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ON SOME GEOMETRY ASSOCIATED WITH
A GENERALISED TODA LATTICE

P.J . VASSILIOU

We define the notion of Darboux integrability for linear second order partial dif-
ferential operators,

We then build on certain geometric results of E. Vessiot related to the theory of
Monge characteristics to show that the Darboux integrable operators L can be used
to obtain a solution of the At Toda field theory. This solution is parametrised by
four arbitrary functions. The approach presented in this paper thereby represents
an alternative means of linearising the Aj Toda equations and may be contrasted
with the known linearisation via the Lax pair.

1. INTRODUCTION

In an interesting paper [8], Leznov and Saveliev were able to obtain the zero cur-
vature representation for the nonlinear system

d2

( 1 1 ) ^

for arbitrary real matrices k = {kap}T
a g_1. System (1.1) is encountered in a number

of contexts in mathematical physics. For example, the cylindrically symmetric self dual
Yang Mills fields in R4 are described by (1.1) when k coincides with the Cartan matrix
of the relevant gauge group. If fc coincides with the Cartan matrix of the series Ar of
simple Lie algebras then (1.1) is equivalent to the generalised Toda chain with free end
points. Leznov and Saveliev discovered, using the theory of Lie algebra representations,
that in these special cases, that is, when k is the Cartan matrix of a simple Lie algebra
of rank r, they could obtain an explicit solution of (1.1) involving 2r arbitrary functions
which they called the general solution. In their paper they posed the question: "why is
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440 P.J. Vassiliou [2]

system (1.1) explicitly integrable in just these cases ?" The purpose of the present paper
is to show that when k is the Cartan matrix of the Lie algebra A-i, the general solution
is strongly linked to the integrability in the Darboux sense of the linear hyperbolic
partial differential equation

d2w dw dw
(1-2) ~ fl +a—+p—+ru> = 0

oxdx 0x1 ax2where a,/3,j E C°°(R2,R).

The main idea is that (1.2) is Darboux integrable if and only if a variant of the At
Toda equations are satisfied. This fact together with a fundamental result of Vessiot
[12] on the classification of Darboux integrable semilinear hyperbolic partial differential
equations allows one to construct an explicit solution in finite terms of four arbitrary
functions each of one variable.

This result in fact bears out general remarks made by Hermann [7] and illustrates
a paradigm concerning integrable nonlinear partial differential equations, namely that
every integrable nonlinear partial differential equation is associated with a "linear prob-
lem" whose "integrability condition" is the nonlinear partial differential equation under
study. In the usual discussions of completely integrable systems the linear problem of
interest is derived from the Lax pair. Here we point out another type of linear problem,
namely the equation (1.2) while the notion of "integrability condition" is replaced in
this context by the notion of Darboux integrability.

Of course the idea of Darboux integrability which is to be described is a classical
one and when it is applied to equation (1.2) one discovers that it is strongly linked
to yet another classical notion, that of a Laplace Transformation (not to be confused
with a Laplace transform). This topic together with its relevance to various nonlinear
partial differential equation now known to be completely integrable was first discussed
by Darboux in the second volume of his treatise [2] and effectively reviewed in Hermann
[7, Chapter IX] More recently, the connection between the Laplace transformation and
various Toda lattices has been discussed in Weiss [13]. In a sense the results of this
paper are complementary to those presented in Weiss and it would be interesting to
make the connections precise.

By now many papers have been written on the Toda equations and no attempt will
be made here to place the results of this paper within the spectrum of known results.
We shall be content here to show what the classical notions of Darboux integrability
and Laplace transformations have to do with the A?, Toda field theory.

2. LAPLACE TRANSFORMATION

In this section we briefly review some notions associated with the idea of a Laplace
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transformation of equation (1.2). For related material on this topic the reader is referred

to Hermann [7].

Let T> denote the set of second order linear partial differential operators of the

form

where a,/?,7 6 G°°(R2,R).

There is an interesting Lie pseudogroup of transformations $ which which acts on
V:

f : G x P - » P , G = G°°(R2,R),

defined by tf (A, L) = TX{L) = X^LX, A 6 G, LeV,

and where the group operation in G is point multiplication of functions. A straightfor-
ward computation then gives

(2.1) TX{L) = dl1X3 + (a + X~1dX2X)dXl + {fi + X~1d

Next, consider the set of all maps V -> C°°(R2,R). Denote this set by T. From
the above G -action on T>, there is an induced action on T defined by

rx(f)(L) = f{TxL), f£T,XeG.

It is now of interest to enquire about the invariants of this G-action on T. That is, we
seek functions / : V —> C°°(R2) such that

= f(L),

Classically, two such invariants are known:

(2.2)

(2.3)

It is straightforward to show from equation (2.1) that

TX{h){L) = h ( T x L ) = h(X~1LX) = h { L ) , f o r a l l A G G , L e V

and similarly for k. This establishes h and k as differential invariants in T known
classically as the Laplace invariants of L. The Laplace invariants will play a key role
in our subsequent considerations.
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THE LAPLACE TRANSFORMATION AS A BACKLUND MAP.

We are now in a position to introduce the Laplace transformation and to establish a
number of properties which will later prove useful. Suppose we consider a set of partial
differential equations

(2.4) MI — dXJu — au = 0,

(2.5) dXlU! + pUl - (u = 0

for two unknown functions u, «i £ C°° (K2, R),where «,/?,£ are given real-valued func-
tions of Xi and X2 • We ask the question: what should the function <^(x1,X2) be in
order that the function w(a;i,Z2) satisfy the partial differential equation Lu — 0? The
answer is C, = h(L).

Matters being so, one finds that the partial differential equation satisfied by the
function u1(a;i,X2) is L^ui = 0, where,

(2.6) Lx = d2
xlX2 +(a- dX7 In \h(L)\)dXl + (3dXJ +(j-dXla + ft.,/9 - (3dX2 In \h(L)\).

Clearly, then, equations (2.4) and (2.5) define a nonauto Backlund transformation
relating the solutions of L<f> = 0 to those of Li<f> = 0.

There is one further nonauto Backlund transformation that may be written down
analogous to (2.4) and (2.5) but involving the other Laplace invariant, namely

(2.7) u_i -dXlu-Pu = 0,

(2.8) u- i -Jfc(I)u-au_j .

Once more, by eliminating the unknown function tt_i, one finds that u satisfies
the partial differential equation Lu — 0 while u_i satisfies £_iu_i = 0 where,

(2.9) i _ ! = d2
XlX2+(/3 - dXl In \k(L)\)dxl+adXl+{j - dXJ0 + dXla- adxi In \k(L)\)

as may easily be verified. The operators L\ and L—i 6 "D are known as the Laplace
transformations of L G T>. The notation used here in fact goes back to Darboux and
is a little misleading because it gives the impression that the Laplace transformations
C\ : L —» L\ and £_i : L —> L-\ are inverses, which they are not. However, if 2?
denotes the space of orbits in T> under G then it may be shown that C\ and £_i map
G-orbits to G-orbits, that is, if Ai,Li are the images of A,L £ T> respectively, then
if A and L share an orbit, there exists \,fi £ G such that the diagram

L1 > Ax

https://doi.org/10.1017/S0004972700016555 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016555


[5] Generalised Toda lattice 443

commutes. Similarly for £ _ i . Hence C\ and £_i pass to the quotient to act on the
orbit space "D. It is then easily shown that

and £1 o £_i(£)

which proves that the Laplace transformations C\ and £_i are, when acting on V,
inverses of each other. These facts are pointed out by Hermann [7] who also reviews the
way in which Darboux used them to study classes of nonlinear Kein-Gordon equations
now known to be completely integrable. All these results may be compared with those
of Weiss [13]

We end this section on the Laplace transformation by recording the Laplace invari-
ants of L\ and £_i since they will make an appearance in later computations :

= 2h{L)-k(L)-d2
XlXJ\n\h(L)\,

k(L1) = h(L),

_ 0 = 2k{L) - h(L) - d2
XlX2 In

3. DARBOUX INTEGRABILITY OF NONLINEAR HYPERBOLIC

PARTIAL DIFFERENTIAL EQUATIONS IN THE PLANE

The field of integrability of nonlinear partial differential equations is still relatively
young having begun, properly speaking, in 1967 when Gardner, Greene, Kruskal and
Miura published the solution of the initial value problem of the Korteweg de Vries
equation by the inverse scattering transform.

In the intervening years, it has been realised that an enormous inheritance has
been left to the current generation by the 19th century in the field of integrability;
particularly by geometers like Lie, Darboux and Goursat to mention but a few. As a
consequence, a great deal of work needs to be done to codify and clarify this body of
results and particularly its later developments by Cartan and Vessiot and to work out
its consequences and limitations for integrability and solvabilty questions associated
with differential equations. Already in this direction a number of workers have made
important contributions which have covered topics such as Lie equations, symmetry
groups, prolongation structures, differential Galois theory to mention but a few.

In this section we wish to review briefly another classical construction due to Dar-
boux and extending well known results of Monge. Darboux's construction is based on
the notion of Monge characteristics associated with any nonelliptic partial differential
equation and which generalises the notion of Cauchy characteristics.
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The theory of characteristics is most clearly expressed by making use of Cartan's
geometric results [1]. In the hyperbolic case, this has been most lucidly expounded in
Gardner and Kamran [4] where aspects of the Cartan equivalence problem for hyperbolic
partial differential equations in two independent variables is also covered. In this paper
we shall not present a full geometric exposition of Darboux's idea and the reader is
referred to Vassiliou [11] for this. We shall instead be content here to present enough
details in order to prepare the reader for an application of Darboux's construction to
the A2 Toda field theory.

Consider the second order quasilinear partial differential equation

d2u d2u d2u
(3.1) A—-2+2H—— + 5 — , - = 0

ox\ 0x10x2 0x5

du du
where A.H.B and C are C functions of the variables xi,x2,u,—— and -z—.

OXi OX2

It has been known since the time of Monge that the equation (3.1) may be associ-

ated with a pair of modules of differential 1-forms defined on J ^ R ^ R ) , the manifold

of 1-jets of maps R2 —> R. Let us denote these modules by ifi^1) and 2^2^ and let

w = H + y/H2 - AB. Then whenever H2 - AB > 0 we have that xQ^ and 2fi(1) are

generated as follows

{0{ = wdx1 - Adx2, 0\ = wdzx + Bdz2 - Cdx2, 0\ = dz - zidx1 - z2dx2}

{6l = Bdxi -udx2, 0% = Adzx +wdz2 - Cdxx, 6\ = dz - Zidxi - z2dx2)

where here as elsewhere curly brackets denote module closure over (in this case)

I will not go into the genisis of these modules which were first obtained by Monge in
order to integrate equations like (3.1). Neither will I in this paper attempt to connect
the modules IO^1^ and 2 ^ ^ to the work of Cartan as expounded by Gardner and
Kamran [4]. Suffice it to say for the present that the maximal dimension regular
integral submanifolds of these two modules are one in each case and represent what
are classically known as the (order 1) Monge characterisics of the partial differential
equation (3.1). For our immediate purposes, the significance of id^ and 2 ^ ^ is the
following.

THEOREM 3 . 1 . Suppose there exists functions Xx, X2, A3 : J
1 (R2, R) -> R such

that

Ai0j+A202+A30' =dF

for i = 1 or 2 and for some function F : J1 (R2, R) -> R. If f e C2 (R2, R) is such that
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then / is a solution of the second order partial differentia] equation (3.1) where j 1 f :

R2 -> J ^ E ^ K ) is the 1-graph of f.

PROOF: See Vassiliou [11]. D

REMARK. F, when it exists, is called a first integral of (3.1). Evidently this is a very
advantageous situation since it means that solutions of a second order partial differential
equation (3.1) may be obtained by solving a first order partial differential equation (3.2).
Because of the existence of Cauchy vector fields in the latter case the integration of (3.1)
is thereby reduced to ordinary differential equations.

An equation (3.1) for which F exists (as in Theorem 3.1) for i = 1 or 2 will
be called Monge integrable or, alternatively, Darboux integrable at order 1. If (3.1) is
Monge integrable and i = 1, it will be called Monge integrable on system 1; if i = 2
then (3.1) will be called Monge integrable on system 2. We wish to use all these results
to study equations like (1.2). The proof of the following can be found in Grundland
and Vassiliou [5]

THEOREM 3 . 2 . T ie linear hyperbolic partial differential equation

d2u , . d u a . . d u , ,
+ { h P(,x2)^ \-y(x1,x2)u ~ 002! 0Z, ' •*V~1'~"02

is Monge integrable on system 1 if and only if

OX\

and Monge integrable on system 2 if and only if

There can be only one such functionally independent first integral.

A remarkable fact about the modules if^1' and 2^1 and Theorem 3.1 is that
the whole construction can be lifted to higher order jet bundles where new results are
to be found. This lift is known as Darboux's method. We shall formulate the results for
the equation

. . d2u
( 3 3 )

however we note that this restriction is unnecessary and Darboux's method applies
to a larger set of equations than that represented by (3.3). It is possible to describe
Darboux's method by defining an appropriate pair of differential 1-forms on the kth
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order jet bundle. For the purposes of later calculation however we shall instead express
everything in terms of vector fields.

Let A* denote the subset of «7*(R2,R) determined by the (k — 2) prolongation of
equation (3.3). Thus A3 C J 3 (R2, R) is defined by

, . > df 8f df df
212 = f(Xl,X2,Z,Z1,Z2),Z112 = I-Zl-^- +211-5 ( " Z 12 '5~ '

OX i OZ OZi OZ2

df df df df

Let D[k) and D{
2

k) be total differential operators in J*(R2,R) restricted to the
subset At .

DEFINITION 3.1: The vector field systems

which are modules of vector fields on A* will be called the kih order Monge character-
istic vector field systems associated with equation (3.3).

REMARK. The vector field systems ifi(*> and 2n(fc) generalise ift(1) and 2fi(1) in that
by setting k = 1 in ifi(*) and 2^fc) and computing their duals we obtain precisely the
modules ifi^1) and 2 ^ ^ • It may be checked that the vector field systems of Definition
3.1 each have genus g = 1. Furthermore, their 1-dimensional integral submanifolds are
classically known as the kth order Monge characteristics. Full details will be found in
Vassiliou [11]

Our interest for the present is the generalisation of Theorem 3.1 which is the
following.

THEOREM 3 . 3 . Let TI>{X1,X2) be any Ck+1 solution of

d2u J du du

Suppose iv : A* —> R is an invariant of ,f2̂  ', for i = 1,2. Tien
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wiiere jkt{> is the k-gra.ph of ip.

PROOF: For each t = 1,2, let Mj and M\ be the two vector fields generating
. Then if if) is the stated solution we have

by definition of 7r. U

Theorem 3.3 makes clear the fact that from equation (3.3) we have constructed a
compatible system of partial differential equations, assuming that we are in fact able to
construct the invariants iri of iCl^ and TT2 of 2$^*^. These equations are as follows.

( 3 -4 )

(3.5) ^-(TIOJ^)^O,

(3.6) ^ - (7 r 2 o j f c V )=0 .

This systena is, by Theorem 3.3, guaranteed to be compatible whenever equation
(3.4) has nontrivial Ck+1 solutions. At this point it may be argued that system (3.4)
to (3.6) is a worse problem than solving (3.4) by itself. In the first place the system is
over determined and the possibility of nontrivial integrability conditions is not excluded
in fact by Theorem 3.3. In the second place, the order of system (3.4) to (3.6) is in
general higher than 2. So what advantage is provided by this Theorem?

A close inspection of equations (3.5) and (3.6) shows in fact that even though i$> is a
function of the two variables X\ and X2 , the equation (3.5) contains no differentiations
with respect to Xi while (3.6) contains no differentiations with respect to xz • This
is because X\ and x-i are themselves invariants of 2^*^ and ifiW respectively and
hence are what are commonly referred to as characteristic variables. The effect of
this is that equations (3.5) and (3.6) are not really partial differential equations at
all but parametrised families of ordinary differential equations. In order to integrate
equation (3.4) we turn Theorem 3.3 on its head and study instead of (3.4) either or
both of equations (3.5) and (3.6). If we succeed in solving these ordinary differential
equations then by Theorem 3.3, we also obtain solutions of the original second order
partial differential equation (3.4). This makes clear the very interesting fact that even
though second order partial differential equations have no Cauchy vectors associated
to them in general, if their Monge fields carry sufficient invariants, the construction of
their general solutions can be reduced to solving ordinary differential equations. To see
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explicit examples of this the reader is referred Grundland and Vassiliou [5, 6] and to
Vassiliou [11].

In order to study the Ai Toda field theory we need to generalise Theorem 3.2 to
the second order jet bundle J 2 ( R 2 , R ) and to study the integrability via Darboux's
method of equation (1.2).

We begin by letting Tk denote the set of direct sums of modules iflw(f)®2^kHf)
as / ranges over all partial differential equations (3.3). Let JI be the map which assigns
to each / its direct sum of Monge characteristic modules in P* . Let fj, be the restriction
of JI to the partial differential equations Lu = 0, L £ T>. Specifically, /i : £> —» P2
is defined by fi{L) = tOP^L) ® 2^

2)(L), where ,-n<a>(£), i = 1,2, are the Monge
characteristic vector field systems associated to the partial differential equation Lu = 0.
Let F2(2,2) denote the subset of I^ for which jfi(2)(L), i = 1,2, each possess precisely
two functionally independent invariants and let 72(2,2) be the restriction of P2(2,2)
to the partial differential equation Lu = 0, L 6 T>.

A partial differential equation (3.3) will be called (2,2)-Darboux integrable at order
2 if £( / ) G T2(2,2). Similarly an operator L £ V will be called (2,2)-Darboux inte-
grable at order 2 or, simply, (2,2)-Darboux integrable if (i(L) £ 72(2,2). The following
theorem characterises the (2,2)-Darboux integrable operators in T>.

THEOREM 3 . 4 . Let

L = dXlX2 +adxi +PdX2 + 7

be a linear second order partial differential operator belonging to T>. Then the partial
differential equation

Lu-0

has precisely two invariants on system jfi'2' if and only if h(L) and k{L) satisfy

(3-7) g^-]

and precisely two invariants on system 2 ^ 2 ' if and only if

(3.8) -J?L-hl\k(L)\ = -h(L) + 2k(L),

PROOF: In Grundland and Vassiliou [5], it is shown that Lu = 0 has precisely two
invariants on system iQ^ if and only if the determinant of the matrix

/ h K
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is zero while h(L) ^ 0, where

K = —- +aB +0A-C, A= -^- + a2,
OX\ OX2

Calculation in fact shows that

Hence the determinantal condition becomes
dK ,n K dh d2h n dh n, da

0= ^— + hB-— — = ^—- 2a- 2ft—
ox\ ft axi OX1OX2 0x1 ox\

+ h{k - 2a/3 + 27) - ft"1 ( 2ah)-£—
\OX2 ) OX\

d2h (da o \ , 1 dh dh
2ft( h a/3 - 7 I - ft 1-

)x\dx2 \dx\ ) dx\ dx-i

= fe-i
 d2fl _fe-2Jfe__gfe__2/t.
dx\dx2 dx\ dx2

= ^ - l n | f t | - 2 f t + fc

which is condition (3.7).
A similar calculation associated with the module 2^2) leads to the equation (3.8).

Let us note that the equations (3.7) and (3.8) correspond precisely to the vanishing of
the Laplace invariants h(L\) and k(L-i); see Section 2. D

It follows from Theorem 3.4 that fi{L) 6 72(2,2) if and only if h(L) and k(L)
satisfy the coupled system (3.7) and (3.8). In the next section we shall show how the
class /i~1(72(2,2)) can be explicitly constructed. Indeed we give a parametrisation
of (iT1 (72(2,2)) in terms of four arbitrary functions. This parametrisation was first
obtained by Vessiot [12] who however does not seem to have written out a proof of the
correctness of his algorithm. This is provided by Theorem 4.2 which is a general proof
of correctness and supplies the above mentioned parametrisation as a corollary. First
however, let us notice that the system consisting of equations (3.7) and (3.8) do indeed
constitue the A2 Toda field theory discussed in Leznov and Saveliev [8].

The equations (3.7) and (3.8) have the form

9 -In |ft| = 2ft - Jb,

- ^ — In \k\ = - f t + 2Jb,
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where we have abbreviated h(L) to h and k(L) to A;. Now suppose there exists an open
subset of R2 such that hk > 0. Then in this subset there exists functions u(xi,a;2)
and v(x\,X2) such that u and v satisfy the system

a ° « * > ,

System (3.11) is precisely the Toda field theory for Ai and corresponds to the
Leznov-Saveliev system (1.1) when

- ( A V).
which is the Cartan matrix for the Lie algebra A?.. A further system is obtained
according to the existence of open subsets of R2 in which hk < 0. In this case functions
u and v exist such that

(3.12) «£**
= e" + 2e"

Clearly (3.12) is equivalent to (3.11) with the change of variable v —» v + iir but it is not
clear that there exists a real local diffeomorphism relating these systems. The system
(3.12) is not related to the Cartan matrix of any simple Lie algebra but is nevertheless
an explicitly integrable system as we shall see.

4. A LOCAL EQUIVALENCE PROBLEM FOR VECTOR FIELD

SYSTEMS AND INTEGRATION OF THE A2 TODA FIELD THEORY

In the previous section we showed that when the conditions defining the (2,2)-
Darboux integrability of the operators L £ T> are expressed in terms of the Laplace
invariants of L one recovers the A2 Toda field theory. By combining this result with the
solution of a local equivalence problem for vector field systems (Theorem 4.2) we obtain
in this section an explicit solution of the Toda field theory containing four (almost)
arbitrary functions. (The word "almost" in the previous sentence will be explained in
the sequel.) Here we understand by a "solution of an equivalence problem", the con-
struction of an explicit diffeomorphism which maps one vector field system to another.
This should be contrasted with the solution of a Cartan equivalence problem which em-
ploys powerful techniques to find necessary and sufficient conditions for equivalence in
an algorithmic way in the form of a complete set of invariants [3].
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Recall that ^ ( 2 , 2 ) is the set of modules of Monge characteristic vector fields
associated with the (2,2)-Darboux integrable partial differential equations

Call this set of equations E{2,2). That is, / £ E(2,2) if and only if /!(/) e
1^(2,2). Vessiot [12], has proved the following remarkable theorem regarding the set
of equations 22(2,2).

THEOREM 4 . 1 (VESSIOT). Let A 2 ( / ) C J 2 ( R 2 , R ) denote the submanifold

in the second order jet bundle defined by a partial differentia] equation f £ U(2,2).

Then there exist

1. functions <f>a,rl>a £ C°°(R,R), a = 1,2,3;
2. a Lie group G, with dimG = 3 ;
3. a iocai diffeomorphism ir : A 2 ( / ) —» G x R4 sucii t i a t

where {La}
3
a=1 and {Ra}

3
a=i form bases for the left and right invariant

vector £elds on G respectively. Finally, {w,Ui} are any two functionally
independent invariants of of 2&2\f) while {v,Vi} are any two function-
ally independent invariants of

Vessiot's theorem gives us a canonical form for the collection of modules

JHE{2,2)) = ,n<2)(/) ©2n(2)(/), / £ £(2,2).

in terms of the three dimensional Lie groups. However the problem that we are inter-
ested in here may be thought of as the "converse" of Vessiot's theorem. That is, given
a module of vector fields on R4 x G of the form

(4.1) | | ^ } | |

find the inverse of Vessiot's local diffeomorphism TT. Once TT"1 has been found one
can recover the associated partial differential equation / £ i?(2,2). As a corollary of
this we integrate the Toda equations by a suitable choice of Lie group G. We note
in passing that Vessiot's theorem is an existence result and the theorem itself gives no
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clue as to how TT or its inverse can be constructed. Nevertheless Vessiot's paper does
contain clues and explicit computations; however there is no proof. This is provided by
the following theorem.

Let us denote the collection of modules of vector fields of the form (4.1) by

£(<£«; i>a\ G), which is shorthand for £({<Ma=i ! W«}«=i ! <?) •

THEOREM 4 . 2 . Suppose <r E £(<&»; V>a; G) is a module of vector fields o n K 4 x G
generated by

Suppose the vector field system A generated by

has three functionally independent invariants X\,X2, and z such that Li2 = R-^i = 0

and LziRa;2 ^ 0.

Define the functions

Lz Rz Lzi Rz2
zl = 7 ) Z2 = ~ i ^11 = Z > ^22 = — .

XJX\ XVZi hX\ K.X2

Then whenever the functions (xi,X2,z,zi,Z2,zu,Z22) are functionally independent
they define a local diffeomorphism

V : R4 x G -> A2(/) ,

such that,

where f is defined by

LZ2

Furthermore, f £ E(2,2) whenever -^— = —^— = 0.
ozn dz22

This theorem says that if the stated conditions are satisfied for a £
then a local diffeomorphism V : R4 x G —» A2(/) can be exphcitly constructed such
that

7M<r)era(2,2).
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It then follows that V is the sought after inverse of Vessiot's diffeomorphism n.
Moreover, we shall see that if we choose <r from the collection £(<£Q; V>a;3) of modules
of vector field systems then V+(a) G 72(2,2), the image under \i of the (2,2)-Darboux
integrable linear differential operators in T>.

PROOF OF THEOREM 4.2: The proof proceeds as in [10] by finding a particular
solution of the partial differential equations which define the equivalence map:

such that

Such an equivalence implies the existence of a function g : R4 x G —> G£(4,R) such
that

R
-9

D(2)
2

a

d d
where £)j , D\ , — and —— are generators of i

differential equation

for some partial

dy &y

Since it is enough to find a particular solution of the overdetermined system of first
order partial differential equations defining the equivalence map V, we specialise g to
lie in the subgroup of Gi(4,R) described by the matrices

11 0 lt?13 (j)\i

0
0
0

U>22

0
0

W 2 3

W33

W43

U>24

W34

W44/

This choice of subgroup is based purely on heuristic arguments. Hence,

W14 + W 2 4 ^ ,
#222

a a
•5- I = «33 "5 1" W34

a
'dz 11

Note that A2(/) has local coordinates Zi,x2,z,zi,z2,zu,z22, that is, all the local
coordinates of J2(R2,K) except for z\2 since this coordinate is specified by the partial
differential equation / .
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The local coordinate expressions for D{ and .Dj when combined with equations
(4.2) give the following overdetermined system for V:

(4.3)2 Rx2 = o;22l ^ = 0, ^ = 0, Lx2 = 0,

(4.3)3
 L 2 : ~ WUZ1> « = 0) 5— = 0, Rz = W22Z2,

(4.3)4 Lzi = wn2n, Rzx =u>22f, - j-^- = 0, ^ - = 0,

(4.3)s Lz2 = wu / , Rz2 = w22z22, - — = 0, -— = 0,

(4.3), lz11=u,ia,B. = u,ai,j±=0,-^=0,

(4 .3) 7 Lz2 2 = Wi4, R z 2 2 = W24, "̂  = W34, — = W44.
UU\ OVl

Suppose for the present that we can find x\ and z2 which satisfy (4.3)j and (4.3)2 .
Let us consider the equation (4.3)3 . From the first two equations we have

(4.4) [/-, 1.1 Z = /-(Lz) - h(p-) = ̂ n z O = *p*Zl + Wllf5-,

and from the second two equations we obtain

(4-5) ^ - ' R P = ^ ^ + W « I ? -
But from (4.3)x and (4.3)2 we find that

(4-6) d-SrA4rA^d-^Air^
Suppose then that at this point, in addition to Rail = Lz2 = 0 we require that

and 3:2 be invariants of the vector field system

such that (Lxx)(Rx2) ^ 0 .

Matters being so, equations (4.4) and (4.5) become

d
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In addition we have

Thus in order to satisfy the middle two equations of (4.3)3, the third equation in

(4.3)4 and the last equation in (4.3)5 we need to require that z be an invariant of

(4.7). From (4.9) we see that -^- = - ^ - = 0 are satisfied by virtue of the fact that
Q "I r Q -i

——, L = ——, R = 0. This effectively solves the partial differential equations
dvi J [dm J

denning the equivalence map V.

Summarising, we have shown that if xi, X2 and z are chosen to be any functionally

independent invariants of

( d d [ d 1 I" d 11
Idui dvi [5ui J [dvx JJ

such that (Lx!)(Rx2) i1 0 and Rzi = Lx2 = 0 then the remaining variables are
obtained from the system (4.3)3 to (4.3)s as in the statement of the theorem. In
particular the partial differential equation / is defined by

_ Lz2 _ Rzi

and justifies our assertion that V satisfies

for some partial differential equation

d2y _ ( _ _ ^
t[xiX2y 'dx\'

We must now show that if —i- = -J— = 0 then £(/) G E(2,2). First of all
OZu 0222

we show that with V defined as in the statement of the Theorem, then V* maps

\ L, - — i to ifi (2 )(/) and \ R, ^— \ to 2 n ( 2 ) ( / ) . To do this we need to first show
I oui J { dvi J

that W34 = o»43 = 0, since then we have

dz22 dz2Now a>34 = —— and from the equations Rz2 = W22Z22 and —— = 0 we have
OU OU

https://doi.org/10.1017/S0004972700016555 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016555


456 P.J. Vassiliou [18]

However with V defined as above we have —— = 0, whence

= «22 h^~

Noting that j ——,R| = 0 gives the required result. A similar argument shows that

- i f d TC ^ l l I 11

•^ L •*

r\ "I

and since I ——,L = 0 the result follows.

So far we have shown that

zn

Our next job is to show that

To do this we first generalise the well known fact that if F = {Xi,.X"2, . . . , Xm}

is a C°° (R n ,R) module of vector fields of constant dimension on an open subset U of
Rn and if <f> : U —» U is a local diffeomorphism then ^ ( c h a r F ) = char(<£*F). That
is, characteristic submodules are maped to characteristic submodules. Indeed for fixed
X £ F, write

F^ =F@[X,F}.

We assume that here as elsewhere we are in the nonsingular case where the di-
mension of all vector field systems "derived" from F does not change on U. Following
Stormark [9], we define a function

rF : F -> R

by r

Let

Call X regular in F if rp(X) — r^ ; singular in Fii rp(X) < rx and characteristic

in Fii rp(X) = 0. The following is easy to establish.
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LEMMA . rp is a Diffioc (Rn) invariant.

This result generalises the well known fact that if X is characteristic in F then
(fr+X is characteristic in (fr+F. So if we give the number rp{X) the obvious name
of the rank of X in F then we see that it is a Diff]oc (En) invariant so that X being
characteristic corresponds to the special case rp(X) = 0. More generally, regular vector
fields are maped to regular vector fields and singular to singular.

LEMMA.

The local difieomorphism V, when acting on < L, —— > and < R, -r— > maps
I O«lJ [ OVx J

these to the Monge characteristic vector Held systems. That is,

and 7

for some f e £ (2 ,2) .

PROOF: We prove the result for < L, —— > ; the other being similar. Firstly, we

note that

ff^/a = $aLa.

Assuming that not all the <j>a are zero, we have rff(L) = 1. Let us compute

We have abready shown that

and by construction that,

(2) d d

where,
(2) d d d , d

OX i OZ OZ\ OZ2

—(2̂  d d . d d
D + + f +

are the total differential operators restricted to
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Calculation then gives

•"••£•

] • -
Hence

Now by the previous lemma, r-p+^V+L) — 1 since P is a local diffeomorphism. Hence

% must have dimension one. This in turn forces W14 — W11D2 / = 0.

Now, because

"•_(£) = «£•
we have shown, upon comparing with Definition 3.1, that

A similar argument shows that

Finally, we note that < L, —— > has two functionally independent invariants (v,vi)

while < R, —— > has two functionally independent invariants (u,ttx). It follows that

their diffeomorphic images, iU^(f) and 2n^2^(/), each have two functionally indepen-
dent invariants. This proves that / 6 22(2,2) and completes the proof of the lemma
and the theorem. D

We are now in a position to solve the A2 Toda field theory by making use of
Theorem 4.2 and specialising the Lie group G that appears there to be the vector space
R3. That is, we study the collection of vector field systems S ( ^ a ; ^ a ; R 3 ) . Explicitly
these vector field systems have the form

r\ r\ r\ \ r\

OV \ OWl OW2 OW3) OV\ J
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where W\,W2 and W3 are coordinates on R3. Now a is defined up to local diffeo-
morphisms so we may use this freedom to simplify <x. Indeed, by re-parametrising u

and v we can transform <j>i and %j}\ (say) to 1. This means that we can without loss
of generality study the family of modules E(l,<^2)^3;l)V)2,^3;I^3) • Now it transpires

that the condition necessary and sufficient in order that the submodules < L, —— > and< L, —— >
I Otti J

{R, —— > each have two functionally independent invariants is that the Wronskians of
Ov1 J

(\,<j>2,4>i) and ( l , ^2 j^s ) are each not identically zero. That is, the 4>'s and iji's must
be linearly independent.

Matters being so, application of Theorem 4.2 suggests that we compute the invari-
ants of the submodule A of cr^ = a @ [a, a]. In this case A is given by

r d , d J d a , d . d d e \
[ OWi OW-i 0W3 OWi dw2 OW3 OUi OVi J

Under the stated nondegeneracy conditions on the (j>'s and i/i's , A will have three
functionally independent invariants which are easily computed:

(4.10) Xj = U, X2 — V, Z = 10i#i + W282 + W3O3,

where 0i = ^ 2 ^ s - ^ 2 ^ 3 , 02 = $3 - V"3, 63 = tf>2 - <j>3-

These invariants satisfy the conditions of Theorem 4.2 and define a local diffeomor-
phism, as may easily be checked directly. Now in order to construct the partial differ-
ential equations associated with any <r 6 E (1,^21^3; l j^Zi^siR3) w e need to compute
z\, Z2 and z\2 • By applying Theorem 4.2 once again we have (only by carrying out
differentiations)

(4.11) L
a = l

We are therefore led naturally to express t«i a s a function of the local co-ordinates
on A2( / ) . Combining (4.10) with (4.11) we find that IB^IBJ and u>3 satisfy the linear
algebraic system

z = W1O1 + W2O2 +

dBx d02 d0s

80! d02 d03
22 =W1^T +U>2-£— +t»3-Q-.

ov ov ov
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Because of the form of the cf> 's and r/> 's the above system can always be solved to
express wi,W2 and 103 as linear combinations of z,Zi and z2. Suppose we write the
solution w\ of (4.13) in the form

wi = A(u,v)z + B(u,v)zi + C(u,v)z2.

This then gives A2(/) as a submanifold of J2(M2,R) denned by

•Z12 = -5—^—(A(x1,x2)z+B(x1,x2)z1 +C(x1,x2)z2),oxOx

and shows that the class of partial differential equations associated with
1, tf>2, ij>3; R3) is parametrised by

dxidx2 dxidx2 \ dxi ' dx2

where 0i,A,B, and C are defined as above. Since the partial differential equation

(4.14) is independent of the higher order derivatives jr-^ and —j it follows once
cfx1 ox2

again by Theorem 4.2 that the class of partial differential equations denned by (4.14)
satisfies the condition that each member is (2,2)-Darboux integrable. In other words,
we have explicitly constructed Vessiot's class of second order linear differential operators
/x-1(72(2, 2)) .namely,

, ^ . 9261

and hence h{L) and k(L) are by Theorem 3.4 solutions of equations (3.10). We thus
obtain solutions of the Toda field equations containing four arbitrary hnearly indepen-
dent, twice differentiable functions each of one variable in the case when h(L)k(L) > 0
and of equations (3.12) when h(L)k(L) < 0.

EXAMPLE. We end by giving an elementary example to illustrate the theory. We
construct the partial differential equation associated with the vector field system

,M,ju~1; 1,V,V~1] R3) . In this case #i = u/v —v/u, 62 = l / « — 1/v, #3 = v — u and
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we find that solving the linear algebraic system (4.13) leads to

fuv)2fii2 — v2\z — •u3v2(u — v)2zi + u2v3(u — v) z2

1 "" -ut>(u - v)4

Then from

d2o1

one obtains the associated partial differential equation in the form

(4.15) dy i (*i+*») dV (»!+«») 9y jx1+x2)
2 ^

dxdx2 x2(xi — x2) dxi zi(zi — x2) dx2 x1x2(xi — x2)
2

The Laplace invariants of the operator defined by (4.15) are

dx1\x2(x1-x2)J (XJ-ZJ)2 '

(4-16) d f x1+x2 \ - 2

dx2 \3!l(s;i — X2) J (xj — 3:2)

Here we are in the "equal invariants" case because of the symmetric form we chose
for the <f> 's and TJJ 'S. In this case the Toda equations degenerate to the Liouville equation
for which (4.16) defines a solution. Obviously the choice of "nonsymmetric" forms for
the <f> 's and ip 's lead to other solutions of the Toda equations which are not solutions
of the Liouville equation.
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