was initiated by Ozawa [13] and further developed by L. Myrberg [8, 9], Royden [14], Nakai [10, 11], Sario-Nakai [15], Nakai-Sario [12], Glasner-Katz [3], and Kwon-Sario [7].

The objective of the present paper is to establish properties of bounded energy finite solutions of $\Delta u = Pu$ in terms of the *P*-harmonic boundary of a Riemannian manifold *R*. The occurrence of the *P*-singular point (Nakai-Sario [12]), at which all functions in the *P*-algebra vanish, necessitates delicate new arguments.

The P-algebra $M_P(R)$ is not, in general, uniformly dense in the space $B(R_P^*)$ of bounded continuous functions on the P-compactification R_P^* . However, we shall prove the following Urysohn-type theorem. Let K_0 , K_1 be any disjoint compact subsets of R_P^* with the P-singular point $s \in K_0$. Then there exists a function $f \in M_P(R)$ such that $0 \le f \le 1$ on R_P^* and $f | K_i = i$ (i = 0, 1).

Although the standard maximum-minimum principle does not hold, the following modification can be established. Let u be P-superharmonic and bounded from below on a Riemannian manifold R such that $\lim \inf u \ge 0$ at the P-harmonic boundary Δ_P . Then $u \ge 0$ on R. As a consequence, $|u| \le \limsup_{d_P} |u|$ for every bounded P-harmonic function u on R.

This maximum princip'e together with the orthogonal decomposition enables us to prove the existence of a positive linear operator

$$\pi: B_{s}(\mathcal{A}_{P}) \to PB(R)$$

Received April 20, 1970.

The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-70-G7, University of California, Los Angeles.

such that

$$\sup_{R} |\pi(f)| \le \max_{\mathcal{A}_{P}} |f|$$

for all $f \in B_s(\mathcal{A}_P)$. Here $B_s(\mathcal{A}_P)$ is the space of bounded continuous functions on \mathcal{A}_P which vanish at the *P*-singular point *s*, and PB(R) is the space of bounded *P*-harmonic functions on *R*.

For functions $\pi(f)$ we deduce the following integral representation. There exist, for a fixed $x_0 \in R$, a regular Borel measure μ on Δ_P and a nonnegative measurable $K_P(x, t)$ on Δ_P such that

$$\pi(f)(x) = \int_{\mathcal{A}_P} f(p) K_P(x, p) d\mu(p)$$

on R for all $f \in B_s(\mathcal{A}_P)$ and $K_P(x_0, p) = 1$ on \mathcal{A}_P . Here μ is unique up to a Dirac measure δ with $\delta(\mathcal{A}_P - s) = 0$. Consequently $u \in PBE(R)$ if and only if

$$u(x) = \int_{\mathcal{A}_P} f(p) K_P(x, p) d\mu(p)$$

on R for some $f \in M_P(R)$. In this case u = f on Δ_P .

§1. *P*-algebra $M_P(R)$

2. On a connected, separable, oriented, smooth Riemannian manifold R of dimension N, consider the *P*-algebra $M_P(R)$ of bounded Tonelli functions f with finite energy integrals,

$$E_R(f) = \int_R \left[\sum_{i,j=1}^N g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} + Pf^2 \right] dV < \infty.$$

Here $P \ (\neq 0)$ is a fixed nonnegative continuous function on R, (g^{ij}) the inverse of the matrix (g_{ij}) of the fundamental metric tensor of R, $x = (x^1, \dots, x^N)$ a local coordinate system, and dV = *1 the volume element of R (cf. Nakai-Sario [12] and Kwon-Sario [7]).

We endow $M_P(R)$ with the norm

$$||f|| = \sup_{R} |f| + \sqrt{D_{R}(f) + \int_{R} Pf^{2}dV}$$

where $D_R(f) = \int_{\mathbb{R}} df \wedge *df$ is the Dirichlet integral of f over R.

We first show that the P-algebra $M_P(R)$ with norm $\|\cdot\|$ is a Banach algebra, closed under the lattice operations $f \cup g = \max(f, g)$ and $f \cap g = \min(f, g)$.

https://doi.org/10.1017/S0027763000014276 Published online by Cambridge University Press

96

The latter property is obvious by the definition of $M_P(R)$. To establish the former property choose a $\|\cdot\|$ -Cauchy sequence $\{f_n\}$ in $M_P(R)$. Let fbe a bounded continuous function on R with $\sup_R |f - f_n| \to 0$. In view of the *BD*-completeness of the Royden algebra M(R) (cf. Sario-Nakai [15] and Chang-Sario [1]) we have

$$f \in M(R)$$
 and $D_R(f - f_n) \to 0$.

Since the sequence $\{f_n\}$ is $\|\cdot\|$ -Cauchy, the sequence of integrals $\int_{\mathbb{R}} Pf_n^2 dV$ is, by the Schwarz inequality, a Cauchy sequence of real numbers, and consequently

$$\lim_{n\to\infty}\int_R Pf_n^2 dV=d<\infty.$$

Again by the Schwarz inequality

$$\lim_{n, m\to\infty}\int_{R}Pf_{n}f_{m}dV=d,$$

and therefore by Fatou's lemma

$$\begin{split} \int_{R} & P(f-f_{n})^{2} dV = \int_{R} \lim_{m \to \infty} P(f_{m}-f_{n})^{2} \, dV \leq \underbrace{\lim_{m \to \infty}}_{m \to \infty} \int_{R} P(f_{m}-f_{n})^{2} dV \\ & \leq \overline{\lim_{m \to \infty}} \int_{R} P(f_{m}-f_{n})^{2} dV \leq d - 2 \underbrace{\lim_{m \to \infty}}_{m \to \infty} \int_{R} Pf_{n}f_{m} dV + \int_{R} Pf_{n}^{2} dV. \end{split}$$

On letting $n \to \infty$ we obtain $\lim_{n\to\infty} \int_R P(f-f_n)^2 dV = 0$. Thus $f \in M_p(R)$ and $||f-f_n|| \to 0$. Since $||fg|| \le ||f|| \cdot ||g||$ for $f, g \in M_P(R)$, the proof is complete.

3. Next we prove that every function in the P-algebra can be $\|\cdot\|$ -approximated by smooth functions in it: Given any $f \in M_P(R)$ and $\varepsilon > 0$ there exists a function $f_{\varepsilon} \in C^{\infty}(R) \cap M_P(R)$ such that $\|f - f_{\varepsilon}\| < \varepsilon$.

Set $|x|^2 = \sum_{1}^{N} (x^i)^2$ and consider first a function f with compact support in a ball V': |x| < 1/2, with V: |x| < 1 a parametric ball. Choose a sequence $\{f_n\}$ in $C^{\infty}(R) \cap M(R)$ such that $f_n = 0$ on R - V, $\sup_{R} |f - f_n| \to 0$ and $D_R(f - f_n) \to 0$ (cf. Sario-Nakai [15] and Chang-Sario [1]). It is easily seen that

$$f_n \in C^{\infty}(R) \cap M_P(R)$$
 and $||f - f_n|| \to 0$.

For the general case consider a locally finite open covering of R by parametric balls $\{V_n: |x| < 1\}$. Take a partition of unity $\{\varphi_n\}$ such that $\varphi_n \in C^{\infty}(R)$, $\varphi_n = 0$ on $R - V'_n$, and $\sum_{i=1}^{\infty} \varphi_n = 1$ on R.

Since $f\varphi_n \in M_P(R)$ and $f\varphi_n = 0$ on $R - V'_n$ we can find a function $f_n \in C^{\infty}(R) \cap M_P(R)$ such that $f_n = 0$ on $R - V_n$ and $||f\varphi_n - f_n|| < \varepsilon/2^n$. Let $f_{\varepsilon} = \sum_{i=1}^{\infty} f_n$. Then $f_{\varepsilon} \in C^{\infty}(R)$, $||f - f_{\varepsilon}|| \le \sum_{i=1}^{\infty} ||f\varphi_n - f_n|| < \varepsilon$, and $f_{\varepsilon} \in C^{\infty}(R) \cap M_P(R)$.

§ 2. Subalgebra M_{PA}

4. Set $f = BE-\lim_n f_n$ on R if $\{f_n\}$ is uniformly bounded on R, converges to f uniformly on compact subsets, and $E_R(f - f_n) \to 0$. Let $M_{P0}(R)$ be the family of functions in $M_P(R)$ which have compact supports in R, and $M_{Pd}(R)$ the family of BE-limits f of sequences $\{f_n\}$ in $M_{P0}(R)$.

By an argument similar to that in No. 2, it can be shown that $M_P(R)$ is complete in the *BE*-topology. We shall prove: The family $M_{Pd}(R)$ is complete in the *BE*-topology and is an ideal of $M_P(R)$.

For the proof consider a *BE*-Cauchy sequence $\{f_n\}$ in $M_{Pd}(R)$ and let f be its *BE*-limit in $M_P(R)$. For each n choose a sequence $\{f_{nm}\}$ in $M_{PO}(R)$ such that $f_n = BE$ -lim_m f_{nm} on R.

Let $\{R_n\}$ be a regular exhaustion of R. We may assume that

$$\sup_{R_n} |f_n - f_{nm}| < \frac{1}{n} \text{ and } E_R(f_n - f_{nm}) < \frac{1}{n^2}$$

for all $m \ge 1$ and $n \ge 1$. Upon truncating the f_{nm} , if necessary, by the uniform bound of $\{f_n\}$, we may assume that the sequence $\{f_{nm}\}$ is uniformly bounded. Since $f_{nn} \in M_{PO}(R)$ it suffices to prove that $f = CE-\lim_n f_{nn}$ on R. Now,

$$\begin{split} E_{R}(f-f_{nn})^{\frac{1}{2}} &\leq E_{R}(f-f_{n})^{\frac{1}{2}} + E_{R}(f_{n}-f_{nn})^{\frac{1}{2}} \\ &< E_{R}(f-f_{n})^{\frac{1}{2}} + \frac{1}{n} \to 0. \end{split}$$

For a compact set K of R choose k so large that $K \subset R_k$. Then for $n \ge k$,

$$\sup_{K} |f - f_{nn}| \le \sup_{R_{k}} |f - f_{n}| + \sup_{R_{k}} |f_{n} - f_{nn}|$$
$$\le \sup_{R_{k}} |f - f_{n}| + \frac{1}{n} \to 0,$$

and we have $f = BE-\lim_n f_{nn}$ as desired.

The rest of the proof is obvious.

§3. P-compactification

5. By means of the *P*-algebra $M_P(R)$ we can construct a compactification R_P^* of *R* (cf. e.g. Constantinescu-Cornea [2] and Kwon-Sario [7]) with the following properties:

(i) R_P^* is a compact Hausdorff space and contains R as an open dense subset.

(ii) Every $f \in M_P(R)$ has a continuous extension to R_P^* .

(iii) $M_P(R)$ separates points of R_P^* .

The space R_P^* is unique up to homeomorphisms which fix R elementwise. We shall refer to R_P^* as the *P*-compactification, and to $\Gamma_P = R_P^* - R$ as the *P*-boundary of R (Nakai-Sario [12]).

A point $s \in \mathbb{R}_P^*$ is called a *P*-singular point if f(s) = 0 for all $f \in M_P(\mathbb{R})$ (loc. cit.). It exists and is unique if and only if $\int_{\mathbb{R}} PdV = \infty$. It can be given a complete characterization (Kwon-Sario [7]): $s \in \mathbb{R}_P^*$ is *P*-singular if and only if for every neighborhood U of s in \mathbb{R}_P^* , $\int_{\mathbb{R}^0 U} PdV = \infty$.

Points of R_P^* which are not *P*-singular will be called *P*-regular.

6. We turn to the question of the Urysohn property on R_{P}^{*} . First we prove:

LEMMA. Let K be a compact subset of the P-compactification R_P^* , and N an open neighborhood of K in R_P^* . Then there exists a Dirichlet-finite Tonelli function f on R such that f is continuously extendable to R_P^* , $0 \le f \le 1$ on R_P^* , f|K = 1, and f = 0 on $R_P^* - N$.

Proof. Let $\hat{M}_P(R)$ be the family of Dirichlet-finite bounded Tonelli functions on R with continuous extensions to R_P^* . Obviously $\hat{M}_P(R)$ is a subalgebra of $B(R_P^*)$, contains the constants, and is closed under $f \cup g$ and $f \cap g$.

Since $M_P(R) \subset \hat{M}_P(R)$, the Stone-Weierstrass theorem is applicable and we conclude that $\hat{M}_P(R)$ is uniformly dense in $B(R_P^*)$.

Choose an open set U in \mathbb{R}_P^* with $K \subset U \subset \overline{U} \subset N$, and a function $g \in B(\mathbb{R}_P^*)$ such that $-1 \leq g \leq 2$ on \mathbb{R}_P^* , g|K=2, and $g|\mathbb{R}_P^* - U = -1$. By the above argument there exists a function $h \in \widehat{M}_P(\mathbb{R})$ such that |g-h| < 1 on \mathbb{R}_P^* . Then $f = (h \cup 0) \cap 1$ has the required properties.

7. The occurrence of the *P*-singular point *s* entails that the Urysohn property is only valid in the following modified form:

THEOREM. For disjoint compact subsets K_0 and K_1 of R_P^* such that K_0 contains the P-singular point s, there exists a function $f \in M_P(R)$ such that $0 \le f \le 1$ on R_P^* and $f | K_i = i$ (i = 0, 1).

Proof. Since every $x \in K_1$ is *P*-regular there exists an open set N_x in R_P^* such that $x \in N_x$, $K_0 \cap N_x = \phi$, and $\int_{N_x \cap R} PdV < \infty$. By virtue of the compactness of K_1 we can choose a finite set $\{x_1, \dots, x_m\} \subset K_1$ such that $K_1 \subset N = \bigcup_{i=1}^m N_{x_i}, N \cap K_0 = \phi$, and $\int_{N \cap R} PdV < \infty$.

By the above lemma there exists a function $f \in \hat{M}_P(R)$ such that $0 \le f \le 1$ on R_P^* , $f|_{K_1} = 1$, and $f|_{R_P^*} - N = 0$. Then $E_R(f) \le D_R(f) + \int_{N \cap R} P dV < \infty$ and f has the desired property.

§4. P-superharmonic functions

- 8. A function v on R is called *P*-superharmonic if
- (i) v is lower semicontinuous on R, $-\infty < v \le \infty$, $v \ne \infty$ on R,
- (ii) for any parametric ball V,

$$v(x) \ge -\int_{\partial V} v(y)^* dg_V(y,x)$$

on V, where $g_v(y, x)$ is the P-harmonic Green's function on V with pole x. A function v is P-subharmonic if -v is P-superharmonic.

Let Ω be a regular subregion of R and v a C^2 -function on $\overline{\Omega}$. We shall make use of the following basic property of P-harmonic and P-super-harmonic functions (Nakai [11]): If $\Delta v \leq Pv$ on Ω , then v dominates any P-harmonic function u on Ω , continuous on $\overline{\Omega}$ with $u|\partial\Omega \leq v|\partial\Omega$, that is, v is P-superharmonic on Ω .

For the proof set w = v - u on Ω . Then $\Delta w \leq Pw$ on Ω and $w | \partial \Omega \geq 0$. Let Ω_0 be a component of the open set $\{x \in \Omega | w(x) < 0\}$. Since w is superharmonic on Ω_0 , we have

$$0 > w(x) \ge \inf_{\mathcal{Q}_0} w = \min_{\partial \mathcal{Q}_0} w = 0,$$

which implies that $\Omega_0 = \phi$, hence $w \ge 0$ on Ω as desired.

We also have at once: If a sequence $\{v_i\}$ of continuous P-superharmonic functions on R converges to a function v uniformly on compact subsets, then v is also P-superharmonic.

§5. P-harmonic projection

9. Next we shall establish the orthogonal decomposition theorem which plays an important role in our discussion (cf. Nakai-Sario [12]): Every $f \in M_P(R)$ possesses the following properties:

- (i) f has the unique decomposition f = u + g, $u \in PBE(R)$, $g \in M_{Pd}(R)$.
- (ii) E(f) = E(u) + E(g).
- (iii) If $f \ge 0$, then $u \ge 0$.
- (iv) If f is P-superharmonic (resp. P-subharmonic), then $u \leq f$ (resp. $u \geq f$).

For the sake of completeness we shall sketch the proof. Take a regular exhaustion $\{R_n\}$ of R and let u_n^+ (resp. u_n^-) be the continuous function on R which is P-harmonic on R_n with $u_n^+|R - R_n = f^+$ (resp. $u_n^-|R - R_n = f^-$). Since $0 \le u_n^+ \le \sup_R |f|$ and $0 \le u_n^- \le \sup_R |f|$ on R, we may assume that both $\{u_n^+\}$ and $\{u_n^-\}$ converge to u^+ and u^- , say, uniformly on compact subsets of R (cf. Royden [14]). Since these sequences are E-Cauchy, we have

$$u^+ = BE-\lim_n u_n^+, \quad u^- = BE-\lim_n u_n^-$$

on R and u^+ , $u^- \in PBE(R)$.

Set $u = u^+ - u^- \in PBE(R)$ and $g = f - u \in M_{Pd}(R)$. Then f = u + g is the desired decomposition. Its uniqueness and property (ii) are immediate consequences of the energy principle (cf. Royden [14]).

If $f \ge 0$ then $u_n^- \equiv 0$ and hence $u^- \equiv 0$ on R. Consequently $u = u^+ - u^- = u^+ \ge 0$ as asserted. If f is P-superhamonic on R then $u_n \le f$ since $u_n = f$ on $R - R_n$. Therefore $u \le f$.

The function u is called the *P*-harmonic projection of f.

§6. P-harmonic boundary

10. The set $\Delta_P = \{x \in R_P^* | f(x) = 0 \text{ for all } f \in M_{Pd}(R)\}$ is a compact subset of Γ_P , called the *P*-harmonic boundary of *R* (Nakai-Sario [12]). If $\Delta_P = \phi$, it is easily seen that $1 \in M_{Pd}(R)$ and hence $M_{Pd}(R) = M_P(R)$.

The following two properties of Δ_P are fundamental (cf. Kwon-Sario [6, 7]):

- (i) $M_{PA}(R) = \{f \in M_P(R) | f \equiv 0 \text{ on } \Delta_P\}.$
- (ii) If $u \in PBE(R)$ and $u \mid \Delta_P \equiv 0$, then $u \equiv 0$ on R.

11. We are now ready to establish the existence of an Evans *P*-superharmonic function on *R*. It brings forth the *P*-harmonically negligible nature of the set $\Gamma_P - \Delta_P$.

THEOREM. Let F be a nonempty compact subset of $\Gamma_P - \Delta_P$. Then there exists a nonnegative continuous P-superharmonic function v on R such that $v | \Delta_P = 0$, $v | F = \infty$, and $E_R(v) < \infty$.

Proof. There exists a compact subset K of R_P^* such that $K = \overline{K \cap R}$, $K \cap \Delta_P = \phi$, $\partial(K \cap R)$ is smooth, and F is contained in the interior K^0 of K. Choose a function $f \in M_P(R)$ such that $0 \le f \le 1$ on R, $f|K \equiv 1$, and $f|\Delta_P \equiv 0$. For a fixed regular exhaustion $\{R_n\}$ of R set $K_n = K - R_n$.

Construct continuous functions u_{nm} on R such that $u_{nm} = f$ on $R - (R_m - K_n)$ and $u_{nm} \in P(R_m - K_n)$. Since $\{u_{nm}\}$ is E-Cauchy for each fixed n, and $0 \le u_{nm} \le 1$, we may assume that $\{u_{nm}\}$ is BE-Cauchy for each n. Let $u_n = BE - \lim_m u_{nm}$. Then $u_n \in PBE(R - K_n)$, $0 \le u_n \le 1$, and $u_n | K_n = 1$.

Let $g_n = BE-\lim_m (f - u_{nm})$ on R. Since $g_n \in M_{Pd}(R)$, $g_n | \Delta_P = 0$. Thus $u_n = f = 0$ on Δ_P and $u_n \in PBE(R - K_n) \cap M_{Pd}(R)$. It is not difficult to see that the sequence $\{u_n\}$ has a *BE*-convergent subsequence, again denoted by $\{u_n\}$. Let $u = BE-\lim_n u_n$ on R. Since $u \in PBE(R) \cap M_{Pd}(R)$, $u \equiv 0$ on R.

For a fixed point $x_0 \in R$, we can choose a subsequence, say again $\{u_n\}$, such that

$$u_n(x_0) < 2^{-n}, E_R(u_n) < 2^{-n}.$$

Let $v_m = \sum_{i=1}^{m} u_i$ and $v = \sum_{i=1}^{m} u_i$. Then $E_R(v - v_m) \to 0$. By Harnack's inequality $\{v_m\}$ converges to v uniformly on compact subsets of R, and v is a continuous P-superharmonic function on R.

The remainder of the proof is obvious.

12. We claim:

THEOREM. Suppose u is P-superharmonic (resp. P-subharmonic), bounded from below (resp. above) on R, and satisfies

$$\lim_{x \to p, \ x \in R} \inf_{u(x) \ge 0} \quad (\text{resp.} \ \lim_{x \to p, \ x \in R} \sup_{u(x) \le 0)}$$

for every $p \in \Delta_P$. Then $u \ge 0$ (resp. $u \le 0$) on R.

Proof. It suffices to consider the case in which u is *P*-superharmonic on *R*. For each $n \ge 1$ the set

$$F_n = \left\{ p \in \Gamma_P | \lim_{x \to p, \ x \in R} \inf_{x \in R} u(x) \leq -\frac{1}{n} \right\}$$

is compact and $F_n \cap \mathcal{A}_P = \phi$. Let v_n be Evans' *P*-superharmonic function corresponding to F_n . Then

$$\lim_{x \to p, \ x \in R} \inf (u + \varepsilon v_n) (x) > - \frac{1}{n}$$

for all $\varepsilon > 0$ and $p \in \Gamma_P$. Since $u + \varepsilon v_n$ is *P*-superharmonic and bounded from below on *R* we have

$$u+\varepsilon v_n>-\frac{1}{n}$$

on R. On letting $\varepsilon \to 0$ and then $n \to \infty$ we obtain the desired conclusion.

13. We are now able to prove:

THEOREM. If $u \in PB(R)$, then

$$|u| \leq \sup_{p \in \mathcal{A}_P} \lim_{x \to p, x \in \mathbb{R}} \sup_{x \in \mathbb{R}} |u(x)|$$

on R.

Proof. Set $M = \sup_{p \in \mathcal{A}_P} \limsup_{x \to p, x \in \mathbb{R}} |u(x)| < \infty$. Then M - u is *P*-superharmonic on *R* and has the property

$$\inf_{p\in \mathcal{A}_P} \lim_{x\to p, \ x\in R} (M-u(x)) \ge 0.$$

Therefore $M-u \ge 0$ on R. By considering -u we similarly obtain $M+u \ge 0$.

14. We turn to the problem of determining the dimension of the vector space PBE(R) in terms of the *P*-harmonic boundary Δ_P . Note that Δ_P here is different from that in Kwon-Sario [7], where it was defined as a quotient space of the Royden harmonic boundary Δ . In the present case the *P*-singular point always lies on Δ_P .

PROPOSITION. The dimension of the space PBE(R) of bounded energy-finite P-harmonic functions on R is equal to the cardinality of the set $\Delta_P - s$ in the sense that either both are infinite, or finite and equal.

The proof is the same as in Kwon-Sario [7].

§7. Type problem

15. For a regular exhaustion $\{R_n\}$ of R we consider continuous functions e_n on R such that $e_n \in P(R_n)$ and $e_n = 1$ on $R - R_n$. Since $0 < e_{n+p} \le e_n \le 1$ on R, the sequence $\{e_n\}$ converges to a P-harmonic function e, uniformly on compact subsets of R. The function e is called the *elliptic measure* of the ideal boundary of R (Royden [14]). It is known (loc. cit.) that the vanishing of e on R is independent of the choice of the exhaustion. We shall denote by O_e the class of pairs (R, P) for which $e \equiv 0$.

The class O_e has the following relation to the *P*-harmonic boundary:

THEOREM. If $\Delta_P = \phi$, then $(R, P) \in O_e$. Conversely if $(R, P) \in O_e$, then either $\Delta_P = \phi$ or $\Delta_P = \{s\}$.

Proof. If $\Delta_P = \phi$, $1 \in M_{Pd}(R)$ and hence $1 = BE-\lim_n f_n$ on R of a sequence $\{f_n\}$ in $M_{PO}(R)$. The elliptic measure e has a finite energy integral in this case and $e = BE-\lim_n ef_n$ on R in view of $\int_{P} PdV < \infty$. Thus

$$E_{R}(e) = \lim_{n \to \infty} E_{R}(ef_{n}, e) = 0$$

by virtue of the energy principle. We conclude that $e \equiv 0$ and $(R, P) \in O_e$. Conversely if $(R, P) \in O_e$, then dim PBE(R) = 0 since $|u| \le e \sup_R |u|$ for each $u \in PBE(R)$. A fortiori either $\Delta_P = \phi$ or $\Delta_P = \{s\}$.

16. Consider the sequence $\{w_n\}$ of continuous functions w_n on R such that $w_n \in P(R_n - \bar{R}_0)$, $w_n | \bar{R}_0 = 1$, and $w_n | R - R_n = 0$. Then $w = B - \lim_n w_n$ exists on R and $w \in PB(R - \bar{R}_0)$.

COROLLARY 1. If $\inf_{\mathbb{R}} w > 0$, then $(\mathbb{R}, \mathbb{P}) \in O_e$.

Proof. In view of

$$E_{R}(w_{n+p} - w_{n}, w_{n+p}) = E_{R_{n+p} - R_{0}}(w_{n+p} - w_{n}, w_{n+p}) = 0,$$

we conclude that $w = BE - \lim_{n \to \infty} w_n$ and $w \in M_{Pd}(R)$. Therefore $\inf_R w > 0$ implies that $\Delta_P = \phi$ and $(R, P) \in O_e$.

COROLLARY 2 (Ozawa [13]). A Riemannian manifold R is parabolic if and only if $\inf_{R} w > 0$ for some density P on R.

104

§8. Dirichlet problem

17. Let $B(R_P^*)$ be the space of bounded continuous functions on R_P^* and $B_s(R_P^*)$ the space of functions in $B(R_P^*)$ which vanish at the *P*-singular point s. In view of the construction of R_P^* , the *P*-algebra $M_P(R)$ is a subalgebra of $B(R_P^*)$. It is natural to ask what is the uniform closure of $M_P(R)$ in the space $B(R_P^*)$.

We maintain:

THEOREM. With respect to the sup-norm topology, the P-algebra $M_P(R)$ is dense in $B_s(R_P^*)$ or $B(R_P^*)$ according as there does or does not exist a P-singular point s.

Proof. The uniform closure $\overline{M_P(R)}$ of $M_P(R)$ is a closed subalgebra of $B(R_P^*)$ and separates points in the compact Hausdorff space R_P^* . Hence $\overline{M_P(R)}$ is either $B(R_P^*)$ or $B_x(R_P^*)$ for some $x \in R_P^*$ (see e.g. Hewitt-Stromberg [4, p. 98]), as asserted.

18. Let $B_s(\mathcal{A}_P)$ and $B(\mathcal{A}_P)$ be the families of functions on \mathcal{A}_P defined as above. If there exists no *P*-singular point *s* we understand that $B_s(\mathcal{A}_P) = B(\mathcal{A}_P)$ and $B_s(\mathcal{R}_P^*) = B(\mathcal{R}_P^*)$.

THEOREM. There exists a positive linear mapping $\pi: B_s(\mathcal{A}_P) \to PB(R)$ such that $\sup_R |\pi(f)| \leq \max_{\mathcal{A}_P} |f|$ for all $f \in B_s(\mathcal{A}_P)$.

Proof. By Tietze's extension theorem every $f \in B_s(\mathcal{A}_P)$ has a continuous extension \hat{f} to \mathbb{R}_P^* with

$$\max_{R_p^*} |\hat{f}| = \max_{\mathcal{A}_p} |f|.$$

Choose $f_n \in M_P(R)$ such that $\max_{R_r^*} |\hat{f} - f_n| < 1/n$, and let u_n be the *P*-harmonic projection of f_n on *R* (cf. No. 9). Then

$$\sup_{R} |u_{n} - u_{m}| = \max_{d_{P}} |u_{n} - u_{m}| < \frac{1}{n} + \frac{1}{m}.$$

Thus there exists a function $u \in PB(R)$ such that $\sup_{R} |u - u_{n}| \to 0$ as $n \to \infty$. Set $\pi(f) = u$. Since $\pi(f) = f$ on Δ_{P} and $\pi(f) \in PB(R)$ the mapping $\pi: B_{s}(\Delta_{P}) \to PB(R)$ is well-defined. Theorem 13 yields

$$\sup_{R} |\pi(f)| \leq \sup_{p \in d_{P}} \lim_{x \to p, \ r \in R} \sup_{x \in R} |\pi(f)(x)| = \max_{d_{P}} |f|$$

as required. The positiveness and linearity of π follow immediately from Theorem 12 and No. 9.

§9. Integral representation

19. For a fixed point $x \in R$ consider the functional L_x on $B_s(\Delta_P)$ defined by $L_x(f) = \pi(f)(x)$. Clearly L_x belongs to the class $B_s(\Delta_P)^*$ of bounded linear functionals on $B_s(\Delta_P)$. By the Hahn-Banach theorem we may extend L_x to an element of $B(\Delta_P)^*$. Thus the restriction mapping $\varphi: B(\Delta_P)^* \to B_s(\Delta_P)^*$ is a surjective homomorphism with kernel

$$\varphi^{-1}(0) = \{ L \in B(\mathcal{A}_P)^* | L(f) = 0 \text{ for all } f \in B_s(\mathcal{A}_P) \}.$$

Hence we have a canonical isomorphism

$$B(\mathcal{A}_P)^*/\varphi^{-1}(0) \cong B_s(\mathcal{A}_P)^*.$$

We are ready to state:

THEOREM. To each $x \in R$ there corresponds a regular Borel measure μ_x on Δ_P such that

$$\pi(f)(x) = \int_{A_p} f(p) d\mu_x(p)$$

for all $f \in B_s(\Delta_P)$. The measure μ_x is unique up to a Dirac measure δ_x with $\delta_x(\Delta_P - s) = 0$.

The measure μ_x is called the *P*-harmonic measure with center x.

Proof. We have seen that

$$L_x = L_1 + L_2$$

for some $L_1, L_2 \in B(\mathcal{A}_P)^*$ with $L_2(f) = 0$ for all $f \in B_s(\mathcal{A}_P)$. By the Riesz representation theorem there exist regular (signed) Borel measures μ_x , δ_x on \mathcal{A}_P such that

$$L_1(f) = \int_{\mathcal{A}_P} f d\mu_x, \quad L_2(f) = \int_{\mathcal{A}_P} f d\delta_x$$

for all $f \in B(\mathcal{A}_P)$, Thus we have

$$L_x(f) = \int_{\mathcal{A}_P} f \ d\mu_x + \int_{\mathcal{A}_P} f \ d\delta_x = \int_{\mathcal{A}_P} f \ d\mu_x$$

for all $f \in B_s(\Delta_P)$. Since L_x is a positive functional, μ_x is a measure on Δ_P , unique up to a Dirac measure δ_x with $\delta_x(\Delta_P - s) = 0$.

20. Let $\mu = \mu_{x_0}$ be the *P*-harmonic measure centered at a fixed point $x_0 \in R$.

THEOREM. There exists a function $K_p(x, p)$ on $R \times \Delta_P$ with the following properties:

(i) $K_P(x, p)$ is a Borel measurable function on Δ_P for each $x \in R$, nonnegative μ -a.e. on Δ_P , and $K_P(x_0, p) = 1$ on Δ_P ,

(ii) for any $f \in B_s(\Delta_P)$ and $x \in R$,

$$\int_{\mathcal{A}_P} f(p)d\mu_x(p) = \int_{\mathcal{A}_P} f(p)K_P(x,p)d\mu(p),$$

(iii) $K_P(x, p)$ is essentially bounded on Δ_P , uniformly on every compact subset of R,

(iv) $K_P(x, p)$ is uniquely determined μ -a.e. on Δ_P .

The proof of the theorem is essentially the same as in the case $P \equiv 0$ (cf. Kwon-Sario [6]).

COROLLARY 1. A function u belongs to the vector space PBE(R) if and only if

$$u(x) = \int_{\mathbf{A}_P} f(p) K_P(x, p) d\mu(p)$$

on R for some $f \in M_P(R)$. In this case $u \equiv f$ on Δ_P .

COROLLARY 2. Let $u, v \in PBE(R)$. Then the least P-harmonic majorant $u \lor v$ and the greatest P-harmonic minorant $u \land v$ exist and have the expressions

$$(u \lor v) (x) = \int_{A_P} (u \cup v) (p) K_P(x, p) d\mu(p),$$
$$(n \land v) (x) = \int_{A_P} (u \cap v) (p) K_P(x, p) d\mu(p)$$

on R.

BIBLIOGRAPHY

- [1] J. Chang-L. Sario, Royden's algebra on Riemannian spaces, Math. Scand. 27 (1970).
- [2] C. Constantinescu-A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963, 244 pp.
- [3] M. Glasner-R. Katz, On the behavior of solutions of Au = Pu at the Royden boundary, J. Analyse Math. 22 (1969), 343-354.

- [4] E. Hewitt-K. Stromberg, Real and abstract analysis, Springer, 1965, 476 pp.
- [5] Y.K. Kwon-L. Sario, A maximum principle for bounded harmonic functions on Riemannian spaces, Canad. J. Math. 22 (1970), 847–854.
- [6] _____, Harmonic functions on a subregion of a Riemannian manifold, J. Ind. Math. Soc. (to appear).
- [7] _____, The P-singular point of the P-compactification for $\Delta u = Pu$, Bull. Amer. Math. Soc. (to appear).
- [8] L. Myrberg, Über die Integration der Differentialgleichung $\Delta u = c(P)u$ auf offenen Riemannschen Flächen, Math. Scand. 2 (1954), 142–152.
- [9] ——, Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. A.I. 170 (1954), 8 pp.
- [10] M. Nakai, The space of non-negative solutions of the equation Au = pu on a Riemann surface, Kodai Math. Sem. Rep. 12 (1960), 151-178.
- [11] —, The space of Dirichlet-finite solutions of the equation Au = Pu on a Riemann surface, Nagoya Math. J. 18 (1961), 111–131.
- [12] M. Nakai-L. Sario, A new operator for elliptic equations and the P-compatification for $\Delta u = Pu$, Math. Ann. 189 (1970), 242–256.
- [13] M. Ozawa, A set of capacity zero and the equation $\Delta u = Pu$, Kōdai Math. Sem. Rep. 12 (1960), 76-81.
- [14] H.L. Royden, The equation Au = Pu and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A.I. 271 (1959), 27 pp.
- [15] L. Sario-M. Nakai, Classification theory of Riemann surfaces, Springer, 1970, 446 pp.

University of California, Los Angeles