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Abstract

We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and
indicate a direction of future topological research for dealing with these puzzles.
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1. Introduction

Over the last decades, substantial progress has been achieved in analytic approaches
to spectral flow in various geometric, topological, and operator algebra settings. For a
taste of some recent results see, for example, Benameur et al. [2].

Each new approach and each new context displays new and surprising features,
radically new difficulties to be overcome, and astonishing aspects of the new results.
How can it be that seemingly small changes of the setting require different methods
and types of assumptions and yield radically different results?

One explanation can be found in the array of basic functional analysis puzzles
connected with the concept of the spectral flow and its calculation. In Section 2,
we fix the notation and recall the most elementary spectral flow formula, relating
the symmetric category of curves of self-adjoint Fredholm operators in separable
Hilbert space with the skew-symmetric category of symplectic functional analysis.
Moreover, we shall point to peculiar functional analytic properties of geometrically
defined operators like Dirac-type operators. We explain which of these properties can
be regained for general elliptic operators and how. In Section 3, we present our list
of basic functional analysis puzzles on the way to general spectral flow formulae. In
Section 4, we indicate a promising further direction to deal with these ‘puzzles’.
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2. The model case of the functional analytic approach

To investigate spectral properties of geometrically defined differential operators like
the Laplacian and the Dirac operator on manifolds with boundary and on partitioned
manifolds, one has to draw on a variety of tools.

2.1. The von Neumann approach. Some common deep functional analytic roots of
these formulae have been revealed by Furutani and the author in [4], emphasizing
the role of the Cauchy data spaces. More precisely, in the von Neumann–Kreı̆n–
Vishik–Birman tradition, one is given a complex separable Hilbert space H and
a closed symmetric operator A. One defines the symplectic Hilbert space of
abstract boundary values by β(A) := dom(A∗)/dom(A) with naturally induced inner
product 〈[x], [y]〉 and symplectic form ω([x], [y]) and the natural Cauchy data space
CD(A) := {[x] | x ∈ ker A∗}. One has a canonical correspondence between all self-
adjoint extensions AD of A with domain D and the Lagrangian subspaces [D] ⊂ β(A).
In this framework, for example, if AD is a self-adjoint Fredholm extension and
{Ct } a continuous curve in B(H) with ker(A∗ + Ct + s) ∩ dom(A)= {0} for small
|s| (weak inner uniform continuation property, abbreviated to UCP), one obtains
that {CD(A + Ct ), [D]} is a continuous curve of Fredholm pairs of Lagrangians
and SF{(A + Ct )D} =MAS{CD(A + Ct ), [D]}, relating the spectral flow of a self-
adjoint Fredholm operator under bounded variation with the Maslov index of the
corresponding curve of Lagrangians in the abstract boundary space.

The strength of this functional analytic approach turns up when dealing with
systems of ordinary differential equations on the interval, generalizing the classical
Morse index theorem for geodesics on Riemannian manifolds to sub-Riemannian
manifolds. It recovers the Floer–Yoshida–Nicolaescu splitting results for the spectral
flow of curves of Dirac operators on partitioned manifolds (that is, the family version
of the Bojarski conjecture), and it provides a basic functional analytic model for
quantization and tunneling, relating spectral and symplectic invariants.

2.2. The challenge of varying domain. How can we transgress the limitations of
the general functional analytic approach? What if we do not keep the domain fixed
under variation; nor restrict ourselves to bounded (that is, zero order) perturbations;
nor confine the applicability to ordinary differential equations or Dirac-type operators
with constant coefficients in the normal direction (product case) close to the boundary?
A series of recent papers took up the challenge of perturbed Dirac operators and
general linear elliptic differential operators; investigated weak inner UCP; established
the existence of self-adjoint Fredholm extensions; admitted variation of domain and
skew boundaries; and investigated uniform structures and continuous perturbations;
see, for example, Axelsson et al. [1]; joint work of the author with Chen, Lesch, and
Zhu in [3, 5, 7, 10]; Eichhorn [14]; and Gesztesy et al. [15]. We conclude that the
‘natural’ (von Neumann) approach is insufficient, and more analysis (for example,
splitting the coefficients near the boundary and pseudodifferential calculus) is needed.
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2.3. Seeley’s Calderón projection and Dirac operator folklore. Let M be a
smooth compact Riemannian manifold with boundary 6, E, F be Hermitian vector
bundles over M , and A : C∞(M, E)→ C∞(M, F) be an elliptic differential operator
(of first order). Recall that ρ : L2

s (M, E)→ L2
s−1/2(6, E6) for s > 1/2 is extendable

to Dmax(A). Then the classical definition of the Cauchy data space N 0
+(A) of A is

the closure of {ρu | Au = 0 in M\6, u ∈ C∞(M, E)} in L2(6, E6). Seeley [22, 23]
proved that this Cauchy data space can be obtained as the range of a pseudodifferential
projection. The basic ingredients for Seeley’s result have been the construction of an
invertible extension Ã of A over a closed manifold M̃ by extending A to a collar,
then doubling and applying symbolic calculus and UCP management. As a result,
he obtained a Poisson operator K± := ±r± Ã−1ρ∗ J (0), where J (0)= σ(A)(·, ν) ∈
End(E6) denotes the principal symbol of A in the normal direction at the boundary.
He showed that the operator C± := ρK± is a pseudodifferential projection onto N 0

+(A)
and called it the Calderón projection.

It was shown by Wojciechowski and the author [9, Chs. 9 and 12] that Seeley’s
construction is canonical (that is, natural, explicit, transparent, and free of choices) for
Dirac-type operators when the metric structures are products close to the boundary. As
a consequence, we obtained the Lagrangian property of the Cauchy data space. The
reason is that for such operators the invertible extension Ã can be explicitly defined
on the very closed double M̃ of M , without inserting an additional collar near the
boundary and not involving any other choices. As a consequence, the Cauchy data
spaces and the Calderón projection vary continuously under smooth deformation of
the data defining the Dirac operator, as was proved by Lesch, Phillips, and the author
in [6].

These results for Dirac-type operators can be traced back to the ‘Dirac operator
folklore’: (i) weak inner UCP, that is, ker A ∩ dom(Amin)= {0} with dom(Amin)=

L2
1,comp(M, E); (ii) a symmetric principal symbol of the tangential operator B in the

decomposition A = J0(∂x + B), where x denotes the inner normal variable; and (iii) a
precise invertible double. From that alone, one can derive the transparent definition of
the Calderón projection, the Lagrangian property of the Cauchy data space, the exis-
tence of a self-adjoint Fredholm extension given by a regular pseudodifferential bound-
ary condition, the cobordism theorem, and the continuous dependence of input data.

One may wonder how special operators of Dirac type are compared to arbitrary
linear first-order elliptic differential operators. The short answer is that property
(i) may be lost but is indispensable, hence must be assumed. Property (ii) implies
property (i) (if it is valid for the tangential operators on arbitrary hypersurfaces), but
otherwise it is dispensable (for details, see Section 3 below). Property (iii) can be
maintained by replacing Seeley’s classical construction by a new construction, inspired
by Himpel et al. [16] and worked out in [7].

2.4. The invertible double, revisited. We summarize the new construction. First,
we bring a given general elliptic differential operator of first order in product form
A = J (∂x + B) close to the boundary by suitable choice of the metric. Here, J and B
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vary with the normal variable x . Note that in dropping the geometric Dirac operator
context, the metric structures need no longer be fixed.

We obtain a canonical new invertible double ÃT with

dom( ÃT ) :=

{(
e

f

)
∈ L2

1(M, E ⊕ F)

∣∣∣∣ % f = T%e

}
,

where

Ã : C∞(M, E ⊕ F)
A⊕(−At )
−−−−−→ C∞(M, F ⊕ E)

and T ∈ Hom(6, E |6, F |6) is an invertible bundle map with J ∗0 T positive definite.
Then ÃT is a Fredholm operator with compact resolvent, ker ÃT = Z+,0 ⊕ Z−,0
and coker ÃT ' Z−,0 ⊕ Z+,0, where Z+,0 := { f ∈ L2

1(M, E) | A f = 0, % f = 0}
and Z−,0 denotes the corresponding kernel of At . For the most part of our work,
we pick T := (J t

0)
−1. Denoting the pseudoinverse of ÃT by G̃, we define Poisson

operators

K± := ±r±G̃%∗ J0 : L
2
s (6, E)→ L2

s+ 1
2
(M, E)(L2

s+ 1
2
(M, F))

and Calderón operators C+ := %+K+, C− := T−1%−K−. We obtain that C± are
projections with C+ + C− = I and C+(L2)= N 0

+, C−(L2)= T−1 N 0
−.

The most delicate part of the new construction is the investigation of the mapping
properties of the pseudoinverse G̃, the Poisson operators K±, and the Calderón
projection C±.

Our model operator is A = J ((∂/∂x)+ B(x))+ 0 order. From the ellipticity of A,
we have that iξ + B(x) is invertible for real ξ of sufficiently large numerical value
(array of minimal growth). We put Q+(x) := (1/2π i)

∫
0+

e−xλ(λ− B(0))−1 dλ,
a family of sectorial projections, where 0+ is a contour which encircles the eigen-
values of B(0) in the right half plane. We notice that Q+(x) corresponds to
e−x B(0)1[0,∞)(B(0)) if B(0)= B(0)∗. We had to display a delicate balance on a
knife edge between general operator theory and pseudodifferential calculus when we
realized that a priori Q+(x)= O(log x), x→ 0+, hence P+ := Q+(0) is possibly un-
bounded. Within the pseudodifferential calculus, it follows, however, from Burak [11],
and a result by Wodzicki explained in Ponge [21, Proposition 4.1], that P+ := Q+(0)
is a bounded pseudodifferential projection. A posteriori, we obtain Q+(x)→ P+
strong, x→ 0+.

Another hopefully useful concept introduced in [7] is the approximative Poisson op-

erator R : C∞(∂M, E)−→ C∞(R+ × ∂M, E ⊕ F) with Rξ(x) := ϕ(x)
(

Q+(x)ξ
T Q−(x)ξ

)
,

where ϕ is a suitable cut-off function at 0. One finds that R = Ã−1
T %∗ and a regularizing

remainder. That permits us to analyze the mapping property of R : L2
s (∂M, E)→

L2
s′(R+ × ∂M, E ⊕ F) in dependence on A.

2.5. A recent result on sectorial projections. Regarding uniform structures, it
turns out that C+(A)− P+(B(0)) is a pseudodifferential operator of order −1 and
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that A 7→ C+(A) is as regular as A 7→ P+(B(0)) under the condition dim Z0(A),
dim Z0(At )= const. Now, [3, Theorem 1.1] proves that the sectorial projections of
elliptic differential operators on closed manifolds depend continuously on the initial
operator in the natural Fréchet topology, if there exist suitable spectral cuttings for the
principal symbol (like no purely imaginary eigenvalues of the principal symbol, which
is exactly satisfied for the tangential operator B(0) of any elliptic operator A over
a compact smooth manifold with boundary). Consequently, the Calderón projection
C+(A) varies continuously in the operator norm of bounded operators on L2(6), if
the coefficients of A and all its derivatives vary continuously. Moreover, one obtains
that (A, P) 7→ AP is continuous in graph topology, if P runs in the space of ‘regular’
boundary conditions.

Further applications for A = At are that the Cauchy data space is Lagrangian in
the Hermitian symplectic Hilbert space (L2(∂M, E), 〈·, J (0)·〉); the existence of a
self-adjoint Fredholm extension AC± (for suitable choice of T ); and the cobordism
invariance of the index for arbitrary symmetric elliptic differential operators on closed
manifolds: sign iJ (0) vanishes on

⊕
λ imaginary ker(B(0)− λ)N , N � 0.

3. A personal choice of functional analysis puzzles

From the preceding summary, we can extract an array of functional analytic puzzles
on the way to general spectral flow formulae.

3.1. Geometrically defined versus general coefficients. In applications, there is
a decisive difference between ad hoc models and models based on first principles,
as pointed out, for example, by Manin [20]. Ad hoc models are based on fancied
hypotheses about the interrelation between different features and on estimates of
the rates and other coefficients. Mathematically speaking, they require general
coefficients. On the contrary, equations and coefficients in theoretically based models
have a direct meaning, for example, when derived from minimal principles. Often,
to exploit this meaning one better restricts the consideration to geometrically defined
operators, instead of striving for the goal of ‘highest generality’. Clearly, for gaining
mathematical insight both approaches have their merits and yield their own way of
transparency. In the example presented above in Section 2, the Dirac case yields a
simple construction of the invertible double while the general approach yields a list of
universal essentials for getting through.

3.2. Fixed operator versus deformation curve. Addressing curves instead of single
points is as old as celestial mechanics and variational calculus. To embed such
questions in a systematic way into a family setting of deformations is not a new idea;
it goes back to Lagrange’s second letter (in Latin) to Euler regarding the derivation
of what is now called the Euler–Lagrange equation [19]. Following Lagrange, it
seems a tenet of mathematics in our time to address deformation questions at the first
place. As a rule it turned out, for example, in index theory that family versions are
more demanding than single-operator formulae. In contractible spaces the situation is
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different when, for example, the spectral flow of a curve solely depends on the end
points. Then, like in Lagrange’s idea, the embedding of a problem into a deformation
curve may facilitate the treatment and not complicate it.

3.3. Bounded versus unbounded operators. With some right, we may forget about
that distinction when working with an elliptic operator A (say symmetric and of order
one) on a closed manifold M . Then there is no difference between minimal and
maximal domains. They are always equal to the Sobolev space L2

1(M). Moreover,
in that case the Riesz transform A 7→ A(I + A2)−1/2 yields a bounded operator in
L2(M) and is continuous in suitable operator norms, see [9, Ch. 17]. The situation
is much more blurred for elliptic operators on manifolds with boundary. There, the
general functional analysis picture has strongly counterintuitive traits.

Let C F(H) denote the space of closed (not necessarily bounded) Fredholm
operators in a fixed complex separable Hilbert space H and let C F sa(H) denote the
subspace of self-adjoint elements. For index theory, Cordes and Labrousse [12] have
shown that the index is constant on the connected components of C F(H) and yields
a bijection between the integers and the connected components. For the spectral flow,
quite a different result was proved in [6]: while the space of bounded self-adjoint
Fredholm operators decomposes into three connected components (the contractible
spaces of essentially positive, respectively essentially negative, operators and the
nontrivial component with homotopy type of Bott periodicity), the space C F sa(H) is
connected and its homotopy type is not fully revealed. Moreover, equipping the space
C F sa(H) with the graph (gap) topology and the space of bounded operators with the
operator norm, the Riesz transform is not continuous, as shown by a counterexample
provided by B. Fuglede (for details, see [6, Example 2.14]).

3.4. Self-adjoint versus general. Motivated by the method of replacing a
differential equation by difference equations, Hilbert and Courant [13] expected ‘linear
problems of mathematical physics which are correctly posed to behave like a system
of N linear algebraic equations in N unknowns . . . . If for a correctly posed problem
in linear differential equations the corresponding homogeneous problem possesses
only the trivial solution zero, then a uniquely determined solution of the general
inhomogeneous system exists. However, if the homogeneous problem has a nontrivial
solution, the solvability of the inhomogeneous system requires the fulfillment of
certain additional conditions.’ This is the heuristic principle, which Hilbert and
Courant saw in the Fredholm alternative. G. Hellwig in the real setting and I. N. Vekua
in the complex setting (both nicely explained recently by Kalf [17]) disproved it in
1952. Independently of each other, they discovered symmetric differential operators
on the disc with nonself-adjoint boundary condition where the Fredholm alternative
fails.

From the chiral splitting of Dirac-type operators we have learnt that self-adjoint
and nonself-adjoint problems can be related to each other. One instance is the
Cobordism theorem for two linear elliptic, not necessarily symmetric operators on
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closed manifolds which appear as components of the tangential operator for a self-
adjoint boundary problem [9, Corollary 21.6].

It is remarkable how easy it is to apply the spectral theorem to prove the
continuous dependence of spectral projections outside a spectral cut for symmetric
elliptic differential operators on closed manifolds (see [7, Proposition 7.15]) and
how elaborate the arguments become for proving a similar result without symmetry
assumptions (see [3]).

3.5. Functional analysis versus pseudodifferential analysis. The investigation of
the mapping properties for constructing sectorial and Calderón projections from
elliptic operators yields a treasure of situations where claims can be formulated in
general functional analytic terms but be proved only by advanced pseudodifferential
analysis. As examples, see the preceding discussion of the boundedness of the
sectorial projection P+(B(0)); the coincidence of the mapping property of B(0) 7→
P+(B(0)) and A 7→ C+(A); and the mentioned recent delicate proof of the continuous
dependence of P+(B(0)) on B(0).

3.6. Strong symplectic versus weak symplectic. From classical mechanics and the
usual treatment of Dirac operators, we are accustomed to strong symplectic structures,
that is, we assume that the symplectic form ω can be written as a scalar product
ω(x, y)= 〈J x, y〉 with bounded invertible (that is, also the inverse is bounded)
generator operator J . On a smooth compact manifold M with boundary6, any elliptic
operator A (say of order one and symmetric) induces strong symplectic structures
on the von Neumann boundary value space β defined above in Section 2 and on
L2(6) with J defined by the principal symbol of A over 6 in inner normal direction.
Formally, in the same way, we obtain a symplectic structure for the Sobolev space
L2

1/2(6) where all the boundary values of the domain of the extensions of A are
placed by Sobolev restriction. However, if dim6 ≥ 1, that structure is no longer
strong but becomes weak, see [10, Section 2, Remark]. In weak symplectic analysis,
we do not know whether the space of Lagrangian subspaces is contractible; whether
the homotopy of the space of Fredholm pairs of Lagrangian subspaces is of Bott
periodicity; nor whether there exist Fredholm pairs of Lagrangian subspaces with
negative index, see [10, Section 2.3].

3.7. Weak inner UCP? For operators of Dirac type, the weak unique continuation
property can be obtained in two different ways, either by exploiting the fact that the
principal symbol of the Dirac Laplacian is in diagonal form and real or by exploiting
the fact that the principal symbol of the tangential operators are symmetric for all
hypersurfaces, see [9, Ch. 8] for details or [5, Theorem 1.3] for outlines and references.
In contrast to the usual unique continuation property for elements belonging to the
kernel of an elliptic operator, the property weak inner UCP, discussed above in
Section 2, is purely functional analytic. As an immediate consequence, Zhu and
the author obtained the local stability of weak inner UCP; for references and wider
ramifications, see [5, Section 4]. The stability of weak (global) UCP was obtained by
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the author and Marcolli and Wang [8] for mild nonlinear perturbations of the Dirac
operator, motivated by Seiberg–Witten theory.

We shall not elaborate on the many other puzzles. For instance, one may
wonder about the functional analytic roots of the noted differences between homotopy
invariance, valid for index and spectral flow in suitable setting, and solely spectral
invariance of η-invariant and ζ -function regularized determinants. Another puzzle, not
addressed here, are the differences and relations between the desuspension character
of spectral flow formulae going a dimension down (mostly rather delicate from an
analysis point of view) and the suspension character of rather different spectral flow
formulae, going a dimension up (and often more easily accessible).

4. How to deal with these puzzles?

History of mathematics (and of the sciences, as well) provides ample evidence of
changes between periods of expansion (diversification) and periods of consolidation
(establishing deep, principal interrelations). A famous case is how the ideas of
R. Bott, F. Hirzebruch, I. M. Singer, and M. F. Atiyah (and followers) lead to the
identification of Fredholm operators and index problems in wide fields of geometry
and a corresponding unprecedented interconnection between topology, geometry,
functional analysis, partial differential equations, dynamical systems, number theory,
and mathematical physics. Similarly, one may expect that the avalanche of new results
on spectral invariants of operator curves, though pointing in many seemingly unrelated
directions, will help to single out one or two key concepts for dealing with the listed
(and supplementary) ‘puzzles’ around spectral flow.

To overcome, or better to make maximal use of, the vast amount of inspiring, but
spread calculations, it will not be easy to single out a specific direction of dealing
with all the puzzles in one round. One candidate for such a unifying approach is the
concentration on the homotopy type of the operator spaces involved. That was the
starting point of my joint work with Wojciechowski; see, for example [9, Chs. 15–17].
The task is easy to formulate: look for the involved subspaces of unitary operators
and check whether Bott periodicity is maintained, respectively determine deviations
in homotopy type, and do it both in general functional analysis terms and in
pseudodifferential operator terms. To me, the work, for example, by Kirk and
Lesch [18, Sections 2 and 6] indicates that this program continues to be promising.
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